Average cost optimal threshold strategies for remote state estimation with communication costs

Jhelum Chakravorty and Aditya Mahajan

McGill University

Allerton 2014 30 Sep, 2014

The communication system

Source $\blacktriangleright X_t \in \mathbb{Z}$

▶ Transition matrix P is Toeplitz, i.e., $P_{i,j} = p_{|i-j|}$, where $p_0 \ge p_1 \ge \cdots$.

$$\begin{array}{ll} \mbox{Transmitter} & U_t = f_t(X_{1:t}, U_{1:t-1}) \mbox{ and } Y_t = \begin{cases} X_t & \mbox{if } U_t = 1 \\ \epsilon & \mbox{if } U_t = 0 \end{cases} \end{array}$$

Receiver
$$\hat{X}_t = g_t(Y_{1:t})$$
 \blacktriangleright Distortion: $d(X_t - \hat{X}_t)$ where $d(e) = d(-e) \leq d(e+1)$

CommunicationTransmission strategy $f = \{f_t\}_{t=0}^{\infty}$.StrategiesEstimation strategy $g = \{g_t\}_{t=0}^{\infty}$.

The constrained optimization problem

$$\min_{(\mathfrak{f},g)} D_{\beta}(\mathfrak{f},g) \quad \text{ such that } N_{\beta}(\mathfrak{f},g) \leqslant \alpha$$

Minimize expected distortion such that expected # of transmissions is less than α

iscounted
setup
$$D_{\beta}(f,g) = (1-\beta) \mathbb{E}^{(f,g)} \left[\sum_{t=0}^{\infty} \beta^{t} d(X_{t} - \hat{X}_{t}) \middle| X_{0} = 0 \right]$$

$$N_{\beta}(f,g) = (1-\beta) \mathbb{E}^{(f,g)} \left[\sum_{t=0}^{\infty} \beta^{t} U_{t} \middle| X_{0} = 0 \right]$$

$$D_{\beta}(f,g) = \lim_{t \to 0} \lim_{t \to 0} \lim_{t \to 0} \lim_{t \to 0} \frac{1}{2} \left[\sum_{t=0}^{\infty} \beta^{t} U_{t} \middle| X_{0} = 0 \right]$$

Average cost setup

$$D_{1}(f,g) = \limsup_{T \to \infty} \frac{1}{T} \Big[\sum_{t=0}^{T-1} d(X_{t} - \hat{X}_{t}) \ \Big| \ X_{0} = 0$$
$$N_{1}(f,g) = \limsup_{T \to \infty} \frac{1}{T} \Big[\sum_{t=0}^{T-1} U_{t} \ \Big| \ X_{0} = 0 \Big]$$

Salient Features

to Information

- **Comparision** > As in information theory, the optimization problem may be viewed as minimizing average distortion under an average-power constraint.
 - **Theory** Inlike information theory, the source reconstruction must be done in real-time (or with zero delay).
 - Therefore, classical information theory techniques do not work. Source-channel separation is not optimal.
 - ▶ We use the decentralized control approach to real-time communication (following Witsenhausen, Walrand-Varaiya, Teneketzis, ...)

Salient Features

Comparision to Information

- As in information theory, the optimization problem may be viewed as minimizing average distortion under an average-power constraint.
- **Theory** Unlike information theory, the source reconstruction must be done in real-time (or with zero delay).
 - Therefore, classical information theory techniques do not work.
 Source-channel separation is not optimal.
 - ► We use the decentralized control approach to real-time communication (following Witsenhausen, Walrand-Varaiya, Teneketzis, . . .)

Comaprision to decentralized control

- **Comaprision to** > Two decision makers—the transmitter and the receiver.
 - (One-sided) nested information structure:

the transmitter knows all the information available to the receiver.

Constrained optimization problem, where the constraint does not depend on the "common information" (i.e., the information at the receiver).

Literature Overview

[Imer-Başar 2005 & 2010]

Fixed number of transmissions for finite horizon LQG setup.

[Lipsa-Martins 2009 & 2011, Molin-Hirche 2009]

Remote estimation with communication cost for finite horizon LQG setup.

[Nayyar-Başar-Teneketzis-Veeravalli 2013]

Remote estimation with communication cost for finite horizon Markov chain setup. Also considered energy harvesting at the transmitter.

