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Overview

What is Real-Time Communication?

Real-Time (zero or finite delay) encoding,

Real-Time (zero or finite-delay) decoding.

Why consider Real-Time Communication?

Motivated by informationally decentralized system

QoS (delay) requirements in communication networks,

Sensor networks,

Traffic flow control in transportation networks,

Decentralized resource allocation (decentralized routing)
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Literature Overview

Problem has received considerable attention in past.
• Zero-delay and finite-delay source coding.
• Causal Source coding.
• Performance bounds of systems with a real-time or finite-delay

constraint.
• Zero-delay joint source channel coding.
• Real-time quantization of Markov sources (noiseless channel).
• Real-time encoding/decoding for noisy channels with noiseless

feedback.
• Real-time encoding/decoding for noisy channels (no feedback)
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Literature Overview

Problem has received considerable attention in past.

Different approaches can be classified into two categories
• Information Theoretic approach.
• Decision Theoretic approach

Limitations of Standard Results of Information Theory

Fundamental Results of Information Theory are asymptotic.

Based on encoding/decoding of typical sequences.

Small delay schemes work only when the time horizon goes to
infinity.
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System Model
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System Model

Source Encoder Channel Memory DecoderDecoder
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= Pr (yt | zt)

Finite memory receiver.
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System Performance

Source Encoder Channel Memory Decoder

Nt

X t Zt

Yt

Mt−1

Yt

X̂ t

Receiver

Distortion measure

ρt : X × X → [0, +∞)

Design: Choice of c , (c1, c2, . . . , cT ), g , (g1, g2, . . . , gT )
and l , (l1, l2, . . . , lT ).

Performance measure

J (f , g , l) = E

{
T∑

t=1

ρt(Xt , X̂t)

}
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Problem Formulation

Problem

Assume that both encoder and decoder know

statistics of the source,

statistics of the channel,

and the time horizon T

choose an optimal design (c∗, g∗, l∗) such that

J ∗ = J (c∗, g∗, l∗) = min
(c,g ,l)

J (c , g , l)

Salient Features

dynamic team problem

non-classical information structure

non-convex (in policy space) optimization problem
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Structural Results

D. Teneketzis.
On the structure of optimal real-time encoders and decoders in noisy communication.

submitted for publication in IEEE Trans. Inform. Theory.

Structure of Optimal Encoder

Consider any fixed (but arbitrarily) g , (g1, . . . , gT ) and
l , (l1, . . . , lT ).
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Structure of Optimal Encoder

Consider any fixed (but arbitrarily) g , (g1, . . . , gT ) and
l , (l1, . . . , lT ). then,

There is no loss of optimality in restricting attention to encoding
rules of the form

Zt = ct(Xt ,PMt−1), t = 2, 3, . . . ,T

where,
PMt

(m) = Pr
(
Mt = m

∣∣ X t , Z t , ct , l t−1
)
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Structural Results

D. Teneketzis.
On the structure of optimal real-time encoders and decoders in noisy communication.

submitted for publication in IEEE Trans. Inform. Theory.

Structure of Optimal Decoder

Consider any fixed (but arbitrarily) c , (c1, . . . , cT ) and
l , (l1, . . . , lT ), then

Obtaining the optimal decoder is a filtering problem — At
each t obtain gt to minimize

Jt = E

{
ρt(Xt , X̂t)

∣∣∣ Yt = y ,Mt−1 = m
}

An optimal decoding rule g∗ , (g∗

1 , g∗

2 , . . . , g∗

T ) is given by

g∗

t (yt , mt−1) = τt

(
ξt(yt ,mt−1)

)

where ξ
f ,l
t (y ,m)(x) = Pr (Xt = x |Yt = y ,mt−1 = m)

and τt

(
ξt(y , m)

)
= arg min

a

∑

x

ρt(x , a)ξt(y ,m)(x)
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Simplification of the Problem

Implication of Structural Results

Without loss of optimality we can restrict attention to
encoders of the form Zt = ct(Xt , PMt−1).

Structure of optimal decoder depends only on the distortion
measure and the conditional PMF ξt .

