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The communication system

Markov

Source
Transmitter Receiver

Xt Ut

Yt X̂t

Source Xt ∈ ℤ

Transition matrix P is Toeplitz, i.e., Pi,j = p|i−j|, where p0 p1 ⋅ ⋅ ⋅.
Transmitter Ut = ft(X1:t, U1:t−1) and Yt = {

Xt if Ut = 1ε if Ut = 0
Receiver X̂t = gt(Y1:t)

Distortion: d(Xt − X̂t) where d(e) = d(−e) d(e + 1)
Communication

Strategies
Transmission strategy f = {ft}∞t=0.

Estimation strategy g = {gt}∞t=0.
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The constrained optimization problem

min
(f,g)

Dβ(f, g) such that Nβ(f, g) α

Minimize expected distortion such that expected # of transmissions is less than α

Discounted
setup

Dβ(f, g) = (1 − β)𝔼
(f,g) [

∞
t=0

βtd(Xt − X̂t) | X0 = 0]
Nβ(f, g) = (1 − β)𝔼

(f,g) [
∞
t=0

βtUt | X0 = 0]

Average cost
setup

D1(f, g) = lim sup
T→∞

1T[
T−1
t=0

d(Xt − X̂t) | X0 = 0]
N1(f, g) = lim sup

T→∞

1T[
T−1
t=0

Ut | X0 = 0]
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Salient Features

Comparision
to Information

Theory

As in information theory, the optimization problem may be viewed as

minimizing average distortion under an average-power constraint.

Unlike information theory, the source reconstruction must be done in

real-time (or with zero delay).

Therefore, classical information theory techniques do not work.

Source-channel separation is not optimal.

We use the decentralized control approach to real-time communication

(following Witsenhausen, Walrand-Varaiya, Teneketzis, . . . )
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Salient Features

Comparision
to Information

Theory

As in information theory, the optimization problem may be viewed as

minimizing average distortion under an average-power constraint.

Unlike information theory, the source reconstruction must be done in

real-time (or with zero delay).

Therefore, classical information theory techniques do not work.

Source-channel separation is not optimal.

We use the decentralized control approach to real-time communication

(following Witsenhausen, Walrand-Varaiya, Teneketzis, . . . )

Comaprision to
decentralized

control

Two decision makers the transmitter and the receiver.

(One-sided) nested information structure:

the transmitter knows all the information available to the receiver.

Constrained optimization problem, where the constraint does not

depend on the common information (i.e., the information at the

receiver).
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Literature Overview

[Imer-Başar 2005 & 2010]

Fixed number of transmissions for nite horizon LQG setup.

[Lipsa-Martins 2009 & 2011, Molin-Hirche 2009]

Remote estimation with communication cost for nite horizon LQG setup.

[Nayyar-Başar-Teneketzis-Veeravalli 2013]

Remote estimation with communication cost for nite horizon Markov chain setup.

Also considered energy harvesting at the transmitter.

A large literature on event-driven communication . . .
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Assumptions on the model

(A0) Xt ∈ ℤ, and X0 = 0.
(A1) The transition matrix is Toeplitz with decaying o -diagonal terms.

P =
⋱ p0 ⋱⋅ ⋅ ⋅ p1 p0 p1 ⋅ ⋅ ⋅⋱ p1 p0 p1 ⋅ ⋅ ⋅⋱ ⋱ p0 ⋱

and p0 p1 p2 ⋅ ⋅ ⋅

Nayyar et al, assumed that the transistion matrix was banded,

that is, ∃b such that pk = 0, for all k b.

(A2) The distortion function is even and increasing on ℤ≥0.

∀e ∈ ℤ≥0 : d(e) = d(−e) and d(e) d(e + 1).
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Lagrange Relaxation

min
(f,g)

Dβ(f, g) such that Nβ(f, g) α

Minimize expected distortion such that expected # of transmissions is less than α
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Lagrange Relaxation

min
(f,g)

Dβ(f, g) such that Nβ(f, g) α

Minimize expected distortion such that expected # of transmissions is less than α

Lagrange
Relaxation

C∗
β(λ) ∶= inf

(f,g)
Cβ(f, g; λ) where Cβ(f, g; λ) = Dβ(f, g)+λNβ(f, g)
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Lagrange Relaxation

min
(f,g)

Dβ(f, g) such that Nβ(f, g) α

Minimize expected distortion such that expected # of transmissions is less than α

Lagrange
Relaxation

C∗
β(λ) ∶= inf

(f,g)
Cβ(f, g; λ) where Cβ(f, g; λ) = Dβ(f, g)+λNβ(f, g)

Search space of

strategies (f, g)

Restrict the search space of strategies (f, g) by identifying structure

of optimal tranmission and estimation strategies.