A large literature on event-driven communication

Assumptions on the model

(Ao) $X_t \in \mathbb{Z}$, and $X_0 = 0$.

(A1) The transition matrix is Toeplitz with decaying off-diagonal terms.

$$P = \begin{bmatrix} \ddots & p_0 & \ddots & & \\ \cdots & p_1 & p_0 & p_1 & \cdots & \\ & \ddots & p_1 & p_0 & p_1 & \cdots \\ & & \ddots & \ddots & p_0 & \ddots \end{bmatrix} \text{ and } p_0 \geqslant p_1 \geqslant p_2 \geqslant \cdots$$

▶ Nayyar et al, assumed that the transistion matrix was banded, that is, $\exists b$ such that $p_k = 0$, for all $k \ge b$.

(A2) The distortion function is even and increasing on $\mathbb{Z}_{\geq 0}$.

 $\forall e \in \mathbb{Z}_{\geqslant 0}: \quad d(e) = d(-e) \quad \text{and} \quad d(e) \leqslant d(e+1).$

Lagrange Relaxation

Minimize expected distortion such that expected # of transmissions is less than α

Lagrange Relaxation

$$\min_{(\mathfrak{f},g)} D_{\beta}(\mathfrak{f},g) \quad \text{ such that } N_{\beta}(\mathfrak{f},g) \leqslant \alpha$$

Minimize expected distortion such that expected # of transmissions is less than α

$$\begin{array}{ll} \mbox{Lagrange} & C^*_\beta(\lambda)\coloneqq \inf_{(f,g)} C_\beta(f,g;\lambda) & \mbox{where } C_\beta(f,g;\lambda) = D_\beta(f,g) + \lambda N_\beta(f,g) \\ \mbox{Relaxation} & \end{array}$$

Lagrange Relaxation

$$\min_{(\mathfrak{f},g)} D_{\beta}(\mathfrak{f},g) \quad \text{ such that } N_{\beta}(\mathfrak{f},g) \leqslant \alpha$$

Minimize expected distortion such that expected # of transmissions is less than $\boldsymbol{\alpha}$

Lagrange Relaxation

$$C^*_\beta(\lambda)\coloneqq \inf_{(\mathfrak{f},g)} C_\beta(\mathfrak{f},g;\lambda) \quad \text{where } C_\beta(\mathfrak{f},g;\lambda) = D_\beta(\mathfrak{f},g) + \lambda N_\beta(\mathfrak{f},g)$$

Search space of strategies (f, g)

- Restrict the search space of strategies (f, g) by identifying structure of optimal tranmission and estimation strategies.
- Difficulty: Non-classical information structure

Structure of optimal estimator (Nayyar et al, 2013)

$$Z_0 = 0 \quad \text{and} \quad Z_t = \begin{cases} X_t & \text{if } U_t = 1; \\ Z_{t-1} & \text{if } U_t = 0. \end{cases}$$

The estimator can keep track of Z_t as follows:

$$Z_0 = 0 \quad \text{and} \quad Z_t = \begin{cases} Y_t & \text{if } Y_t \neq \epsilon; \\ Z_{t-1} & \text{if } Y_t = \epsilon. \end{cases}$$

Structure of optimal estimator (Nayyar et al, 2013)

$$Z_0 = 0 \quad \text{and} \quad Z_t = \begin{cases} X_t & \text{if } U_t = 1; \\ Z_{t-1} & \text{if } U_t = 0. \end{cases}$$

The estimator can keep track of Z_t as follows:

$$Z_0 = 0 \quad \text{and} \quad Z_t = \begin{cases} Y_t & \text{ if } Y_t \neq \epsilon; \\ Z_{t-1} & \text{ if } Y_t = \epsilon. \end{cases}$$

Theorem 1 The process $\{Z_t\}_{t=0}^{\infty}$ is a sufficient statistic at the estimator and an optimal estimation strategy is given by $\hat{X}_t = g_t^*(Z_t) = Z_t$ (*)

Remark > The optimal estimation strategy is time-homogeneous and can be specified in closed form.

