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Model Objective

Discrete time, discrete valued
Source : {Xt, t = 1, . . . , T }

Encoder : Zt = ct(X
t, Ỹt−1, Zt−1)

Forward ch. : Yt = h(Zt, Nt)

Backward ch. : Ỹt = h̃(Yt, Ñt)

Decoder : X̂t = gt(Yt, Mt−1)

Memory Up. : Mt = lt(Yt, Mt−1)

Choose (c1, . . . , cT), (g1, . . . , gT),
(l1, . . . , lT) to minimize

J := E

{
T∑

t=1

ρ(Xt, X̂t)

}
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Do not know
how to apply

Information Theory

◦ Use Stochastic Optimization

Which solution methodology?

. Markov Decision Theory

. Orthogonal Search

. Standard Form

. ??
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Stochastic Optimization
◦ Markov Decision Theory (not applicable)

. works only for one decision maker with perfect recall

◦ Orthogonal Search (not appropriate)

. May not converge

. only guarantees local optima

◦ Standard Form — Witsenhausen, 1973 (not appropriate)

. Does not extend to infinite horizon

◦ Our Methodology

(i) Identify structural properties
(ii) Use structural properties to solve the global optimization problem



Our Methodology
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Structural Properties
NEED

◦ Encoder: Zt = ct(X
t, Zt−1, Ỹt−1), ct ∈ Ct : Xt × Zt−1 × Ỹt−1 → Z

◦ Domain changing with time.

◦ Makes the infinite horizon design hard

◦ Can we simplify implementation?

PRELIMINARIES

◦ Notion of Information
◦ Notion of Beliefs
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2Rt := (Yt, Mt−1),
2Rt := σ(2Rt;

2φt−1),

3Rt := (Yt, Mt−1),
3Rt := σ(3Rt;

3φt−1).

Beliefs What one decision maker thinks about the data at other nodes

Belief of the encoder Belief of the decoder
iBt(

ir) := Pr
(
iRt = ir

∣∣ iEt

)
. iAt(

ie) := Pr
(
iEt = ie

∣∣ iRt

)
,
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Structure of Opt Encoders
◦ The main idea

. Fix the decoding and memory update function

. Look at the problem from the encoder’s point of view

. Derive qualitative properties of optimal encoders

Structure of
Optimal Encoders

Zt = ct(Xt,
1Bt), t = 2, . . . , T

◦ We recover the structural results of previous models considered in literature

◦ Systems where the encoder knows the decoder’s information

. Real-time source coding (Witsenhausen, 1979)

. Real-time joint source-channel coding with noiseless feedback
(Walrand and Varaiya, 1982)

◦ Systems where the encoder does not know the decoder’s information

. Real-time joint source-channel coding with no feedback (Teneketzis, 2006)
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iEt = σ(iEt;
iφt−1) iRt = σ(iRt;

iφt−1)

◦ Information is non nested. iEt 6⊆ iRt
iEt 6⊇ iRt

Aumann’s notion on
Common Knowledge

iKt := iEt ∩ iRt

◦ Choose future decision rules based on common knowledge.
◦ Or, since we are only interested in performance, choose future decision rules based on

common belief: P
∣∣∣
iKt

• Need to find the set of all feasible realizations of common information (or common belief)
• iEt and iRt depend on past decision rules — so does iKt.
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Global Optimization
Aumann’s notion on
Common Knowledge

iKt := iEt ∩ iRt

◦ Can work with a super-set of the set of all feasible realizations of common knowledge

◦ Choose Total Information: iTt := σ(Xt,
iBt,

iRt;
iφt) ⊇ iKt

◦ Set of all realizations depends on the past decision rules

THE IMAGE SPACE

◦ (Xt,
iBt,

iRt) : (Ω, F, P) → (X× iB× iR, B
(
X× iB× iR

)
, P′)

• Only the measure P′ depends on iφt−1

• Hard to determine set of feasible realizations.

◦ Work with the set of all probability measures on
(X× iB× iR, B

(
X× iB× iR

)
)
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(
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}
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An equivalent problem

Determine meta-functions 1∆t, 2∆t, and 3∆t such that:

ct = 1∆t(
1πt),

2πt = 1Q(ct)
1πt,

gt = 2∆t(
2πt),

3πt = 2Q 2πt,

lt = 3∆t(
3πt),

1πt+1 = 3Q(lt)
3πt.

to minimize a total cost

JT(∆
T , 1π1) =

T∑
t=1

2ρ(2πt, gt).
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1Vt(
1π) = inf

c∈C

2Vt

(
1Q(c) 1π

)
,

2Vt(
2π) = min

g∈G

2ρ(2π, g) + 3Vt(
2Q 2π),

3Vt(
3π) = min

l∈L

1Vt+1

(
3Q(l) 3π

)
.

The arg min at each step determines
an optimal meta-function

◦ Complexity
. Search complexity is linear in time (versus exponential in time for a brute force

search)
. Search complexity is exponential in the size of the alphabets



Extensions
◦ Infinite horizon

. Expected discounted distortion

. Average distortion per unit time

◦ Active feedback

◦ Channels with memory

◦ k-th order Markov source

◦ distortion with d-step delay



Conclusion
◦ An alternative approach to real-time communication

◦ Use stochastic optimization

(i) Derive structural results
(ii) Use structural results for global optimization

◦ A systematic search algorithm to determine optimal design

FUTURE DIRECTIONS

◦ Performance bounds
◦ Numerical algorithms
◦ Multi-terminal systems
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