Difficulty: Non-classical information structure
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Structure of optimal estimator (Nayyar et al, 2013)

Transmitted
Process

Let Zt denote the most recently transmitted value of the Markov

source.

Z0 = 0 and Zt = {
Xt if Ut = 1;Zt−1 if Ut = 0.

The estimator can keep track of Zt as follows:

Z0 = 0 and Zt = {
Yt if Yt ≠ ε;Zt−1 if Yt = ε.
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Structure of optimal estimator (Nayyar et al, 2013)

Transmitted
Process

Let Zt denote the most recently transmitted value of the Markov

source.

Z0 = 0 and Zt = {
Xt if Ut = 1;Zt−1 if Ut = 0.

The estimator can keep track of Zt as follows:

Z0 = 0 and Zt = {
Yt if Yt ≠ ε;Zt−1 if Yt = ε.

Theorem 1 The process {Zt}∞t=0 is a sufficient statistic at the estimator and an

optimal estimation strategy is given by

X̂t = g∗t(Zt) = Zt (⋆)

Remark The optimal estimation strategy is time-homogeneous and can be

speci ed in closed form.
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Structure of optimal transmitter (Nayyar et al, 2013)

Error process Let Et = Xt − Zt−1 denote the error process. {Et}∞t=0 is a controlled

Markov process where

E0 = 0 and ℙ(Et+1 = n | Et = e,Ut = u) = {
P0n, if u = 1;Pen, if u = 0.



Optimal threshold strategies for remote state estimation (Chakravorty and Mahajan)
8
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Error process Let Et = Xt − Zt−1 denote the error process. {Et}∞t=0 is a controlled

Markov process where

E0 = 0 and ℙ(Et+1 = n | Et = e,Ut = u) = {
P0n, if u = 1;Pen, if u = 0.

Theorem 2 When the estimation strategy is of the form (⋆), then {Et}∞t=0 is a

sufficient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a

time-varying threshold {kt}∞t=0, i.e.,

Ut = ft(Et) = {
1 if |Et| kt;0 if |Et| < kt.
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Structure of optimal transmitter (Nayyar et al, 2013)

Error process Let Et = Xt − Zt−1 denote the error process. {Et}∞t=0 is a controlled

Markov process where

E0 = 0 and ℙ(Et+1 = n | Et = e,Ut = u) = {
P0n, if u = 1;Pen, if u = 0.

Theorem 2 When the estimation strategy is of the form (⋆), then {Et}∞t=0 is a

sufficient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a

time-varying threshold {kt}∞t=0, i.e.,

Ut = ft(Et) = {
1 if |Et| kt;0 if |Et| < kt.

Proof idea The proof of [Nayyar et al, 2013] was based on some majorization

inequalities of [Hajek et al, 2009] for distributions with nite support.

We extend these inequalities to distributions over integers using

results of [Wang-Woo-Madiman, 2014].
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Infinite horizon setup (for Lagrange relaxation)

Main idea Based on Thm 1, restrict attention to time-homogeneous estimation

strategy

X̂t = g∗t(Zt) = Zt

Consider the problem of nding the best response estimation

strategy.
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Infinite horizon setup (for Lagrange relaxation)

Main idea Based on Thm 1, restrict attention to time-homogeneous estimation

strategy

X̂t = g∗t(Zt) = Zt

Consider the problem of nding the best response estimation

strategy.

Centralized stochastic control problem with countable state space

and unbounded cost.

Standard MDP results apply under mild technical assumptions.
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Infinite horizon setup (for Lagrange relaxation)

Main idea Based on Thm 1, restrict attention to time-homogeneous estimation

strategy

X̂t = g∗t(Zt) = Zt

Consider the problem of nding the best response estimation

strategy.

Centralized stochastic control problem with countable state space

and unbounded cost.

Standard MDP results apply under mild technical assumptions.

Assum (A3) For every λ 0, there exists a function w : ℤ → ℝ and postive and

nite constants μ1 and μ2 such that for all e ∈ ℤ, we have that

max{λ, d(e)} μ1w(e)
max{

∞
n=−∞

Penw(n), ∞
n=−∞

P0nw(n)} μ2w(e).
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Structure of optimal transmitter for infinite horizon

Structure Under assumption (A3), optimal transmission strategy is characterized

by time-homogeneous threshold k, i.e.,

Ut = f(Et) = {
1 if |Et| k;0 if |Et| < k.
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Transmit

Don’t

Transmit

Structure of optimal transmitter for infinite horizon

Structure Under assumption (A3), optimal transmission strategy is characterized

by time-homogeneous threshold k, i.e.,

Ut = f(Et) = {
1 if |Et| k;0 if |Et| < k.