Structure of optimal transmitter (Nayyar et al, 2013)

Error process Let $E_t=X_t-Z_{t-1}$ denote the error process. $\{E_t\}_{t=0}^\infty$ is a controlled Markov process where

$$E_0 = 0 \quad \text{and} \quad \mathbb{P}(E_{t+1} = n \mid E_t = e, U_t = u) = \begin{cases} P_{0n}, & \text{if } u = 1; \\ P_{en}, & \text{if } u = 0. \end{cases}$$

Structure of optimal transmitter (Nayyar et al, 2013)

Error process Let $E_t=X_t-Z_{t-1}$ denote the error process. $\{E_t\}_{t=0}^\infty$ is a controlled Markov process where

$$\mathsf{E}_0 = 0 \quad \text{and} \quad \mathbb{P}(\mathsf{E}_{t+1} = n \mid \mathsf{E}_t = e, \mathsf{U}_t = u) = \begin{cases} \mathsf{P}_{0n}, & \text{if } u = 1; \\ \mathsf{P}_{en}, & \text{if } u = 0. \end{cases}$$

Theorem 2 When the estimation strategy is of the form (*), then $\{E_t\}_{t=0}^{\infty}$ is a sufficient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a time-varying threshold $\{k_t\}_{t=0}^\infty$, i.e.,

$$U_t = f_t(E_t) = \begin{cases} 1 & \text{if } |E_t| \ge k_t; \\ 0 & \text{if } |E_t| < k_t. \end{cases}$$

Structure of optimal transmitter (Nayyar et al, 2013)

Error process Let $E_t=X_t-Z_{t-1}$ denote the error process. $\{E_t\}_{t=0}^\infty$ is a controlled Markov process where

$$\mathsf{E}_0 = 0 \quad \text{and} \quad \mathbb{P}(\mathsf{E}_{t+1} = n \mid \mathsf{E}_t = e, \mathsf{U}_t = u) = \begin{cases} \mathsf{P}_{0n}, & \text{if } u = 1; \\ \mathsf{P}_{en}, & \text{if } u = 0. \end{cases}$$

Theorem 2 When the estimation strategy is of the form (*), then $\{E_t\}_{t=0}^{\infty}$ is a sufficient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a time-varying threshold $\{k_t\}_{t=0}^\infty,$ i.e.,

$$U_t = f_t(E_t) = \begin{cases} 1 & \text{if } |E_t| \geqslant k_t; \\ 0 & \text{if } |E_t| < k_t. \end{cases}$$

- Proof idea ► The proof of [Nayyar et al, 2013] was based on some majorization inequalities of [Hajek et al, 2009] for distributions with finite support.
 - We extend these inequalities to distributions over integers using results of [Wang-Woo-Madiman, 2014].

Infinite horizon setup (for Lagrange relaxation)

Main idea • Based on Thm 1, restrict attention to time-homogeneous estimation strategy

$$\widehat{X}_t = \frac{g_t^*}{Z_t}(Z_t) = Z_t$$

 Consider the problem of finding the "best response" estimation strategy.

Infinite horizon setup (for Lagrange relaxation)

Main idea • Based on Thm 1, restrict attention to time-homogeneous estimation strategy

 $\widehat{X}_t = \mathbf{g}_t^*(Z_t) = Z_t$

- Consider the problem of finding the "best response" estimation strategy.
- Centralized stochastic control problem with countable state space and unbounded cost.
- Standard MDP results apply under mild technical assumptions.

Infinite horizon setup (for Lagrange relaxation)

Main idea • Based on Thm 1, restrict attention to time-homogeneous estimation strategy

 $\hat{X}_t = \mathbf{g}_t^*(Z_t) = Z_t$

- Consider the problem of finding the "best response" estimation strategy.
- Centralized stochastic control problem with countable state space and unbounded cost.
- Standard MDP results apply under mild technical assumptions.

Assum (A3) For every $\lambda \ge 0$, there exists a function $w : \mathbb{Z} \to \mathbb{R}$ and postive and finite constants μ_1 and μ_2 such that for all $e \in \mathbb{Z}$, we have that

 $\max\{\lambda, d(e)\} \leqslant \mu_1 w(e)$

$$\max\Big\{\sum_{n=-\infty}^{\infty} \mathsf{P}_{en} w(n), \sum_{n=-\infty}^{\infty} \mathsf{P}_{0n} w(n)\Big\} \leqslant \mu_2 w(e).$$

Structure of optimal transmitter for infinite horizon

Structure Under assumption (A3), optimal transmission strategy is characterized by time-homogeneous threshold k, i.e.,

$$U_t = f(E_t) = \begin{cases} 1 & \text{if } |E_t| \ge k; \\ 0 & \text{if } |E_t| < k. \end{cases}$$

