The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC

On the optimal thresholds in remote state estimation with communication costs

Jhelum Chakravorty, Aditya Mahajan

McGill University

IEEE Conference on Decision and Control, LA, December 15, 2014

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC
Overview	N				

- 1 The remote-state estimation setup
- 2 Salient features
- 3 Main results
- 4 Solution approach
 - Discounted setup
 - Long-term average setup
- 5 Performance of threshold based strategies
- 6 Example: Symmetric, aperiodic birth-death Markov chain

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC
Motivat	ion				

Applications

- Smart grid
- Environmental monitoring
- Sensor networks

Salient features

- Sensing is cheap
- Transmission is expensive
- Size of data-packet is not critical

 The system
 Salient features
 Main results
 Solution approach oco
 Threshold strategies
 BDMC

 The remote-state estimation setup



State process $X_t \in \mathbb{Z}$ Uncontrolled symmetric Markov process. Transmitter $U_t = \int (X_t, \text{ if } U_t) = \int X_t$, if $U_t = \int X_t$

Transmitter
$$U_t = f_t(X_{1:t}, U_{1:t-1})$$
 and $Y_t = \begin{cases} X_t, & \text{if } U_t = 1; \\ \mathfrak{E}, & \text{if } U_t = 0, \end{cases}$

$$\begin{array}{ll} \text{Receiver} & \hat{X}_t = g_t(Y_{1:t}) \\ & \text{Distortion: } d(X_t - \hat{X}_t), \\ & d(-e) = d(e) \leq d(e+1), \ e \in \mathbb{Z}_{\geq 0} \end{array}$$

Communication Transmission strategy $f = \{f_t\}_{t=0}^{\infty}$ strategies Estimation strategy $g = \{g_t\}_{t=0}^{\infty}$

$$D^*_eta(lpha)\coloneqq D_eta(f^*,m{g}^*)\coloneqq \inf_{(f,m{g}):N_eta(f,m{g})\leq lpha} D_eta(f,m{g}), \quad eta\in(0,1]$$

Minimize expected distortion such that expected number of transmissions is less than α

1. Discounted setup

•
$$D_{\beta}(f,g) \coloneqq (1-\beta)\mathbb{E}^{(f,g)} \Big[\sum_{t=0}^{\infty} \beta^t d(X_t - \hat{X}_t) \mid X_0 = 0 \Big]$$

• $N_{\beta}(f,g) \coloneqq (1-\beta)\mathbb{E}^{(f,g)} \Big[\sum_{t=0}^{\infty} \beta^t U_t \mid X_0 = 0 \Big]$

$$D^*_eta(lpha)\coloneqq D_eta(f^*,m{g}^*)\coloneqq \inf_{(f,m{g}):m{N}_eta(f,m{g})\leq lpha} D_eta(f,m{g}), \quad eta\in(0,1]$$

Minimize expected distortion such that expected number of transmissions is less than α

2. Long-term average setup

•
$$D_1(f,g) \coloneqq \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{(f,g)} \Big[\sum_{t=0}^{T-1} d(X_t - \hat{X}_t) \mid X_0 = 0 \Big]$$

• $N_1(f,g) \coloneqq \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{(f,g)} \Big[\sum_{t=0}^{T-1} U_t \mid X_0 = 0 \Big]$

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC
Literatu	re overview				

• [Imer-Basar 2005 and 2010]

Remote estimation problem with communication a finite number of times.

- [Lipsa-Martins 2009 and 2011], [Molin-Hirche 2009] Remote estimation with communication cost for finite horizon LQG setup.
- [Nayyar-Basar-Teneketzis-Veeravalli 2013]

Remote estimation with communication cost for finite horizon Markov chain setup. Also considered energy harvesting at the transmitter.

• A long list of literature on event-driven communication

Key differences in our model

- Infinite horizon setup
- Constrained formulation

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC
Salient	features				

Decentralized control

- Two decision makers the transmitter and the receiver.
- (One-sided) nested information structure: the transmitter knows all the information available to the receiver.
- Non-classical information structure.

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC
Salient	features				

Decentralized control

- Two decision makers the transmitter and the receiver.
- (One-sided) nested information structure: the transmitter knows all the information available to the receiver.
- Non-classical information structure.

Our contributions

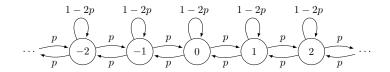
- Identify qualitative properties of optimal strategies
- Identify a dynamic programming decomposition
- Determine optimal strategies in closed form based on the DP.

