		SI	101	-0	
	6	Sy	21		

Distortion-transmission trade-off in real-time transmission of Gauss-Markov sources

Jhelum Chakravorty, Aditya Mahajan

McGill University

IEEE International Symposium on Information Theory, HK, June 14-19, 2015

The system	Main result	Optimal strategies	Performance
Motivation			

- Sequential transmission of data
- Zero delay in reconstruction

The system	Main result	Optimal strategies	Performance
Motivation			

- Sequential transmission of data
- Zero delay in reconstruction

Applications

- Smart grids
- Environmental monitoring
- Sensor networks
- Sensing is cheap
- Transmission is expensive
- Size of data-packet is not critical

The system	Main result	Optimal strategies	Performance
The remote-stat	e estimation set	up	

Source process $X_{t+1} = X_t + W_t$, $W_t \sim \mathcal{N}(0, \sigma^2)$, i.i.d. Uncontrolled Gauss-Markov process.

Transmitter $U_t = f_t(X_{1:t}, U_{1:t-1})$ and $Y_t = \begin{cases} X_t, & \text{if } U_t = 1; \\ \mathfrak{E}, & \text{if } U_t = 0, \end{cases}$

Receiver
$$\hat{X}_t = g_t(Y_{1:t})$$

Distortion: $(X_t - \hat{X}_t)^2$

Communication Transmission strategy $f = \{f_t\}_{t=0}^{\infty}$ strategies Estimation strategy $g = \{g_t\}_{t=0}^{\infty}$

The system	Main result	Optimal strategies	Performance
The optimizatio	n problom		

The optimization problem

•
$$D(f,g) \coloneqq \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{(f,g)} \Big[\sum_{t=0}^{T-1} d(X_t - \hat{X}_t) \mid X_0 = 0 \Big]$$

• $N(f,g) \coloneqq \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{(f,g)} \Big[\sum_{t=0}^{T-1} U_t \mid X_0 = 0 \Big]$

The system	Main result	Optimal strategies	Performance
The optimization	n problem		

•
$$D(f,g) \coloneqq \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{(f,g)} \Big[\sum_{t=0}^{T-1} d(X_t - \hat{X}_t) \mid X_0 = 0 \Big]$$

• $N(f,g) \coloneqq \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{(f,g)} \Big[\sum_{t=0}^{T-1} U_t \mid X_0 = 0 \Big]$

The Distortion-Transmission function

$$D^*(\alpha) \coloneqq D(f^*, g^*) \coloneqq \inf_{(f,g): N(f,g) \le \alpha} D(f,g)$$

Minimize expected distortion such that expected number of transmissions is less than α

The system	Main result	Optimal strategies	Performance
Literature over	view		

Costly communication: analysis of optimal performance

- Estimation with measurement cost: estimator decides whether the sensor should transmit Athans, 1972; Geromel, 1989; Wu et al, 2008.
- Sensor sleep scheduling: sensor is allowed to sleep for a pre-specified amount of time Shuman and Liu, 2006; Sarkar and Cruz, 2004, 2005; Federgruen and So, 1991.
- Censoring sensors: sequential hypothesis testing setup; sensor decides whether to transmit or not Rago et al, 1996; Appadwedula et al, 2008.

The system	Main result	Optimal strategies	Performance
Literature over	view		

Remote state estimation: focus on structure of optimal strategies

- Gauss-Markov source with finite number of transmissions -Imer and Basar, 2005.
- Gauss-Markov source with costly communication (finite horizon) Lipsa and Martins, 2011; Molin and Hirche, 2012; Xu and Hespanha, 2004.
- Countable Markov source with costly communication (finite horizon) Nayyar et al, 2013.

The system	Main result	Optimal strategies	Performance
Literature over	view		

Remote state estimation: focus on structure of optimal strategies

- Gauss-Markov source with finite number of transmissions -Imer and Basar, 2005.
- Gauss-Markov source with costly communication (finite horizon) Lipsa and Martins, 2011; Molin and Hirche, 2012; Xu and Hespanha, 2004.
- Countable Markov source with costly communication (finite horizon) Nayyar et al, 2013.

Gauss-Markov source; infinite horizon setup; constrained optimization.

Main result

Optimal strategies

Performance

Main result: the Distortion-Transmission function

Variance:
$$\sigma^2 = 1$$

Performance

Main result: the Distortion-Transmission function

How to compute $D^*(\alpha)$ for a given $\alpha \in (0, 1)$?

_						
	0	C	10	-	0	
		- 5 V	3	c		

Performance

Main result: the Distortion-Transmission function

How to compute $D^*(\alpha)$ for a given $\alpha \in (0,1)$?