Structure of optimal transmitter for infinite horizon

Structure Under assumption (A3), optimal transmission strategy is characterized by time-homogeneous threshold k, i.e.,

$$U_t = f(E_t) = \begin{cases} 1 & \text{if } |E_t| \ge k; \\ 0 & \text{if } |E_t| < k. \end{cases}$$

Dynamic For $\beta \in (0, 1)$, the optimal strategy is determined by the unique fixed program point of the following DP:

$$\begin{split} V_{\beta}(e;\lambda) &= \min \left\{ (1-\beta)\lambda + \beta \sum_{n=-\infty}^{\infty} \mathsf{P}_{0n} V_{\beta}(n;\lambda), \quad \begin{array}{l} \text{Transmit} \\ (1-\beta)d(e) + \beta \sum_{n=-\infty}^{\infty} \mathsf{P}_{en} V_{\beta}(n;\lambda) \right\} \quad \begin{array}{l} \text{Don't} \\ \text{Transmit} \\ \end{array} \end{split}$$

Structure of optimal transmitter for infinite horizon

Structure Under assumption (A3), optimal transmission strategy is characterized by time-homogeneous threshold k, i.e.,

$$U_t = f(E_t) = \begin{cases} 1 & \text{if } |E_t| \ge k; \\ 0 & \text{if } |E_t| < k. \end{cases}$$

Dynamic For $\beta \in (0, 1)$, the optimal strategy is determined by the unique fixed program point of the following DP:

$$\begin{split} V_{\beta}(e;\lambda) &= \min \left\{ (1-\beta)\lambda + \beta \sum_{n=-\infty}^{\infty} \mathsf{P}_{0n} V_{\beta}(n;\lambda), \quad \begin{array}{l} \text{Transmit} \\ (1-\beta)d(e) + \beta \sum_{n=-\infty}^{\infty} \mathsf{P}_{en} V_{\beta}(n;\lambda) \right\} \quad \begin{array}{l} \text{Don't} \\ \text{Transmit} \\ \end{array} \end{split}$$

 $\begin{array}{ll} \mbox{Lagrange} & \mbox{Let } f^*_\beta(\cdot;\lambda) \mbox{ be the time-homogeneous optimal transmission strategy.} \\ \mbox{relaxation} & C^*_\beta(\lambda) \coloneqq \inf_{(f,g)} C_\beta(f,g;\lambda) = C_\beta(f^*_\beta,g^*;\lambda) = V_\beta(0;\lambda) \end{array}$

The SEN Conditions and the long-term average setup

SEN Conditions For any $\lambda \ge 0$, the value function $V_{\beta}(\cdot; \lambda)$ satisfy the SEN condition:

- (S1) There exists a reference state $e_0 \in \mathbb{Z}$ such that $V_{\beta}(e_0; \lambda) < \infty$ for all $\beta \in (0, 1)$.
- (S2) Define $h_{\beta}(e;\lambda) = (1-\beta)^{-1}[V_{\beta}(e;\lambda) V_{\beta}(e_{0};\lambda)]$. There exists a function $K_{\lambda} : \mathbb{Z} \to \mathbb{R}$ such that $h_{\beta}(e;\lambda) \leq K_{\lambda}(e)$ for all $e \in \mathbb{Z}$ and $\beta \in (0,1)$.
- (S3) There exists a non-negative (finite) constant L_{λ} such that $-L_{\lambda} \leq h_{\beta}(e;\lambda)$ for all $e \in \mathbb{Z}$ and $\beta \in (0,1)$.

The SEN Conditions and the long-term average setup

SEN Conditions For any $\lambda \ge 0$, the value function $V_{\beta}(\cdot; \lambda)$ satisfy the SEN condition:

- $\begin{array}{ll} \mbox{(S1)} & \mbox{There exists a reference state $e_0 \in \mathbb{Z}$ such that $V_\beta(e_0;\lambda) < \infty$ for all $\beta \in (0,1)$.} \end{array}$
- (S2) Define $h_{\beta}(e;\lambda) = (1-\beta)^{-1}[V_{\beta}(e;\lambda) V_{\beta}(e_{0};\lambda)]$. There exists a function $K_{\lambda} : \mathbb{Z} \to \mathbb{R}$ such that $h_{\beta}(e;\lambda) \leq K_{\lambda}(e)$ for all $e \in \mathbb{Z}$ and $\beta \in (0,1)$.
- (S3) There exists a non-negative (finite) constant L_{λ} such that $-L_{\lambda} \leq h_{\beta}(e;\lambda)$ for all $e \in \mathbb{Z}$ and $\beta \in (0, 1)$.