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC
Assump	tions on the	e model			

$$(A_0) X_t \in \mathbb{Z}, X_0 = 0$$

(A₁) Toeplitz transition matrix with decaying off-diagonal terms $\begin{bmatrix} \ddots & p_0 & \ddots & & \\ \cdots & p_1 & p_0 & p_1 & \cdots & \\ & \ddots & p_1 & p_0 & p_1 & \cdots & \\ & & \ddots & \ddots & p_0 & \ddots \end{bmatrix}$, where where $p_0 \ge p_1 \ge \cdots$

(A₂) The distortion function is even and increasing on $\mathbb{Z}_{\geq 0}$. $\forall e \in \mathbb{Z}_{\geq 0}$: d(e) = d(-e) and $d(e) \leq d(e+1)$.



$$P_{ij} = egin{cases} p, & ext{if } j = i+1, i-1 \ 1-2p, & ext{if } j = i \ 0, & ext{otherwise.} \end{cases}$$
 , $p \in (0,1)$ and $d(e) = |e|$.

$$\begin{array}{ll} \mbox{Lagrange relaxation} & C^*_\beta(\lambda) \coloneqq \inf_{\substack{(f,g) \\ (f,g)}} C_\beta(f,g;\lambda), \\ & \mbox{where } C_\beta(f,g;\lambda) = D_\beta(f,g) + \lambda N_\beta(f,g) \end{array}$$

Optimal estimation Let Z_t be the most recently transmitted symbol. strategy $\hat{X}_t = g_t^*(Z_t) = Z_t$; Time homogeneous!

Optimal transmission Let $E_t = X_t - Z_{t-1}$ be the error process and strategy $f^{(k)}$ be the threshold based strategy such that $f^{(k)}(X_t, Y_{0:t-1}) = \begin{cases} 1, & \text{if } |E_t| \ge k \\ 0, & \text{if } |E_t| < k. \end{cases}$ The systemSalient featuresMain resultsSolution approach
oooThreshold strategiesBDMCMain results:constrained optimization

Optimal strategy

The optimal transmission strategy is a possibly randomized strategy that, at each stage picks

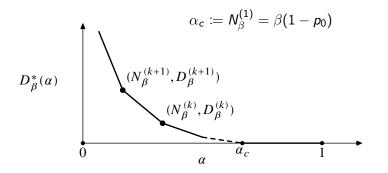
•
$$f^{(k^*)}$$
 w.p. $heta^*$

•
$$f^{(k^*+1)}$$
 w.p. $1- heta^*$

• Let
$$D_{\beta}^{(k)} = D_{\beta}(f^{(k)}, g^*)$$
, $N_{\beta}^{(k)} = N_{\beta}(f^{(k)}, g^*)$, then
• k^* : Largest k such that $N_{\beta}^{(k)} \ge \alpha$
• θ^* : Solution of $\theta^* N_{\beta}^{(k^*)} + (1 - \theta^*) N_{\beta}^{(k^*+1)} = \alpha$

The systemSalient featuresMain resultsSolution approach
ooThreshold strategiesBDMCMain results:constrained optimization

• Distortion-transmission trade-off: $D_{\beta}^{*}(\alpha) = \theta^{*} D_{\beta}^{(k^{*})} + (1 - \theta^{*}) D_{\beta}^{(k^{*}+1)}$



The structure of optimal transmitter and estimator follows from [Lipsa-Martins 2011] and [Nayyar-Basar-Teneketzis-Veeravalli 2013].

Optimal estimation Let Z_t be the most recently transmitted symbol. strategy $\hat{X}_t = g_t^*(Z_t) = Z_t$; Time homogeneous!

Optimal transmission Let $E_t = X_t - Z_{t-1}$ be the error process and strategy f_t be the threshold based strategy such that $f_t(X_t, Y_{0:t-1}) = \begin{cases} 1, & \text{if } |E_t| \ge k_t \\ 0, & \text{if } |E_t| < k_t. \end{cases}$

Step 1 DP to identify best response transmitter.

• Key concern: the cost may be unbounded.

Step 2 Closed form expressions for
$$D_{\beta}^{(k)} = D_{\beta}(f^{(k)}, g^*)$$
 and $N_{\beta}^{(k)} = N_{\beta}(f^{(k)}, g^*).$

Step 3 Identify $\Lambda(k) = \left\{ \lambda \ge 0 : C_{\beta}^{*}(\lambda) = C_{\beta}(f^{(k)}, g^{*}; \lambda) \right\} = (\lambda_{\beta}^{(k)}, \lambda_{\beta}^{(k+1)}].$

Step 4 Identify optimal randomized strategy for constrained setup.