Dynamic
program

For β ∈ (0, 1), the optimal strategy is determined by the unique xed

point of the following DP:

Vβ(e; λ) = min{(1 − β)λ + β
∞

n=−∞

P0nVβ(n; λ),
(1 − β)d(e) + β ∞

n=−∞

PenVβ(n; λ)}
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Transmit

Don’t

Transmit

Structure of optimal transmitter for infinite horizon

Structure Under assumption (A3), optimal transmission strategy is characterized

by time-homogeneous threshold k, i.e.,

Ut = f(Et) = {
1 if |Et| k;0 if |Et| < k.

Dynamic
program

For β ∈ (0, 1), the optimal strategy is determined by the unique xed

point of the following DP:

Vβ(e; λ) = min{(1 − β)λ + β
∞

n=−∞

P0nVβ(n; λ),
(1 − β)d(e) + β ∞

n=−∞

PenVβ(n; λ)}
Lagrange
relaxation

Let f∗β(⋅; λ) be the time-homogeneous optimal transmission strategy.

C∗
β(λ) ∶= inf

(f,g)
Cβ(f, g; λ) = Cβ(f∗β, g∗; λ) = Vβ(0; λ)
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The SEN Conditions and the long-term average setup

SEN Conditions For any λ 0, the value function Vβ(⋅; λ) satisfy the SEN condition:

(S1) There exists a reference state e0 ∈ ℤ such that Vβ(e0; λ) < ∞
for all β ∈ (0, 1).

(S2) De ne hβ(e; λ) = (1 − β)−1[Vβ(e; λ) − Vβ(e0; λ)]. There exists a

function Kλ : ℤ → ℝ such that hβ(e; λ) Kλ(e) for all e ∈ ℤ

and β ∈ (0, 1).
(S3) There exists a non-negative ( nite) constant Lλ such that −Lλhβ(e; λ) for all e ∈ ℤ and β ∈ (0, 1).
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The SEN Conditions and the long-term average setup

SEN Conditions For any λ 0, the value function Vβ(⋅; λ) satisfy the SEN condition:

(S1) There exists a reference state e0 ∈ ℤ such that Vβ(e0; λ) < ∞
for all β ∈ (0, 1).

(S2) De ne hβ(e; λ) = (1 − β)−1[Vβ(e; λ) − Vβ(e0; λ)]. There exists a

function Kλ : ℤ → ℝ such that hβ(e; λ) Kλ(e) for all e ∈ ℤ

and β ∈ (0, 1).
(S3) There exists a non-negative ( nite) constant Lλ such that −Lλhβ(e; λ) for all e ∈ ℤ and β ∈ (0, 1).

Vanishing
discount
approach

Let f∗1(⋅; λ) be any limit point of f∗β(⋅; λ) as β ↑ 1.
Then the time-homogeneous transmission strategy f∗1(⋅; λ) is optimal

for β = 1 (the long-term average setup).

Furthermore, the performance of this optimal strategy is

C∗
1(λ) ∶= inf

(f,g)
C1(f, g; λ) = C1(f∗1, g∗; λ) = lim

β↑1
Vβ(0; λ) = lim

β↑1
C∗

β(λ).
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Performance of a threshold based strategy

Threshold-based
strategy

We analyze the performace of (f(k), g∗), where

f(k)(e) ∶= {
1, if |e| k;0, if |e| < k.



Optimal threshold strategies for remote state estimation (Chakravorty and Mahajan)
12

Performance of a threshold based strategy

Threshold-based
strategy

We analyze the performace of (f(k), g∗), where

f(k)(e) ∶= {
1, if |e| k;0, if |e| < k.

Cost until first
transmission

De ne S(k) = {e ∈ ℤ : |e| k − 1} and let τ(k) be the stopping time

when the Markov process starting at state 0 at time t = 0 escapes the

set S(k).
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Performance of a threshold based strategy

Threshold-based
strategy

We analyze the performace of (f(k), g∗), where

f(k)(e) ∶= {
1, if |e| k;0, if |e| < k.