 $\begin{array}{ll} \mbox{Vanishing} & \mbox{Let } f_1^*(\cdot;\lambda) \mbox{ be any limit point of } f_\beta^*(\cdot;\lambda) \mbox{ as } \beta\uparrow 1. \\ \mbox{discount} & \mbox{Then the time-homogeneous transmission strategy } f_1^*(\cdot;\lambda) \mbox{ is optimal} \\ \mbox{approach} & \mbox{ for } \beta=1 \mbox{ (the long-term average setup).} \end{array}$

Furthermore, the performance of this optimal strategy is

$$C_1^*(\lambda) \coloneqq \inf_{(\mathfrak{f},\mathfrak{g})} C_1(\mathfrak{f},\mathfrak{g};\lambda) = C_1(\mathfrak{f}_1^*,\mathfrak{g}^*;\lambda) = \lim_{\beta \uparrow 1} V_\beta(\mathfrak{0};\lambda) = \lim_{\beta \uparrow 1} C_\beta^*(\lambda).$$

Performance of a threshold based strategy

Threshold-based We analyze the performace of $(f^{(k)}, g^*)$, where strategy $\int 1$, if $|e| \ge k$;

$$\mathbf{f}^{(\mathbf{k})}(\mathbf{e}) \coloneqq \begin{cases} 1, & \text{if } |\mathbf{e}| \ge \mathbf{k}; \\ 0, & \text{if } |\mathbf{e}| < \mathbf{k}. \end{cases}$$

Performance of a threshold based strategy

 $\label{eq:firsterm} \begin{array}{ll} \mbox{Threshold-based} & \mbox{We analyze the performace of } (f^{(k)},g^*), \mbox{ where} \\ & \mbox{strategy} \\ f^{(k)}(e) \coloneqq \begin{cases} 1, & \mbox{if } |e| \geqslant k; \\ 0, & \mbox{if } |e| < k. \end{cases} \end{array}$

 $\begin{array}{ll} \mbox{Cost until first} & \mbox{Define } S^{(k)} = \{e \in \mathbb{Z} : |e| \leqslant k-1\} \mbox{ and let } \tau^{(k)} \mbox{ be the stopping time} \\ & \mbox{transmission} & \mbox{when the Markov process starting at state 0 at time } t = 0 \mbox{ escapes the} \\ & \mbox{set } S^{(k)}. \end{array}$

Performance of a threshold based strategy

Threshold-based We analyze the performace of $(f^{(k)}, q^*)$, where strategy $f^{(k)}(e) \coloneqq \begin{cases} 1, & \text{if } |e| \ge k; \\ 0, & \text{if } |e| < k. \end{cases}$

Cost until first Define $S^{(k)} = \{e \in \mathbb{Z} : |e| \leq k-1\}$ and let $\tau^{(k)}$ be the stopping time transmission when the Markov process starting at state 0 at time t = 0 escapes the set $S^{(k)}$.

$$\begin{split} \text{Define} \quad L_{\beta}^{(k)} &\coloneqq \mathbb{E} \Big[\sum_{t=0}^{\tau^{(k)}-1} \beta^t d(E_t) \Big| E_0 = 0 \Big] \\ \\ \mathcal{M}_{\beta}^{(k)} &\coloneqq \frac{1 - \mathbb{E}[\beta^{\tau^{(k)}} \mid E_0 = 0]}{1 - \beta} \end{split}$$

and

$$L_1^{(k)} \coloneqq \mathbb{E}\left[\sum_{t=0}^{\tau^{(k)}-1} d(E_t) \middle| E_0 = 0\right]$$
$$M_1^{(k)} \coloneqq \mathbb{E}[\tau^{(k)}-1 \mid E_0 = 0]$$

Performance of a threshold based strategy (cont.)

