On real-time communication systems with noisy feedback

Aditya Mahajan and Demosthenis Teneketzis

DEPT. OF EECS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI. USA.

Presented at IEEE Information Theory Workshop, September 4, 2007.

PROBLEM FORMULATION

Model

Discrete time, discrete valued

Objective

Choose (c_1, \ldots, c_T) , (g_1, \ldots, g_T) , (l_1, \ldots, l_T) to minimize

$$\mathcal{J}\coloneqq \textbf{E}\left\{\sum_{t=1}^{T}\rho(X_t, \hat{X}_t)\right\}$$

- Literature Overview
- Salient Features
- Solution Methodology

(i) Structural Properties(ii) Global Optimization

• Conclusions

LITERATURE OVERVIEW

with

real-time communication

- Types of problem
 - (i) Source coding
 - (ii) Joint source-channel coding
- Literature classification
 - (i) Performance bounds
 - (ii) coding of individual sequences
 - (iii) coding of Markov sources

noisy feedback Types of problem (i) Channel coding

- Literature classification
 - (i) Capacity of channels with memory and noisy feedback
 - (ii) Error exponents of memoryless channels with noisy feedback

LITERATURE OVERVIEW

real-time communication

- *Types of problem* 0
 - (i) Source coding
 - (ii) Joint source-channel coding
- Literature classification 0
 - (i) Performance bounds
 - (ii) coding of individual sequences
 - (iii) coding of Markov sources

noisy feedback with Types of problem 0 (i) Channel coding Literature classification 0 (i) Capacity of channels with

- memory and noisy feedback
- (ii) Error exponents of memoryless channels with noisy feedback

- Real-time Constraint
- Finite Memory
- Noisy Feedback

- Real-time Constraint
- Finite Memory
- Noisy Feedback

 \implies

Do not know how to apply Information Theory

- Real-time Constraint
- Finite Memory
- Noisy Feedback

Do not know how to apply Information Theory

• Use Stochastic Optimization

- Real-time Constraint
- Finite Memory
- Noisy Feedback

Do not know how to apply Information Theory

• Use Stochastic Optimization

Which solution methodology?

- Markov Decision Theory
- Orthogonal Search
- Standard Form
- ▷ ??

• Markov Decision Theory

(not applicable)

▷ works only for one decision maker with perfect recall

• Markov Decision Theory

(not applicable)

- ▷ works only for one decision maker with perfect recall
- Orthogonal Search

(not appropriate)

- ▷ May not converge
- only guarantees local optima

- Markov Decision Theory
 - ▷ works only for one decision maker with perfect recall
- Orthogonal Search
 - ▷ May not converge
 - only guarantees local optima
- Standard Form Witsenhausen, 1973
 - Does not extend to infinite horizon

(not appropriate)

(not applicable)

(not appropriate)

- Markov Decision Theory
 - ▷ works only for one decision maker with perfect recall
- Orthogonal Search
 - ▷ May not converge
 - only guarantees local optima
- Standard Form Witsenhausen, 1973
 - Does not extend to infinite horizon
- Our Methodology
 - (i) Identify structural properties
 - (ii) Use structural properties to solve the global optimization problem

(not appropriate)

(not applicable)

(not appropriate)

Our Methodology (i) Structural Properties

STRUCTURAL PROPERTIES

NEED

- $\circ \quad \text{Encoder:} \qquad Z_t = c_t(X^t, Z^{t-1}, \tilde{Y}^{t-1}), \qquad c_t \in \mathfrak{C}_t: \mathfrak{X}^t \times \mathfrak{Z}^{t-1} \times \tilde{\mathcal{Y}}^{t-1} \to \mathfrak{Z}$
- Domain changing with time.
- Makes the infinite horizon design hard
- Can we simplify implementation?

PRELIMINARIES

- Notion of Information
- Notion of Beliefs

• Let $(X_1, \ldots, X_T, N_1, \ldots, N_T, \tilde{N}_1, \ldots, \tilde{N}_T)$ be defined on $(\Omega, \mathfrak{F}, P)$.

• Let $(X_1, \ldots, X_T, N_1, \ldots, N_T, \tilde{N}_1, \ldots, \tilde{N}_T)$ be defined on $(\Omega, \mathfrak{F}, P)$.

