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The communication system

Source −

Source n
Encoder Decoder⋮

S−t

Snt
Qt Ŝ−t⋮

Ŝnt
Sources n independent Markov sources {Sit}∞t=∑, i ∈ {−, . . . , n}
Quantizer Qt = ft(�−:t, Q−:t −), Qt ∈ �, where �t = (S−t , . . . , Snt ).
Receiver �̂t = (Ŝ−t , . . . , Ŝnt ) = gt(Q−:t).
Separable
distortion

d(�t, �̂t) = n
i=−di(Sit, Ŝit).

Objective Choose encoding-decoding strategy ( , ) = ({ft}∞t=−, {gt}∞t=−) to minimize

Jβ( , ) = �( , ) [ ∞t=−βt −d(�t, �̂t) | �∑ = s∑], where β ∈ (∑, −).
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Literature overview

Witsenhausen
1979

No loss of optimality in using encoding strategies of the formQt = ft(�t, Q−:t −)
Generalizes to higher order Markov sources and source coding with
lookahead (i.e., finite decoding delay)

Walrand-Varaiya
1983

Define Πt|t − and Πt|t as follows: for � = (s−, . . . , sn)Πt|t −(�) = ℙ(�t = � | Q−:t −); Πt|t(�) = ℙ(�t = � | Q−:t).
Then, there is no loss of optimality in restricting attention to encoding
and decoding strategies of the formQt = ft(�t, Πt|t −), �̂t = gt(Πt|t).

Linder-Yüksel 2013 showed that such results hold under quite general
assumptions on the Markov source and distortion function.
Similar result under some restrictive assumptions was also established
by Borkar-Mitter-Tatikonda 2001.

Witsenhausen, On the structure of real-time source coders, BSTJ 1979.
Walrand and Varaiya, Optimal causal coding-decoding problems, IT 1983.
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Literature overview (continued)

Generalizations Joint source-channel coding (Teneketzis 2006; M-Teneketzis 2009)
Coding with side-information (Teneketzis 2006)
Variable rate quantization (Kaspi-Merhav 2012)
Finite lookahead (Asnana-Weissman 2013)
Multi-terminal setups (Nayyar-Teneketzis 2011; Yüksel 2013).

Other ways to
model real-time
communication

Zero-delay coding of individual sequences
Causal coding and sequential coding
Finite block length coding
Zero-delay streaming
. . .
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The main idea of this paper

Comments
on structural

results

Structural results identify time-homogeneous sufficient statistic of
the data available at the transmitter and the receiver.
Simplify implementation complexity.
Identify dynamic program to search for optimal strategies.

These results have been on limited use because of the inherent
computational complexity in solving the resultant dynamic programs
In the model presented above, the source is a collection of n sources.
Thus solving the corresponding dynamic program will be an order of
magnitude more difficult than than of a single Markov source.
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The main idea of this paper

Comments
on structural

results

Structural results identify time-homogeneous sufficient statistic of
the data available at the transmitter and the receiver.
Simplify implementation complexity.
Identify dynamic program to search for optimal strategies.

These results have been on limited use because of the inherent
computational complexity in solving the resultant dynamic programs
In the model presented above, the source is a collection of n sources.
Thus solving the corresponding dynamic program will be an order of
magnitude more difficult than than of a single Markov source.

Outline of
the approach

Simplify the problem by imposing assumptions on the structure of the
encoding-decoding strategies.
Under these assumptions, the problem reduces to a partially observable
scheduling problem.
Convert the resultant POMDP to a countable state MDP.
Find a sequence of approximating finite state dynamic programs that
converge to the solution of countable state MDP.



Simultaneous real-time transmission of multiple Markov sources over a shared channel– (Aditya Mahajan)
5

Assumption A1: Separation of quantization and scheduling

Individual
Walrand-Varaiya
type strategies

For each source, a Walrand-Varaiya type strategy (for transmitting over
alphabet �) has been specified.

For every πit|t − ∈ Δ(�i), the encoding strategy prescribes the
quantization symbolqit = fit(sit, πit|t −)
For every πit|t ∈ Δ(�i), the decoding strategy prescribes the source
reconstructionŝit = git(πit|t)

Scheduling
strategies

At each time, the encoder chooses an index Ut ∈ {−, . . . , n} according
to a scheduling strategy {ht}∞t=−Ut = ht(�t, Πt|t −)
and transmitsQt = (Ut, fUtt (SUt , , ΠUtt|t −))
The decoder updates Πt|t − to Πt|t and generates

Ŝit = git(Πit|t), ∀i.
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Assumption A2: Oblivious posterior update

Update of
posterior

distribution

In general, the evolution of the posterior distribution Πt|t − to Πt|t is
coupled with the scheduling strategy {ht}∞t=−.
Hence, the dynamic program will be similar to that of decentralized
stochastic control problems (each step will be a functional optimization
problem of choosing ht).