Renewal relationships

$$D_{\beta}^{(k)} \coloneqq D_{\beta}(f^{(k)}, g^*) = \frac{L_{\beta}^{(k)}}{M_{\beta}^{(k)}}$$
$$N_{\beta}^{(k)} \coloneqq N_{\beta}(f^{(k)}, g^*) = \frac{1}{M_{\beta}^{(k)}} - (1 - \beta)$$

Performance of a threshold based strategy (cont.)

Renewal relationships

$$D_{\beta}^{(k)} \coloneqq D_{\beta}(f^{(k)}, g^*) = \frac{L_{\beta}^{(k)}}{M_{\beta}^{(k)}}$$
$$N_{\beta}^{(k)} \coloneqq N_{\beta}(f^{(k)}, g^*) = \frac{1}{M_{\beta}^{(k)}} - (1 - \beta)$$

Vanishing discount relationships ^{and}

$$L_1^{(k)} = \lim_{\beta \uparrow 1} L_\beta^{(k)}, \quad M_1^{(k)} = \lim_{\beta \uparrow 1} M_\beta^{(k)}.$$

$$\begin{split} D_1^{(k)} &= \lim_{\beta \uparrow 1} D_\beta^{(k)} = \frac{L_1^{(k)}}{M_1^{(k)}} \\ N_1^{(k)} &= \lim_{\beta \uparrow 1} N_\beta^{(k)} = \frac{1}{M_1^{(k)}} \end{split}$$

Performance of a threshold based strategy: Computations

for performace

Analytic Let $P^{(k)}$ and $Q^{(k)}_{\beta}$ be square matrices and $d^{(k)}$ is a column vector indexed **expressions** by $S^{(k)}$ defined as follows:

$$\begin{split} P_{ij}^{(k)} &\coloneqq P_{ij}, \quad \forall i, j \in S^{(k)}, \\ Q_{\beta}^{(k)} &\coloneqq [I_{2k-1} - \beta P^{(k)}]^{-1}, \\ d^{(k)} &\coloneqq [d(-k+1), \dots, d(k-1)] \end{split}$$

Then,

$$L_{\beta}^{(k)} = [Q_{\beta}^{(k)}]_{0} d^{(k)} \quad \text{and} \quad M_{\beta}^{(k)} = [Q_{\beta}^{(k)}]_{0} 1_{2k-1}.$$

Performance of a threshold based strategy: Computations

for performace

Analytic Let $P^{(k)}$ and $Q^{(k)}_{\beta}$ be square matrices and $d^{(k)}$ is a column vector indexed **expressions** by $S^{(k)}$ defined as follows:

$$\begin{split} P_{ij}^{(k)} &\coloneqq P_{ij}, \quad \forall i, j \in S^{(k)}, \\ Q_{\beta}^{(k)} &\coloneqq [I_{2k-1} - \beta P^{(k)}]^{-1}, \\ d^{(k)} &\coloneqq [d(-k+1), \dots, d(k-1)] \end{split}$$

Then,

$$L_{\beta}^{(k)} = [Q_{\beta}^{(k)}]_{0}d^{(k)} \quad \text{and} \quad M_{\beta}^{(k)} = [Q_{\beta}^{(k)}]_{0}1_{2k-1}.$$

 $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}$ can be computed using these expressions.

 $\label{eq:some inequalities} \text{Some inequalities} \qquad L_{\beta}^{(k)} < L_{\beta}^{(k+1)}, \quad M_{\beta}^{(k)} < M_{\beta}^{(k+1)}, \quad D_{\beta}^{(k)} < D_{\beta}^{(k+1)}.$

 $\text{Some inequalities} \qquad L_{\beta}^{(k)} < L_{\beta}^{(k+1)}, \quad M_{\beta}^{(k)} < M_{\beta}^{(k+1)}, \quad D_{\beta}^{(k)} < D_{\beta}^{(k+1)}.$

Lagrangian cost

 $C_{\beta}^{(k)}(\boldsymbol{\lambda}) \coloneqq C(f^{(k)}, g^*; \boldsymbol{\lambda}) = D_{\beta}^{(k)} + \boldsymbol{\lambda} N_{\beta}^{(k)}$

 $\text{Some inequalities} \qquad L_{\beta}^{(k)} < L_{\beta}^{(k+1)}, \quad M_{\beta}^{(k)} < M_{\beta}^{(k+1)}, \quad D_{\beta}^{(k)} < D_{\beta}^{(k+1)}.$