Information	Everything that can be inferred from the data

• Let $(X_1, \ldots, X_T, N_1, \ldots, N_T, \tilde{N}_1, \ldots, \tilde{N}_T)$ be defined on $(\Omega, \mathfrak{F}, P)$.

-	c		. •
m	011	ma	f1011
		inter	ci o ii

Everything that can be inferred from the data

Information at Encoder			
$^{1}E_{t}\coloneqq(X^{t},Z^{t-1},\tilde{Y}^{t-1}),$	${}^{1}\mathfrak{E}_{t} \coloneqq \sigma({}^{1}E_{t}; {}^{1}\varphi^{t-1}),$		
${}^{2}E_{t}\coloneqq (X^{t},Z^{t},\tilde{Y}^{t-1}),$	${}^{2}\mathfrak{E}_{t}\coloneqq \sigma({}^{2}E_{t};{}^{2}\varphi^{t-1}),$		
${}^{3}E_{t}\coloneqq (X^{t},Z^{t},\tilde{Y}^{t}),$	${}^3\mathfrak{E}_t\coloneqq \sigma({}^3E_t;{}^3\varphi^{t-1}).$		

Information	n at Decoder
$^{1}R_{t} \coloneqq (M_{t-1}),$	${}^{1}\mathfrak{R}_{t}\coloneqq\sigma({}^{1}R_{t};{}^{1}\varphi^{t-1}),$
$^{2}R_{t}\coloneqq(Y_{t},M_{t-1}),$	${}^{2}\mathfrak{R}_{t}\coloneqq\sigma({}^{2}R_{t};{}^{2}\varphi^{t-1}),$
${}^{3}R_{t} \coloneqq (Y_{t}, M_{t-1}),$	${}^3\mathfrak{R}_t\coloneqq \sigma({}^3R_t;{}^3\varphi^{t-1}).$

• Let $(X_1, \ldots, X_T, N_1, \ldots, N_T, \tilde{N}_1, \ldots, \tilde{N}_T)$ be defined on $(\Omega, \mathfrak{F}, P)$.

	2.0		
Information at	Encoder	Information	n at Decoder
$^{1}E_{t}\coloneqq(X^{t},Z^{t-1},\tilde{Y}^{t-1}), ^{1}$	$\mathfrak{E}_t \coloneqq \sigma({}^1E_t; {}^1\varphi^{t-1}),$	$^{1}R_{t}\coloneqq(M_{t-1}),$	${}^1\mathfrak{R}_t\coloneqq\sigma({}^1R_t;{}^1\varphi^{t-1}),$
${}^{2}E_{t}\coloneqq (X^{t}, Z^{t}, \tilde{Y}^{t-1}), \qquad {}^{2}$	$\mathfrak{E}_{\mathfrak{t}} \coloneqq \sigma({}^{2}E_{\mathfrak{t}};{}^{2}\varphi^{\mathfrak{t}-1}),$	$^{2}R_{t}\coloneqq(Y_{t},M_{t-1}),$	${}^2\mathfrak{R}_t\coloneqq \sigma({}^2R_t;{}^2\varphi^{t-1}),$
${}^{3}E_{t}\coloneqq (X^{t},Z^{t},\tilde{Y}^{t}), \qquad {}^{3}$	$\mathfrak{G}_{t} \coloneqq \sigma({}^{3}E_{t}; {}^{3}\varphi^{t-1}).$	${}^{3}R_{t}\coloneqq(Y_{t},M_{t-1}),$	${}^3\mathfrak{R}_t\coloneqq \sigma({}^3R_t;{}^3\varphi^{t-1}).$

Beliefs

Information

What one decision maker thinks about the data at other nodes

Everything that can be inferred from the data

• Let $(X_1, \ldots, X_T, N_1, \ldots, N_T, \tilde{N}_1, \ldots, \tilde{N}_T)$ be defined on $(\Omega, \mathfrak{F}, P)$.