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC
Step 1:	Main idea				

Main idea

- Restrict attention to time-homogeneous estimation strategy $\hat{X}_t = g_t^*(Z_t) = Z_t$
- Consider the problem of finding the "best response" transmission strategy.
- Centralized stochastic control problem with countable state space and unbounded cost.
- Standard MDP results apply under mild technical assumptions.

The system Salient features Main results Solution approach Threshold strategies BDMC

Step 1: DP for discounted setup

Structure Under a standard technical assumption (A₃), the optimal transmission strategy is characterized by time-homogeneous threshold k, i.e., $U_t = f(E_t) = \begin{cases} 1, & \text{if } |E_t| \ge k \\ 0, & \text{if } |E_t| < k. \end{cases}$

Dynamic For $\beta \in (0, 1)$, the optimal strategy is determined by program the unique fixed point of the following DP:

$$\begin{split} V_{\beta}(e;\lambda) &= \min \left\{ \lambda + \beta \sum_{n=-\infty}^{\infty} P_{0n} V_{\beta}(n;\lambda), \text{ Transmit} \\ d(e) &+ \beta \sum_{n=-\infty}^{\infty} P_{en} V_{\beta}(n;\lambda) \right\} \text{ Don't transmit.} \end{split}$$

The system Salient features Main results Solution approach Threshold strategies BDMC

Step 1: DP for discounted setup

Structure Under a standard technical assumption (A₃), the optimal transmission strategy is characterized by time-homogeneous threshold k, i.e., $U_t = f(E_t) = \begin{cases} 1, & \text{if } |E_t| \ge k \\ 0, & \text{if } |E_t| < k. \end{cases}$

Dynamic For $\beta \in (0, 1)$, the optimal strategy is determined by program the unique fixed point of the following DP:

$$\begin{split} V_{\beta}(e;\lambda) &= \min \left\{ \lambda + \beta \sum_{n=-\infty}^{\infty} P_{0n} V_{\beta}(n;\lambda), \text{ Transmit} \\ d(e) &+ \beta \sum_{n=-\infty}^{\infty} P_{en} V_{\beta}(n;\lambda) \right\} \text{ Don't transmit.} \end{split}$$

• Note that $C^*_{\beta}(\lambda) = V_{\beta}(0; \lambda)$.

 The system
 Salient features
 Main results
 Solution approach
 Threshold strategies
 BDMC

 Step 1: DP for long-term average setup

 $V_{\beta}(\cdot; \lambda)$ satisfies SEN conditions. Therefore, the vanishing discount approach is applicable.

 The system
 Salient features
 Main results
 Solution approach
 Threshold strategies
 BDMC

 Step 1: DP for long-term average setup

 $V_{\beta}(\cdot; \lambda)$ satisfies SEN conditions. Therefore, the vanishing discount approach is applicable.

- Let f₁^{*}(·; λ) be any limit point of f_β^{*}(·; λ) as β ↑ 1. Then the time-homogeneous transmission strategy f₁^{*}(·; λ) is optimal for β = 1 (the long-term average setup).
- Performance of optimal strategy: $C_{1}^{*}(\lambda) := C_{1}(f^{*}, g^{*}; \lambda) := \inf_{\substack{(f,g)\\\beta\uparrow 1}} C_{1}(f, g; \lambda)$ $= \lim_{\beta\uparrow 1} V_{\beta}(0; \lambda) = \lim_{\beta\uparrow 1} C_{\beta}^{*}(\lambda)$

 The system
 Salient features
 Main results
 Solution approach
 Threshold strategies
 BDMC

 Step 1: The SEN conditions

For any $\lambda \geq 0$, the value function $V_{\beta}(\cdot; \lambda)$ satisfies the SEN conditions:

SEN conditions (S1) There exists a reference state e₀ ∈ Z such that V_β(e₀; λ) < ∞ for all β ∈ (0, 1). (S2) Define h_β(e; λ) = (1 - β)⁻¹[V_β(e; λ) - V_β(e₀; λ)]. There exists a function K_λ : Z → R such that h_β(e; λ) ≤ K_λ(e) for all e ∈ Z and β ∈ (0, 1). (S3) There exists a non-negative (finite) constant L_λ such that -L_λ ≤ h_β(e; λ) for all e ∈ Z and β ∈ (0, 1).