Lagrangian cost

 $C_{\beta}^{(k)}(\boldsymbol{\lambda}) \coloneqq C(f^{(k)}, g^*; \boldsymbol{\lambda}) = D_{\beta}^{(k)} + \boldsymbol{\lambda} N_{\beta}^{(k)}$

 $\text{Some inequalities} \qquad L_{\beta}^{(k)} < L_{\beta}^{(k+1)}, \quad M_{\beta}^{(k)} < M_{\beta}^{(k+1)}, \quad D_{\beta}^{(k)} < D_{\beta}^{(k+1)}.$

Lagrangian cost

 $C_{\beta}^{(k)}(\boldsymbol{\lambda}) \coloneqq C(f^{(k)}, g^*; \boldsymbol{\lambda}) = D_{\beta}^{(k)} + \boldsymbol{\lambda} N_{\beta}^{(k)}$

 $\text{Some inequalities} \qquad L_{\beta}^{(k)} < L_{\beta}^{(k+1)}, \quad M_{\beta}^{(k)} < M_{\beta}^{(k+1)}, \quad D_{\beta}^{(k)} < D_{\beta}^{(k+1)}.$

Lagrangian cost

 $C_{\beta}^{(k)}(\boldsymbol{\lambda}) \coloneqq C(f^{(k)}, g^*; \boldsymbol{\lambda}) = D_{\beta}^{(k)} + \boldsymbol{\lambda} N_{\beta}^{(k)}$

 $\label{eq:some inequalities} \text{Some inequalities} \qquad L_{\beta}^{(k)} < L_{\beta}^{(k+1)}, \quad M_{\beta}^{(k)} < M_{\beta}^{(k+1)}, \quad D_{\beta}^{(k)} < D_{\beta}^{(k+1)}.$

Lagrangian cost

 $C_{\beta}^{(k)}(\boldsymbol{\lambda}) \coloneqq C(f^{(k)}, g^*; \boldsymbol{\lambda}) = D_{\beta}^{(k)} + \boldsymbol{\lambda} N_{\beta}^{(k)}$

Optimal performance

For all λ ∈ (λ_β^(k), λ_β^(k+1)] the threshold strategy f^(k+1) is optimal.
 C^{*}_β(λ) = min_{k∈Z} C^(k)_β is piecewise linear, continuous, concave, and increasing function of λ.

Back to the constrained optimization problem

 $\label{eq:stategy} \begin{array}{ll} \mbox{Bernoulli} & \mbox{Let } \theta \in [0,1] \mbox{ and } f_1 \mbox{ and } f_2 \mbox{ betwoes stationary strategies.} \\ \mbox{The Bernoulli randomized strategy } (f_1,f_2,\theta) \mbox{ randomizes between } f_1 \mbox{ and } f_2 \mbox{ at each stage, choosing } f_1 \mbox{ with probability } \theta \mbox{ and } f_2 \mbox{ with probability } \\ (1-\theta). \end{array}$

Simple rand. A Bernoulli randomized strategy (f_1, f_2, θ) is simple if the actions strategy prescribed by f_1 and f_2 differ only at one state.

Main result

t Define $k_{\beta}^* = \sup\{k \in \mathbb{Z}_{\geq 0} : N_{\beta}^{(k)} \geq \alpha\}$ and let θ be such that

$$\theta N_{\beta}^{(k_{\beta}^{*})} + (1-\theta) N_{\beta}^{(k_{\beta}^{*}+1)} = \alpha$$

Then, the Bernoulli simple randomized strategy $(f^{(k_{\beta}^{*})}, f^{(k_{\beta}^{*}+1)}, \theta)$ is optimal for the constrained optimization problem for $\beta \in (0, 1]$.

$$P_{ij} = \begin{cases} p, & \text{if } |i-j| = 1;\\ 1-2p, & \text{if } i = j;\\ 0, & \text{otherwise,} \end{cases} \quad \text{where } p \in (0, \frac{1}{2}), \quad d(e) = |e|$$

17

$$P_{ij} = \begin{cases} p, & \text{if } |i-j| = 1;\\ 1-2p, & \text{if } i = j;\\ 0, & \text{otherwise,} \end{cases} \quad \text{where } p \in (0, \frac{1}{2}), \quad d(e) = |e|$$