		at can be mierrea nom the aata
Information at Enco	oder	Information at Decoder

Information at Encoder		Informatio	n at Decoder
$^{1}E_{t}\coloneqq(X^{t},Z^{t-1},\tilde{Y}^{t-1}),$	${}^{1}\mathfrak{E}_{t} \coloneqq \sigma({}^{1}E_{t}; {}^{1}\varphi^{t-1}),$	$^{1}R_{t}\coloneqq(M_{t-1}),$	${}^{1}\mathfrak{R}_{t} \coloneqq \sigma({}^{1}R_{t}; {}^{1}\varphi^{t-1}),$
${}^{2}E_{t}\coloneqq (X^{t},Z^{t},\tilde{Y}^{t-1}),$	${}^{2}\mathfrak{E}_{t}\coloneqq \sigma({}^{2}E_{t};{}^{2}\varphi^{t-1}),$	${}^{2}R_{t}\coloneqq(Y_{t},M_{t-1}),$	${}^{2}\mathfrak{R}_{t}\coloneqq \sigma({}^{2}R_{t};{}^{2}\varphi^{t-1}),$
${}^{3}E_{t}\coloneqq (X^{t},Z^{t},\tilde{Y}^{t}),$	${}^{3}\mathfrak{E}_{t}\coloneqq \sigma({}^{3}E_{t};{}^{3}\varphi^{t-1}).$	${}^{3}R_{t} \coloneqq (Y_{t}, M_{t-1}),$	${}^3\mathfrak{R}_t\coloneqq \sigma({}^3R_t;{}^3\varphi^{t-1}).$

Beliefs

Information

What one decision maker thinks about the data at other nodes

Everything that can be inferred from the data

 $\begin{array}{l} \textbf{Belief of the encoder} \\ {}^{i}B_{t}({}^{i}r)\coloneqq Pr\left({}^{i}R_{t}={}^{i}r\left|\,{}^{i}\mathfrak{E}_{t}\right.\right). \end{array}$

Belief of the decoder ${}^{i}A_{t}({}^{i}e) \coloneqq \Pr\left({}^{i}E_{t} = {}^{i}e \mid {}^{i}\mathfrak{R}_{t}\right),$

STRUCTURE OF OPT ENCODERS

• The main idea

- ▷ Fix the decoding and memory update function
- \triangleright Look at the problem from the encoder's point of view
- Derive qualitative properties of optimal encoders

STRUCTURE OF OPT ENCODERS

• The main idea

- ▷ Fix the decoding and memory update function
- ▷ Look at the problem from the encoder's point of view
- Derive qualitative properties of optimal encoders

Structure of Optimal Encoders

$$Z_t = c_t(X_t, {}^1B_t), \quad t = 2, \ldots, T$$

STRUCTURE OF OPT ENCODERS

• The main idea

- ▷ Fix the decoding and memory update function
- ▷ Look at the problem from the encoder's point of view
- Derive qualitative properties of optimal encoders

Structure of Optimal Encoders

$$Z_t = c_t(X_t, {}^1B_t), \quad t = 2, \ldots, T$$

- We recover the structural results of previous models considered in literature
- Systems where the encoder knows the decoder's information
 - Real-time source coding (Witsenhausen, 1979)
 - ▷ Real-time joint source-channel coding with noiseless feedback

```
(Walrand and Varaiya, 1982)
```

- Systems where the encoder does not know the decoder's information
 - ▷ Real-time joint source-channel coding with no feedback (Teneketzis, 2006)

Our Methodology (ii) Global Optimization

 ${}^{i}\mathfrak{E}_{t} = \sigma({}^{i}E_{t}; {}^{i}\varphi^{t-1})$

Information at Decoder

 ${}^{i}\mathfrak{R}_{t} = \sigma({}^{i}R_{t}; {}^{i}\varphi^{t-1})$

 ${}^{i}\mathfrak{E}_{t} = \sigma({}^{i}E_{t}; {}^{i}\varphi^{t-1})$

Information at Decoder

 ${}^{i}\mathfrak{R}_{t} = \sigma({}^{i}R_{t}; {}^{i}\varphi^{t-1})$

 $\circ \quad \text{Information is non nested.} \quad {^i\mathfrak{E}_t \not \sqsubseteq {^i\mathfrak{R}_t}} \quad {^i\mathfrak{E}_t \not \supseteq {^i\mathfrak{R}_t}}$

 ${}^{i}\mathfrak{E}_{t} = \sigma({}^{i}E_{t}; {}^{i}\varphi^{t-1})$

Information at Decoder ${}^{i}\mathfrak{R}_{t} = \sigma({}^{i}R_{t}; {}^{i}\Phi^{t-1})$