ξt depends on choice of ct , l t−1.

g∗

t = g∗

t (ct , l t−1)

g∗ = g∗(c , l)

Equivalent Problem

min
(c,g ,l)

J (c , g , l) = min
c,l

J
(
c , g∗(c , l), l

)
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Information States

Properties of Information States

Need to obtain information states for both agents sufficient
for performance evaluation.

Let πt and ϕt be information states of encoder and memory
update respt. They should satisfy

(S1a) πt is a function of x t , ct−1 and l t−1.

(S1b) ϕt is a function of yt , mt−1, ct and l t−1.

(S2a) ϕt can be determined from πt and ct .

(S2b) πt+1 can be determined from ϕt and lt .

(S3) · · ·
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Information States

Properties of Information States

(S3) πt absorbs the effect of ct−1, l t−1 and ϕt absorbs the
effect of ct , l t−1 on expected future distortion, i.e.
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Properties of Information States

(S3) πt absorbs the effect of ct−1, l t−1 and ϕt absorbs the
effect of ct , l t−1 on expected future distortion, i.e.

E

{
T∑

s=t

ρs(Xs , X̂s)

∣∣∣∣ c , g , l

}
= E

{
T∑

s=t

ρs(Xs , X̂s)

∣∣∣∣ πt , c
T
t , lTt

}

= E

{
T∑

s=t

ρs(Xs , X̂s)

∣∣∣∣ ϕt , c
T
t+1, l

T
t

}
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Information States for the Problem

Consider the random vectors

PMt
(m) = Pr

(
Mt = m

∣∣ X t ,Z t , ct , l t−1
)

PYt ,Mt−1(y ,m) = Pr
(
Yt = y ,Mt−1 = m

∣∣ X t ,Z t , ct , l t−1
)

Information States

πt = Pr
(
Xt , PMt−1

)
, (Info. state for Encoder)

ϕt = Pr
(
Xt , PYt ,Mt−1

)
, (Info. state for Memory Update)
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Information States for the Problem

πt and ϕt satisfy (S1)–(S3), i.e.

1. there is a linear transformation Qt(ct) such that

ϕt = Qt(ct)πt

2. there is a linear transformation Q̂t(lt) such that

πt+1 = Q̂t(lt)ϕt

3. for any choice of c and l , the expected conditional
instantaneous cost can be expressed as

E

{
ρt(Xt , X̂t)

∣∣∣ ct , g∗

t (ct , l t−1), l t−1
}

= ρ̃t(ϕt)

where g∗

t (ct , l t−1) is an optimal decoding rule corresponding
to ct , l t−1 and ρ̃t(·) is a deterministic function.
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Equivalent Deterministic Problem

System Equations

ϕt = Qt(ct)πt , t = 1, . . . ,T

πt+1 = Q̂t(lt)ϕt , t = 1, . . . ,T − 1

Qt(·) and Q̂t(·) are deterministic transformations depending
on ct and lt respt.

Initial state π1 is known.

Instantaneous cost ρ̃t(ϕt).

Optimization criterion

inf
c,l

T∑

t=1

ρ̃t(ϕt)
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Nested Optimality Equations

V̂T (ϕ) ≡ 0

Vt(π) = inf
ct

[
ρ̃t

(
Qt(ct)π

)
+ V̂t

(
Qt(ct)π

)]
, t = 1, . . . ,T

V̂t(ϕ) = min
lt

[
Vt+1

(
Q̂t(lt)ϕ

)]
, t = 1, . . . ,T − 1
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Time Homogenous Case

source transition matrix

channel

noise statistics

distortion measure

are time invariant. Then, the same methodology works for

Finte time horizon,

Infinite time horizon with an expected discounted distortion
criterion.
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Extensions

A. Mahajan and D. Teneketzis
On jointly optimal encoding, decoding and memory update for noisy real-time

commuciation

Control Group Report CGR-05-07, Department of EECS, University of Michigan,
Ann Arbor, MI.

k-th order Markov source.

Finite delay ρt(Xt−δ, X̂t).

Channels with memory.
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Summary

Provide a decision theoretic framework to study real-time
communication.

Use the stuctural results of Teneketzis 2004, to obtain jointly
optimal real-time encoding, decoding and memory update
rules.

Extend the methodology to infinite horizon problems.

Future Work

Extend the methodology to multi-terminal systems.

Performance bounds.

Computational issues.
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