 The system
 Salient features
 Main results
 Solution approach over threshold strategies
 BDMC

 Step 2:
 Performance of threshold based strategies

Cost until first transmission

Let $S^{(k)} := \{e \in \mathbb{Z} : |e| \le k - 1\}$ and let $\tau^{(k)}$ be the stopping time when the Markov process starting at state 0 at time t = 0 escapes the set $S^{(k)}$. Then, for $\beta \in (0, 1)$,

$$\begin{split} L_{\beta}^{(k)} &\coloneqq \mathbb{E}\Big[\sum_{t=0}^{\tau^{(k)}-1} \beta^t d(E_t) \mid E_0 = 0\Big] \\ M_{\beta}^{(k)} &\coloneqq \frac{1 - \mathbb{E}[\beta^{\tau^{(k)}} \mid E_0 = 0]}{1 - \beta}. \end{split}$$

 The system
 Salient features
 Main results
 Solution approach
 Threshold strategies
 BDMC

 Step 2:
 Performance of threshold based strategies

Renewal relationship

$$D_{eta}^{(k)} = rac{L_{eta}^{(k)}}{M_{eta}^{(k)}}, \quad N_{eta}^{(k)} = rac{1}{M_{eta}^{(k)}} - (1-eta)$$

 The system
 Salient features
 Main results
 Solution approach over threshold strategies
 BDMC

 Step 2:
 Performance of threshold based strategies

Renewal relationship

$$D_{eta}^{(k)} = rac{L_{eta}^{(k)}}{M_{eta}^{(k)}}, \quad N_{eta}^{(k)} = rac{1}{M_{eta}^{(k)}} - (1 - eta)$$

Vanishing discount relationships

$$\begin{split} {}^{(k)}_{1} &:= \lim_{\beta \uparrow 1} L^{(k)}_{\beta}, \quad M^{(k)}_{1} &:= \lim_{\beta \uparrow 1} M^{(k)}_{\beta}, \\ D^{(k)}_{1} &:= \lim_{\beta \uparrow 1} D^{(k)}_{\beta} = \frac{L^{(k)}_{1}}{M^{(k)}_{1}} \\ N^{(k)}_{1} &:= \lim_{\beta \uparrow 1} N^{(k)}_{\beta} = \frac{1}{M^{(k)}_{1}} \end{split}$$

Analytic expressions Define

for performance
$$P_{ij}^{(k)} := P_{ij}, \quad i, j \in S^{(k)};$$

 $Q_{\beta}^{(k)} := [I_{2k-1} - \beta P^{(k)}]^{-1};$
 $d^{(k)} := [d(-k+1), \cdots, d(k-1)]^{\mathsf{T}}.$ Then

The system Salient features Main results Solution approach oci Threshold strategies BDMC Step 2: Closed form expressions

Analytic expressions Define

for performance
$$P_{ij}^{(k)} := P_{ij}, \quad i, j \in S^{(k)};$$

 $Q_{\beta}^{(k)} := [I_{2k-1} - \beta P^{(k)}]^{-1};$
 $d^{(k)} := [d(-k+1), \cdots, d(k-1)]^{\intercal}.$ Then

•
$$L_{\beta}^{(k)} = \left\langle [Q_{\beta}^{(k)}]_{0}, d^{(k)} \right\rangle; M_{\beta}^{(k)} = \left\langle [Q_{\beta}^{(k)}]_{0}, 1_{2k-1} \right\rangle.$$

• $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}$ can be computed using these expressions.

The system Salient features Main results Solution approach oci Threshold strategies BDMC Step 2: Closed form expressions

Analytic expressions Define

for performance
$$P_{ij}^{(k)} := P_{ij}, \quad i, j \in S^{(k)};$$

 $Q_{\beta}^{(k)} := [I_{2k-1} - \beta P^{(k)}]^{-1};$
 $d^{(k)} := [d(-k+1), \cdots, d(k-1)]^{\intercal}.$ Then

Some inequalities $L_{\beta}^{(k)} < L_{\beta}^{(k+1)}$, $M_{\beta}^{(k)} < M_{\beta}^{(k+1)}$, $D_{\beta}^{(k)} < D_{\beta}^{(k+1)}$.