 $\circ \quad \text{Information is non nested.} \quad {^i\mathfrak{E}_t \not \sqsubseteq {^i\mathfrak{R}_t}} \quad {^i\mathfrak{E}_t \not \supseteq {^i\mathfrak{R}_t}}$

Aumann's notion on	$i \alpha$, $i \alpha \circ i \alpha$
Common Knowledge	$\mathfrak{R}_t \coloneqq \mathfrak{C}_t \mapsto \mathfrak{N}_t$

 ${}^{i}\mathfrak{E}_{t} = \sigma({}^{i}E_{t}; {}^{i}\varphi^{t-1})$

Information at Decoder ${}^{i}\mathfrak{R}_{t} = \sigma({}^{i}R_{t}; {}^{i}\Phi^{t-1})$

 $\circ \quad \text{Information is non nested.} \quad {^i\mathfrak{E}_t \not \sqsubseteq {^i\mathfrak{R}_t}} \quad {^i\mathfrak{E}_t \not \supseteq {^i\mathfrak{R}_t}}$

Aumann's notion on	$i \alpha \cdot i \alpha \circ i \alpha$
Common Knowledge	$\mathcal{R}_t := \mathcal{C}_t + \mathcal{I}_t$

- Choose future decision rules based on common knowledge.

 ${}^{i}\mathfrak{E}_{t} = \sigma({}^{i}E_{t}; {}^{i}\varphi^{t-1})$

Information at Decoder ${}^{i}\mathfrak{R}_{t} = \sigma({}^{i}R_{t}; {}^{i}\Phi^{t-1})$

 $\circ \quad \text{Information is non nested.} \quad {^i\mathfrak{E}_t \not \sqsubseteq {^i\mathfrak{R}_t}} \quad {^i\mathfrak{E}_t \not \supseteq {^i\mathfrak{R}_t}}$

Aumann's notion on
Common Knowledge ${}^{i}\mathfrak{K}_{t} := {}^{i}\mathfrak{E}_{t} \cap {}^{i}\mathfrak{R}_{t}$

- Choose future decision rules based on common knowledge.
- Or, since we are only interested in performance, choose future decision rules based on common belief: $P\Big|_{i_{\hat{R}_t}}$
- Need to find the set of all feasible realizations of common information (or common belief)
- ${}^{i}\mathfrak{E}_{t}$ and ${}^{i}\mathfrak{R}_{t}$ depend on past decision rules so does ${}^{i}\mathfrak{K}_{t}$.

$${}^{i}\mathfrak{K}_{t}\,\coloneqq\,{}^{i}\mathfrak{E}_{t}\,\cap\,{}^{i}\mathfrak{R}_{t}$$

• Can work with a super-set of the set of all feasible realizations of common knowledge

 ${}^{i}\mathfrak{K}_{t}\,\coloneqq\,{}^{i}\mathfrak{E}_{t}\,\cap\,{}^{i}\mathfrak{R}_{t}$

- Can work with a super-set of the set of all feasible realizations of common knowledge
- $\circ \quad \text{Choose Total Information:} \quad \ \ ^{i}\mathfrak{T}_{t}\coloneqq \sigma(X_{t},{}^{i}B_{t},{}^{i}R_{t};{}^{i}\varphi_{t})\supseteq {}^{i}\mathfrak{K}_{t}$
- \circ $\;$ Set of all realizations depends on the past decision rules

 ${}^{i}\mathfrak{K}_{t}\,\coloneqq\,{}^{i}\mathfrak{E}_{t}\,\cap\,{}^{i}\mathfrak{R}_{t}$

- Can work with a super-set of the set of all feasible realizations of common knowledge
- $\circ \quad \text{Choose Total Information:} \quad \ \ ^{i}\mathfrak{T}_{t}\coloneqq \sigma(X_{t},{}^{i}B_{t},{}^{i}R_{t};{}^{i}\varphi_{t})\supseteq {}^{i}\mathfrak{K}_{t}$
- \circ $\;$ Set of all realizations depends on the past decision rules

THE IMAGE SPACE

 $\circ \quad (X_t,{^iB}_t,{^iR}_t):(\Omega,\mathfrak{F},P) \to (\mathfrak{X} \times {^i\mathcal{B}} \times {^i\mathcal{R}}, \ \mathbb{B}\left(\mathfrak{X} \times {^i\mathcal{B}} \times {^i\mathcal{R}}\right), \ P')$