Oblivious
posterior update

The transmitter and receiver keep track of marginal distributions

�t|t − = (Π−t|t −, . . . , Πnt|t −), �t|t = (Π−t|t, . . . , Πnt|t).
These are updated as follows:

Πit|t = {
ℓit(Πit|t −, qit), if Qt = (i, qit)Πit|t −, otherwise

and

Πit+−|t = Πit|tPi
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Simplified problem and its solution

Problem
formulation

Given individual time-homogeneous Walrand-Varaiya-type strategies
for all sources and assuming oblivious posterior update, find a scheduling
strategy to minimize

Jβ( ) = � [ ∞�t=− βt −d(�t, �̂t) | �∑ = s∑], where β ∈ (∑, −).
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Simplified problem and its solution

Problem
formulation

Given individual time-homogeneous Walrand-Varaiya-type strategies
for all sources and assuming oblivious posterior update, find a scheduling
strategy to minimize

Jβ( ) = � [ ∞�t=− βt −d(�t, �̂t) | �∑ = s∑], where β ∈ (∑, −).
Definition Let Di(πi) = si di(si, gi(πi))πi(si) denote the expected distortion for

source i when posterior Πit|t is πi.
Dynamic
program

Let V∶∏ni=−(�i × ΔSi) → ℝ be the unique bounded fixed point of the
following equation: for all si ∈ �i, πi ∈ Δ(�i), i ∈ {−, . . . , n}

V(�, �) = minu∈{−,...,n}{ n
i=−Di(πi ) + β �+ �+(�+)V(�+, �+)}

where � = (π− , . . . , πn) and �+ = (π−+, . . . , πn+).
Let h∗(�, �) denote (any of the) arg min of the above equation. Then, the
time-homogeneous scheduling strategy ∗ = (h∗, h∗, . . . ) is optimal.
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Comparison with DP for Walrand-Varaiya setup

Unlike real-time quantization which is a decentralized stochastic
control problem, the above optimal scheduling problem is a centralized
stochastic control problem.

The dynamic program is a standard infinite horizon POMDP and
can be solved using standard computational algorithms for POMDPs
(piecewise linear and concave approximations, point-based methods,
etc.).

In contrast, the dynamic program for real-time quantization is more
complicated (each step is a functional optimization problem) and no
efficient computational algorithms exist.
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A special case

Assumption A3 The alphabet size of all sources are equal to the quantization alphabet,
i.e., |�i| = |�| for all i.

Optimal
quantization

Uncoded quantization is optimal, i.e.,

fi(Sit, Πit|t −) = Sit
Optimal decoding is the solution to a filtering problem

gi(Πit|t) = arg minŝ �s di(s, ŝ)Πit|t(s).
Dynamic
program

V(�, �) = minu∈{−,...,n}{�i≠u Di(πi) + β��+ �+(�+)V(�+, �+)}
where

πi+ = {δsiP
i, if u = iπiPi, otherwise.
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Simplification of the special case

Reachability
analysis

Under any scheduling strategy the reachable set of �t|t − is ∏ni=− ℛi
where

ℛi = {δz(Pi)k ∈ Δ(��) : z ∈ �i and k ∈ ℤ>∑}
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Simplification of the special case

Reachability
analysis

Under any scheduling strategy the reachable set of �t|t − is ∏ni=− ℛi
where

ℛi = {δz(Pi)k ∈ Δ(��) : z ∈ �i and k ∈ ℤ>∑}
Countable
state DP

Let V̂ be the unique bounded fixed point of the following:
For any si, zi ∈ �i and ki ∈ ℤ>∑V̂(s−, s2, z−, k−, z2, k2) = min{Ŵ−(s−, z2, k2), Ŵ2(s2, z−, k−)}
where Wi(⋅, ⋅, ⋅) are defined appropriately.

Let ĥ∗(s−, s2, z−, k−, z2, k2) denote the arg min of the right hand side.
For any s− ∈ �i and πi = δzi(Pi)ki ∈ ℛi, define

h∗(s−, s2, π−, π2) = ĥ∗(s−, s2, z−, k−, z2, k2).
Then, the stationary strategy = (h∗, h∗, . . . ) is optimal.
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Finite state approximation

Finite state DP Let ℤm denote the set {−, . . . ,m}. Let V̂m be the unique bounded fixed
point of the following: For any si, zi ∈ �i and ki ∈ ℤmV̂m(s−, s2, z−, k−, z2, k2) = min{Ŵ−m(s−, z2, k2), Ŵ2m(s2, z−, k−)}
where Wim(⋅, ⋅, ⋅) are defined appropriately (see paper for details).

Let ĥ∗m be the corresponding optimal strategy.
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Finite state approximation

Finite state DP Let ℤm denote the set {−, . . . ,m}. Let V̂m be the unique bounded fixed
point of the following: For any si, zi ∈ �i and ki ∈ ℤmV̂m(s−, s2, z−, k−, z2, k2) = min{Ŵ−m(s−, z2, k2), Ŵ2m(s2, z−, k−)}
where Wim(⋅, ⋅, ⋅) are defined appropriately (see paper for details).

Let ĥ∗m be the corresponding optimal strategy.

Theorem limm→∞ V̂m = V̂.
Any limit point of sequence {ĥ∗m}∞m=− is an optimal scheduling strategy.

Proof idea Show that the above finite state model forms an augmentation type
approximation sequence (Sennott 1999)
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Numerical example

Setup 2 binary sources Hamming distortion Discount β = ∑.9
P− = [

∑.9 ∑.−∑.− ∑.9 ] and P2 = [
∑.9 ∑.−∑.7 ∑.3 ].

Optimal strategy Value functions converge at m = 3∑. Plot of h∗3∑(s−, s2, π−, π2):
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for s− ∈ {∑, −} and s2 = ∑ for s− ∈ {∑, −} and s2 = −
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Conclusion

Summary Investigate simultaneous real-time transmimssion of multiple sources
over a shared channel.
Derive a dynamic program under two simplifying assumptions:
(A1) Separation of quantization and scheduling.
(A2) Oblivious update of posterior distributions.

Thoughts for
future work

Characterize the degree of sub-optimality due to (A1) and (A2).
Identify other models where the DP can be solved efficiently.

Identify the structure of optimal scheduling strategies.
Relation with bandit problems and Gittins index.

Generalization to multi-terminal setup.