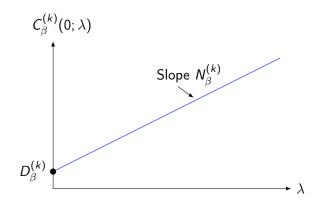
Critical Lagrange multipliers

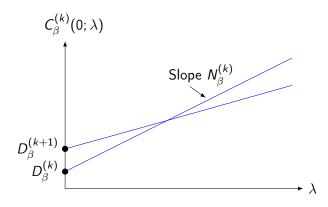
Let $\lambda_{\beta}^{(k)}$ be the value of the Lagrange multiplier for which, starting from state 0, one is indifferent between transmission strategies $f^{(k)}$ and $f^{(k+1)}$

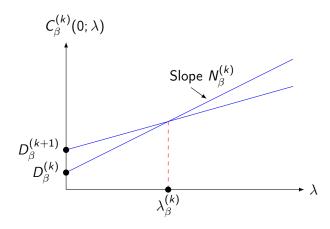
Critical Lagrange multipliers

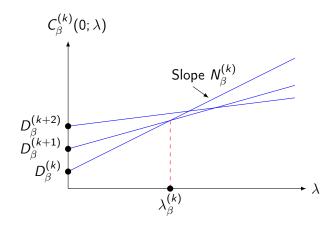
Let $\lambda_{\beta}^{(k)}$ be the value of the Lagrange multiplier for which, starting from state 0, one is indifferent between transmission strategies $f^{(k)}$ and $f^{(k+1)}$

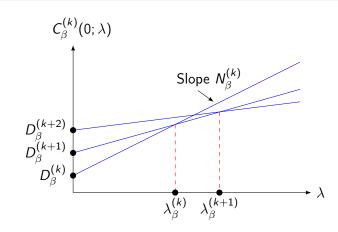
$$\lambda_{eta}^{(k)} = rac{D_{eta}^{(k+1)} - D_{eta}^{(k)}}{N_{eta}^{(k)} - N_{eta}^{(k+1)}}.$$





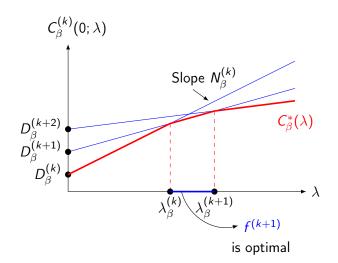






◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで





A (possibly randomized) strategy (f°, g°) is optimal for a constrained optimization problem with $\beta \in (0, 1]$, if

Sufficient conditions for optimality [Sennott, 1999]

(C1) $N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$,

(C2) There exists a Lagrange multiplier $\lambda^{\circ} \geq 0$ such that (f°, g°) is optimal for $C_{\beta}(f, g; \lambda^{\circ})$.

- Let k^* be largest k such that $N_{\beta}^{(k)} \ge \alpha$. Find k^* for a given α ;
- Find θ^* such that $\theta^* N^{(k^*)} + (1 \theta^*) N^{(k^*+1)} = \alpha$;

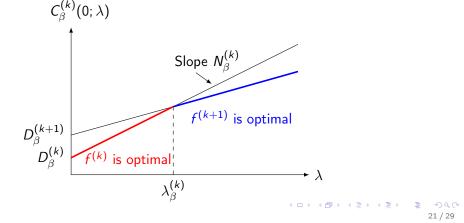
Optimal randomized strategy $f^* = \theta^* f^{(k^*)} + (1 - \theta^*) f^{(k^*+1)}$.

The system Salient features Main results Solution approach Threshold strategies BDMC

Step 4: The constrained setup

- Let k^* be largest k such that $N_{\beta}^{(k)} \ge \alpha$. Find k^* for a given α ;
- Find θ^* such that $\theta^* N^{(k^*)} + (1 \theta^*) N^{(k^*+1)} = \alpha$;

Optimal randomized strategy $f^* = \theta^* f^{(k^*)} + (1 - \theta^*) f^{(k^*+1)}$.



 The system
 Salient features
 Main results
 Solution approach ovo
 Threshold strategies
 BDMC

 Step 4:
 The constrained setup

Salient features

- Randomization between two strategies that differ only at one state;
- Equivalently, take random action only at one state.

 The system
 Salient features
 Main results
 Solution approach
 Threshold strategies
 BDMC

 Step 4:
 The constrained setup

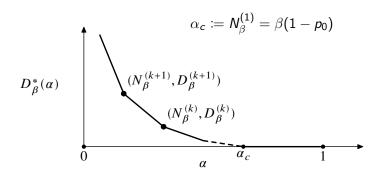
Salient features

- Randomization between two strategies that differ only at one state;
- Equivalently, take random action only at one state.