 ${}^{i}\mathfrak{K}_{t}\,\coloneqq\,{}^{i}\mathfrak{E}_{t}\,\cap\,{}^{i}\mathfrak{R}_{t}$

- Can work with a super-set of the set of all feasible realizations of common knowledge
- $\circ \quad \text{Choose Total Information:} \quad \ \ ^{i}\mathfrak{T}_{t}\coloneqq \sigma(X_{t}, {^{i}B_{t}}, {^{i}R_{t}}; {^{i}\varphi_{t}})\supseteq {^{i}\mathfrak{K}_{t}}$
- \circ $\,$ Set of all realizations depends on the past decision rules

THE IMAGE SPACE

- $\circ \quad (X_t,{^iB}_t,{^iR}_t):(\Omega,\mathfrak{F},P) \to (\mathfrak{X} \times {^i\mathcal{B}} \times {^i\mathcal{R}}, \ \mathbb{B}\left(\mathfrak{X} \times {^i\mathcal{B}} \times {^i\mathcal{R}}\right), \ P')$
- Only the measure P' depends on ${}^{i}\phi^{t-1}$
- Hard to determine set of feasible realizations.

 ${}^{i}\mathfrak{K}_{t}\,\coloneqq\,{}^{i}\mathfrak{E}_{t}\,\cap\,{}^{i}\mathfrak{R}_{t}$

- Can work with a super-set of the set of all feasible realizations of common knowledge
- $\circ \quad \text{Choose Total Information:} \quad \ \ ^{i}\mathfrak{T}_{t}\coloneqq \sigma(X_{t},{}^{i}B_{t},{}^{i}R_{t};{}^{i}\varphi_{t})\supseteq {}^{i}\mathfrak{K}_{t}$
- Set of all realizations depends on the past decision rules

THE IMAGE SPACE

- $\circ \quad (X_t,{^iB}_t,{^iR}_t):(\Omega,\mathfrak{F},P) \to (\mathfrak{X} \times {^i\mathcal{B}} \times {^i\mathcal{R}}, \ \mathbb{B}\left(\mathfrak{X} \times {^i\mathcal{B}} \times {^i\mathcal{R}}\right), \ P')$
- Only the measure P' depends on ${}^{i}\varphi^{t-1}$
- Hard to determine set of feasible realizations.
- Work with the set of all probability measures on $(\mathfrak{X} \times {}^{i}\mathfrak{B} \times {}^{i}\mathfrak{R}, \mathbb{B} (\mathfrak{X} \times {}^{i}\mathfrak{B} \times {}^{i}\mathfrak{R}))$

Information States

$$\label{eq:prime} \begin{split} ^{1} &\pi_{t} = \Pr\left(X_{t}, M_{t-1}, {}^{1}B_{t}\right), \\ ^{2} &\pi_{t} = \Pr\left(X_{t}, Y_{t}, M_{t-1}, {}^{2}B_{t}\right), \\ ^{3} &\pi_{t} = \Pr\left(X_{t}, Y_{t}, M_{t-1}, {}^{3}B_{t}\right). \end{split}$$

Information States

$$\label{eq:prime} \begin{split} ^{1} & \pi_{t} = \Pr \left(X_{t}, M_{t-1}, {}^{1}B_{t} \right), \\ ^{2} & \pi_{t} = \Pr \left(X_{t}, Y_{t}, M_{t-1}, {}^{2}B_{t} \right), \\ ^{3} & \pi_{t} = \Pr \left(X_{t}, Y_{t}, M_{t-1}, {}^{3}B_{t} \right). \end{split}$$

A Dynamic System ${}^{2}\pi_{t} = {}^{1}Q(c_{t}) {}^{1}\pi_{t},$ ${}^{3}\pi_{t} = {}^{2}Q {}^{2}\pi_{t},$ ${}^{1}\pi_{t+1} = {}^{3}Q(l_{t}) {}^{3}\pi_{t}.$ $\mathbf{E} \left\{ \rho(X_{t}, \hat{X}_{t}) \mid c^{t}, g^{t}, l^{t-1} \right\} = {}^{2}\rho({}^{2}\pi_{t}, g_{t})$