Discounted cost Let $K_{\beta} = -2 - (1 - \beta)/\beta p$ and $m_{\beta} = \cosh^{-1}(-K_{\beta}/2)$.

$$D_{\beta}^{(k)} = \frac{\sinh(km_{\beta}) - k\sinh(m_{\beta})}{2\sinh^{2}(km_{\beta}/2)\sinh(m_{\beta})}$$
$$N_{\beta}^{(k)} = \frac{2\beta p\sinh^{2}(m_{\beta}/2)\cosh(km_{\beta})}{\sinh^{2}(km_{\beta}/2)} - (1 - \beta)$$

Average cost
$$D_1^{(k)} = \frac{k^2 - 1}{3k}$$
 and $N_1^{(k)} = \frac{2p}{k^2}$

$$\mathsf{P}_{ij} = \begin{cases} \mathsf{p}, & \text{if } |i-j| = 1;\\ 1-2\mathsf{p}, & \text{if } i = j;\\ 0, & \text{otherwise}, \end{cases} \quad \text{where } \mathsf{p} \in (0, \frac{1}{2}), & d(e) = |e| \end{cases}$$

Discounted cost Let $K_{\beta} = -2 - (1 - \beta)/\beta p$ and $m_{\beta} = \cosh^{-1}(-K_{\beta}/2)$.

$$D_{\beta}^{(k)} = \frac{\sinh(km_{\beta}) - k\sinh(m_{\beta})}{2\sinh^{2}(km_{\beta}/2)\sinh(m_{\beta})}$$
$$N_{\beta}^{(k)} = \frac{2\beta p\sinh^{2}(m_{\beta}/2)\cosh(km_{\beta})}{\sinh^{2}(km_{\beta}/2)} - (1 - \beta)$$

 $\lambda_{\beta}^{(k)}$ can be computed in terms of $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}.$

Average cost
$$D_1^{(k)} = \frac{k^2 - 1}{3k}$$
 and $N_1^{(k)} = \frac{2p}{k^2}$

$$\lambda_1^{(k)} = \frac{k(k+1)(k^2+k+1)}{6p(2k+1)}$$

$$\mathsf{P}_{ij} = \begin{cases} \mathsf{p}, & \text{if } |i-j| = 1;\\ 1-2\mathsf{p}, & \text{if } i = j;\\ 0, & \text{otherwise,} \end{cases} \quad \text{where } \mathsf{p} \in (0, \frac{1}{2}), & d(e) = |e| \end{cases}$$

Discounted cost Let $K_{\beta} = -2 - (1 - \beta)/\beta p$ and $m_{\beta} = \cosh^{-1}(-K_{\beta}/2)$.

$$\begin{split} D_{\beta}^{(k)} &= \frac{\sinh(km_{\beta}) - k\sinh(m_{\beta})}{2\sinh^{2}(km_{\beta}/2)\sinh(m_{\beta})} \\ N_{\beta}^{(k)} &= \frac{2\beta p \sinh^{2}(m_{\beta}/2)\cosh(km_{\beta})}{\sinh^{2}(km_{\beta}/2)} - (1 - \beta) \\ \\ k_{\beta}^{*} &= \sup\left\{k \in \mathbb{Z}_{\geq 0} : \frac{\sinh^{2}(m_{\beta}/2)\cosh(km_{\beta})}{\sinh^{2}(km_{\beta}/2)} \geqslant \frac{1 + \alpha - \beta}{2\beta p}\right\} \end{split}$$
werage cost
$$D_{1}^{(k)} &= \frac{k^{2} - 1}{3k} \quad \text{and} \quad N_{1}^{(k)} &= \frac{2p}{k^{2}} \\ \\ k_{1}^{*} &= \left\lfloor\sqrt{\frac{2p}{\alpha}}\right\rfloor \end{split}$$

Summary and Conclusion

Problem • Real-time transmission of a Markov source under constraints on the number of transmissions.

- Investigated both discounted and average cost infinite horizon setups.
- Modeled as a decentralized stochastic control problem with two decision maker.
- As long as the transmitter uses a symmetric threshold based strategy, the estimation strategy does not depend on the transmission strategy.
- The problem of find the "best response" transmitter is a centralized stochastic control problem.

Main results > Simple Bernoulli randomized strategies (f^(k*), f^(k*+1), θ) are optimal. k* and θ can be computed easily.