Cost until first
transmission

De ne S(k) = {e ∈ ℤ : |e| k − 1} and let τ(k) be the stopping time

when the Markov process starting at state 0 at time t = 0 escapes the

set S(k).
De ne L(k)β ∶= 𝔼 [

τ(k)−1
t=0

βtd(Et)|E0 = 0]
M(k)

β ∶= 1 − 𝔼[βτ(k) | E0 = 0]1 − β
and

L(k)1
∶= 𝔼 [

τ(k)−1
t=0

d(Et)|E0 = 0]
M(k)

1
∶= 𝔼[τ(k) − 1 | E0 = 0]
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Performance of a threshold based strategy (cont.)

Renewal
relationships D(k)

β ∶= Dβ(f(k), g∗) = L(k)βM(k)
β

N(k)
β ∶= Nβ(f(k), g∗) = 1

M(k)
β

− (1 − β)
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Performance of a threshold based strategy (cont.)

Renewal
relationships D(k)

β ∶= Dβ(f(k), g∗) = L(k)βM(k)
β

N(k)
β ∶= Nβ(f(k), g∗) = 1

M(k)
β

− (1 − β)

Vanishing
discount

relationships

L(k)1 = lim
β↑1

L(k)β , M(k)
1 = lim

β↑1
M(k)

β .
and

D(k)
1 = lim

β↑1
D(k)

β = L(k)1M(k)
1

N(k)
1 = lim

β↑1
N(k)

β = 1
M(k)

1
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Performance of a threshold based strategy: Computations

Analytic
expressions

for performace

Let P(k) andQ(k)
β be square matrices and d(k) is a column vector indexed

by S(k) de ned as follows:

P(k)ij ∶= Pij, ∀i, j ∈ S(k),
Q(k)

β ∶= [I2k−1 − βP(k)]−1,
d(k) ∶= [d(−k + 1), . . . , d(k − 1)]⊺

Then,

L(k)β = [Q(k)
β ]0d(k) and M(k)

β = [Q(k)
β ]0𝟏2k−1.
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Performance of a threshold based strategy: Computations

Analytic
expressions

for performace

Let P(k) andQ(k)
β be square matrices and d(k) is a column vector indexed

by S(k) de ned as follows:

P(k)ij ∶= Pij, ∀i, j ∈ S(k),
Q(k)

β ∶= [I2k−1 − βP(k)]−1,
d(k) ∶= [d(−k + 1), . . . , d(k − 1)]⊺

Then,

L(k)β = [Q(k)
β ]0d(k) and M(k)

β = [Q(k)
β ]0𝟏2k−1.

D(k)
β and N(k)

β can be computed using these expressions.
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Optimal stategy for the Lagrange relaxation

Some inequalities L(k)β < L(k+1)
β , M(k)

β < M(k+1)
β , D(k)

β < D(k+1)
β .
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Optimal stategy for the Lagrange relaxation

Some inequalities L(k)β < L(k+1)
β , M(k)

β < M(k+1)
β , D(k)

β < D(k+1)
β .

Lagrangian cost C(k)
β (λ) ∶= C(f(k), g∗; λ) = D(k)

β + λN(k)
β

λ
D(k)

β

D(k+1)
β

D(k+2)
β
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λ
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β
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λ(k)β = D(k+1)
β −D(k)

βN(k)
β −N(k+1)

β

Optimal stategy for the Lagrange relaxation

Some inequalities L(k)β < L(k+1)
β , M(k)

β < M(k+1)
β , D(k)

β < D(k+1)
β .

Lagrangian cost C(k)
β (λ) ∶= C(f(k), g∗; λ) = D(k)

β + λN(k)
β

λ(k)β

λ
D(k)

β

D(k+1)
β

D(k+2)
β
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Lagrangian cost C(k)
β (λ) ∶= C(f(k), g∗; λ) = D(k)

β + λN(k)
β
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β
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λ(k)β = D(k+1)
β −D(k)

βN(k)
β −N(k+1)

β

Optimal stategy for the Lagrange relaxation

Some inequalities L(k)β < L(k+1)
β , M(k)

β < M(k+1)
β , D(k)

β < D(k+1)
β .

Lagrangian cost C(k)
β (λ) ∶= C(f(k), g∗; λ) = D(k)

β + λN(k)
β

λ(k)β λ(k+1)
β

λ
D(k)

β

D(k+1)
β

D(k+2)
β

Optimal
performance

For all λ ∈ (λ(k)β , λ(k+1)
β ] the threshold strategy f(k+1) is optimal.

C∗
β(λ) = mink∈ℤ C(k)

β is piecewise linear, continuous, concave, and

increasing function of λ.
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Back to the constrained optimization problem

Bernoulli
randomized
strategy

Let θ ∈ [0, 1] and f1 and f2 be two stationary strategies.