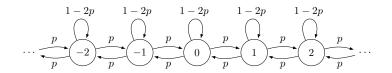
Randomized strategy

$$f^*(e) = egin{cases} 0, & ext{if } |e| < k^*; \ 0, & ext{w.p. } 1 - heta^*, ext{if } |e| = k^*; \ 1, & ext{w.p. } heta^*, ext{if } |e| = k^*; \ 1, & ext{if } |e| > k^*. \end{cases}$$

Distortion-transmission trade-off



 $D^*_{\beta}(\alpha)$ is piecewise linear, continuous, convex and decreasing in α .



$$P_{ij} = egin{cases} p, & ext{if } j = i+1, i-1 \ 1-2p, & ext{if } j = i \ 0, & ext{otherwise.} \end{cases}$$
 , $p \in (0,1)$ and $d(e) = |e|$.

< □ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ Q ↔ 23/29

Define

$$K_{\beta} = -2 - (1 - \beta)/(\beta p)$$
 and $m_{\beta} = \cosh^{-1}(-K_{\beta}/2)$. Then
• $D_{\beta}^{(k)} = \frac{\sinh(km_{\beta}) - k\sinh(m_{\beta})}{2\sinh^{2}(km_{\beta}/2)\sinh(m_{\beta})};$
• $N_{\beta}^{(k)} = \frac{2\beta p\sinh^{2}(m_{\beta}/2)\cosh(km_{\beta})}{\sinh^{2}(km_{\beta}/2)} - (1 - \beta).$

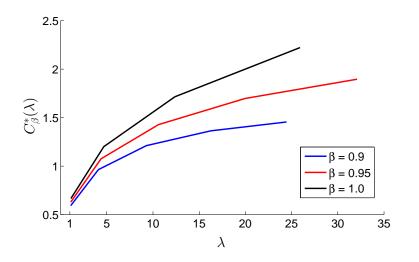
$$k_{\beta}^{*} = \sup\left\{k \in \mathbb{Z}_{\geq 0} : \frac{2\cosh(km_{\beta})}{\cosh(km_{\beta})-1} \geq \frac{1+\alpha-\beta}{\beta p(\cosh(m_{\beta})-1)}\right\};$$

◆□▶ < ②▶ < ≧▶ < ≧▶ ≧ 少へで 24/29

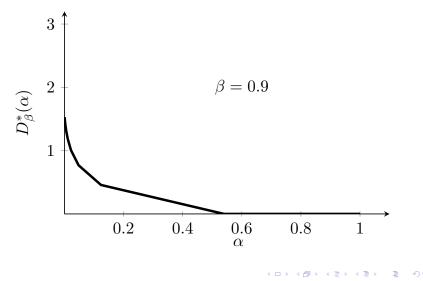
•
$$D_1^{(k)} = \frac{k^2 - 1}{3k}, \ N_1^{(k)} = \frac{2p}{k^2};$$

• $\lambda_1^{(k)} = \frac{k(k+1)(k^2 + k + 1)}{6p(2k+1)}$

$$k_1^* = \left\lfloor \sqrt{\frac{2p}{\alpha}} \right\rfloor;$$



(ロ)、(部)、(言)、(言)、(言)、(言)、(の)、(26/29)



27 / 29

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC			
Summary and conclusion								

Solution approach

- Remote state estimation of a Markov source under constraints on the number of transmissions.
- Investigated both discounted cost and long-term average cost infinite horizon setups.
- Modeled as a decentralized stochastic control problem with two decision maker.
- As long as the transmitter uses a symmetric threshold based strategy, the estimation strategy does not depend on the transmission strategy.
- The problem of finding the "best response" transmitter is a centralized stochastic control problem.

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC				
Summary and conclusion									

Main results

- Simple Bernoulli randomized strategies $(f^{(k^*)}, f^{(k^*+1)}, \theta^*)$ are optimal
- k^* and θ^* can be computed easily.
- Characterized the distortion-transmission function.
- Closed form expressions of parameters for infinite horizon discounted cost setup.
- Used vanishing discount approach to compute the results for long-term average setup.
- Evaluated the performance for the constrained optimization for both infinite horizon discounted and long-term average setups.

The system	Salient features	Main results	Solution approach	Threshold strategies	BDMC

Thank you !

http://arxiv.org/abs/1412.3199

▲□▶ < @▶ < 분▶ < 분▶ 분 < 9 < 0
 29 / 29