GLOBAL OPTIMIZATION

Information States

$$\label{eq:prime} \begin{split} ^{1} &\pi_{t} = \Pr\left(X_{t}, \mathcal{M}_{t-1}, {}^{1}B_{t}\right), \\ ^{2} &\pi_{t} = \Pr\left(X_{t}, Y_{t}, \mathcal{M}_{t-1}, {}^{2}B_{t}\right), \\ ^{3} &\pi_{t} = \Pr\left(X_{t}, Y_{t}, \mathcal{M}_{t-1}, {}^{3}B_{t}\right). \end{split}$$

A Dynamic System

$${}^{2}\pi_{t} = {}^{1}Q(c_{t}) {}^{1}\pi_{t},$$

 ${}^{3}\pi_{t} = {}^{2}Q {}^{2}\pi_{t},$
 ${}^{1}\pi_{t+1} = {}^{3}Q(l_{t}) {}^{3}\pi_{t}.$
 $\mathbf{E} \left\{ \rho(X_{t}, \hat{X}_{t}) \left| c^{t}, g^{t}, l^{t-1} \right\} = {}^{2}\rho({}^{2}\pi_{t}, g_{t})$

An equivalent problem

Determine *meta-functions* ${}^{1}\Delta_{t}$, ${}^{2}\Delta_{t}$, and ${}^{3}\Delta_{t}$ such that: $c_{t} = {}^{1}\Delta_{t}({}^{1}\pi_{t}), \qquad {}^{2}\pi_{t} = {}^{1}Q(c_{t}) {}^{1}\pi_{t},$ $g_{t} = {}^{2}\Delta_{t}({}^{2}\pi_{t}), \qquad {}^{3}\pi_{t} = {}^{2}Q {}^{2}\pi_{t},$ $l_{t} = {}^{3}\Delta_{t}({}^{3}\pi_{t}), \qquad {}^{1}\pi_{t+1} = {}^{3}Q(l_{t}) {}^{3}\pi_{t}.$ to minimize a total cost $\mathcal{J}_{T}(\Delta^{T}, {}^{1}\pi_{1}) = \sum_{t=1}^{T} {}^{2}\rho({}^{2}\pi_{t}, g_{t}).$

SEQUENTIAL DECOMPOSITION

$${}^{1}V_{t}({}^{1}\pi) = \inf_{c \in \mathcal{C}} {}^{2}V_{t}({}^{1}Q(c) {}^{1}\pi),$$

$${}^{2}V_{t}({}^{2}\pi) = \min_{g \in \mathcal{G}} {}^{2}\rho({}^{2}\pi, g) + {}^{3}V_{t}({}^{2}Q {}^{2}\pi),$$

$${}^{3}V_{t}({}^{3}\pi) = \min_{l \in \mathcal{L}} {}^{1}V_{t+1}({}^{3}Q(l) {}^{3}\pi).$$

The arg min at each step determines

The arg min at each step determines an optimal meta-function

SEQUENTIAL DECOMPOSITION

$${}^{1}V_{t}({}^{1}\pi) = \inf_{c \in \mathcal{C}} {}^{2}V_{t}({}^{1}Q(c) {}^{1}\pi),$$

$${}^{2}V_{t}({}^{2}\pi) = \min_{g \in \mathcal{G}} {}^{2}\rho({}^{2}\pi, g) + {}^{3}V_{t}({}^{2}Q {}^{2}\pi),$$

$${}^{3}V_{t}({}^{3}\pi) = \min_{l \in \mathcal{L}} {}^{1}V_{t+1}({}^{3}Q(l) {}^{3}\pi).$$

The arg min at each step determines
an optimal meta-function

- Complexity
 - Search complexity is linear in time (versus exponential in time for a brute force search)
 - > Search complexity is exponential in the size of the alphabets

- Infinite horizon
 - ▷ Expected discounted distortion
 - Average distortion per unit time
- Active feedback
- Channels with memory
- k-th order Markov source
- \circ $\;$ distortion with d-step delay

- An alternative approach to real-time communication
- Use stochastic optimization
 - (i) Derive structural results
 - (ii) Use structural results for global optimization
- \circ $\;$ A systematic search algorithm to determine optimal design

FUTURE DIRECTIONS

- Performance bounds
- Numerical algorithms
- Multi-terminal systems

Thank You