The Bernoulli randomized strategy (f1, f2, θ) randomizes between f1 andf2 at each stage, choosing f1 with probability θ and f2 with probability(1 − θ).
Simple rand.
strategy

A Bernoulli randomized strategy (f1, f2, θ) is simple if the actions

prescribed by f1 and f2 di er only at one state.

Main result De ne k∗β = sup{k ∈ ℤ≥0 : N(k)
β α} and let θ be such that

θN(k∗
β)

β + (1 − θ)N(k∗
β+1)

β = α
Then, the Bernoulli simple randomized strategy (f(k∗

β), f(k∗
β+1), θ) is

optimal for the constrained optimization problem for β ∈ (0, 1].
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An example: Symmetric birth-death Markov Chain

Pij = p, if |i − j| = 1;1 − 2p, if i = j;0, otherwise,

where p ∈ (0, 1
2
), d(e) = |e|

0 1 2 ⋅ ⋅ ⋅−1−2⋅ ⋅ ⋅ p
1 − 2p

p
1 − 2p

p
1 − 2p

p
1 − 2p

p
1 − 2p

p
pppppp
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Discounted cost Let Kβ = −2 − (1 − β)/βp and mβ = cosh−1(−Kβ/2).
D(k)

β = sinh(kmβ) − k sinh(mβ)2 sinh2(kmβ/2) sinh(mβ)
N(k)

β = 2βp sinh2(mβ/2) cosh(kmβ)
sinh2(kmβ/2) − (1 − β)

Average cost D(k)
1 = k2 − 13k and N(k)

1 = 2pk2

An example: Symmetric birth-death Markov Chain

Pij = p, if |i − j| = 1;1 − 2p, if i = j;0, otherwise,

where p ∈ (0, 1
2
), d(e) = |e|
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Discounted cost Let Kβ = −2 − (1 − β)/βp and mβ = cosh−1(−Kβ/2).
D(k)

β = sinh(kmβ) − k sinh(mβ)2 sinh2(kmβ/2) sinh(mβ)
N(k)

β = 2βp sinh2(mβ/2) cosh(kmβ)
sinh2(kmβ/2) − (1 − β)

λ(k)β can be computed in terms of D(k)
β and N(k)

β .

Average cost D(k)
1 = k2 − 13k and N(k)

1 = 2pk2

λ(k)1 = k(k + 1)(k2 + k + 1)6p(2k + 1)

An example: Symmetric birth-death Markov Chain

Pij = p, if |i − j| = 1;1 − 2p, if i = j;0, otherwise,

where p ∈ (0, 1
2
), d(e) = |e|
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Average cost D(k)
1 = k2 − 13k and N(k)

1 = 2pk2

An example: Symmetric birth-death Markov Chain

Pij = p, if |i − j| = 1;1 − 2p, if i = j;0, otherwise,

where p ∈ (0, 1
2
), d(e) = |e|

0
0.5
1

1.5
2

0 5 10 15 20

p = 0.3
β = 1
β = 0.9
β = 0.8

λ

C∗
β(λ)
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Discounted cost Let Kβ = −2 − (1 − β)/βp and mβ = cosh−1(−Kβ/2).
D(k)

β = sinh(kmβ) − k sinh(mβ)2 sinh2(kmβ/2) sinh(mβ)
N(k)

β = 2βp sinh2(mβ/2) cosh(kmβ)
sinh2(kmβ/2) − (1 − β)

k∗β = sup{k ∈ ℤ≥0 : sinh2(mβ/2) cosh(kmβ)
sinh2(kmβ/2)

1 + α − β2βp }
Average cost D(k)

1 = k2 − 13k and N(k)
1 = 2pk2

k∗1 = ⌊√
2pα ⌋

An example: Symmetric birth-death Markov Chain

Pij = p, if |i − j| = 1;1 − 2p, if i = j;0, otherwise,

where p ∈ (0, 1
2
), d(e) = |e|
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Summary and Conclusion

Problem
formulation

Real-time transmission of a Markov source under constraints on the

number of transmissions.

Investigated both discounted and average cost in nite horizon setups.

Modeled as a decentralized stochastic control problem with two

decision maker.

As long as the transmitter uses a symmetric threshold based strategy,

the estimation strategy does not depend on the transmission strategy.

The problem of nd the best response transmitter is a centralized

stochastic control problem.

Main results Simple Bernoulli randomized strategies (f(k∗), f(k∗+1), θ) are optimal.k∗ and θ can be computed easily.