• Find
$$k^*(\alpha) \in \mathbb{R}_{\geq 0}$$
 such that $M^{(k^*(\alpha))}(0) = 1/\alpha$, where $M^{(k)}(e) = 1 + \int_{-k}^{k} \phi(w - e) M^{(k)}(w) dw$.

• Compute
$$L^{(k^*(\alpha))}(0)$$
 where
 $L^{(k)}(e) = e^2 + \int_{-k}^{k} \phi(w-e) L^{(k)}(w) dw.$

• $D^*(\alpha) = L^{(k^*(\alpha))}(0) / M^{(k^*(\alpha))}(0).$

• Scaling of distortion-transmission function with variance. $D_{\sigma}^{*}(\alpha) = \sigma^{2} D_{1}^{*}(\alpha).$

The system	Main result	Optimal strategies	Performance
An illustration			

Comparison with periodic strategy

7/16

The system	Main result	Optimal strategies	Performance
Proof outline			

We don't proceed in the usual way to find the achievable scheme and a converse ! Instead,

The system	Main result	Optimal strategies	Performance
Proof outline			

We don't proceed in the usual way to find the achievable scheme and a converse ! Instead,

- Identify structure of optimal strategies.
- Find the best strategy with that structure.

The system	Main result	Optimal strategies	Performance	
Lagrange re	laxation			

$$C^*(\lambda) := \inf_{(f,g)} C(f,g;\lambda),$$

where $C(f,g;\lambda) = D(f,g) + \lambda N(f,g)$, $\lambda \ge 0$.

Structure of optimal strategies

The structure of optimal transmitter and estimator follows from [Lipsa-Martins 2011] and [Nayyar-Basar-Teneketzis-Veeravalli 2013].

Finite horizon setup; results for Lagrange relaxation

Optimal estimation Let Z_t be the most recently transmitted symbol. strategy $\hat{X}_t = g_t^*(Z_t) = Z_t$; Time homogeneous!

Optimal transmission Let $E_t = X_t - Z_{t-1}$ be the error process and strategy f_t be the threshold based strategy such that $f_t(X_t, Y_{0:t-1}) = \begin{cases} 1, & \text{if } |E_t| \ge k_t \\ 0, & \text{if } |E_t| < k_t. \end{cases}$

Structure of optimal strategies

The structure of optimal transmitter and estimator follows from [Lipsa-Martins 2011] and [Nayyar-Basar-Teneketzis-Veeravalli 2013].

Finite horizon setup; results for Lagrange relaxation

Optimal estimation Let Z_t be the most recently transmitted symbol. strategy $\hat{X}_t = g_t^*(Z_t) = Z_t$; Time homogeneous!

Optimal transmission Let $E_t = X_t - Z_{t-1}$ be the error process and strategy f_t be the threshold based strategy such that $f_t(X_t, Y_{0:t-1}) = \begin{cases} 1, & \text{if } |E_t| \ge k_t \\ 0, & \text{if } |E_t| < k_t. \end{cases}$

We prove that the results generalize to infinite horizon setup; the optimal thresholds are time - homogeneous.

クへで 10/16

Fix a threshold based startegy $f^{(k)}$. Define

- $D^{(k)}$: the expected distortion.
- $N^{(k)}$: the expected number of transmissions.

Fix a threshold based startegy $f^{(k)}$. Define

- $D^{(k)}$: the expected distortion.
- $N^{(k)}$: the expected number of transmissions.

 $\{E_t\}_{t=0}^{\infty}$ is regenerative process.

Performance

Performance of threshold based strategies

Fix a threshold based startegy $f^{(k)}$. Define

- $D^{(k)}$: the expected distortion.
- $N^{(k)}$: the expected number of transmissions.

 $\{E_t\}_{t=0}^{\infty}$ is regenerative process.

 $\tau^{(k)}$: stopping time when the Gauss-Markov process starting at state 0 at time t = 0 enters the set $\{e \in \mathbb{R} : |e| \ge k\}$

т	h	ρ	S1	15	t,	ρ	m	
		-	2)	13	5			6H)

Fix a threshold based startegy $f^{(k)}$. Define

- $D^{(k)}$: the expected distortion.
- $N^{(k)}$: the expected number of transmissions.

 $\{E_t\}_{t=0}^{\infty}$ is regenerative process.

- $L^{(k)}(e)$: the expected distortion until the first transmission, starting from state e.
- *M*^(k)(*e*): the expected time until the first transmission, starting from state *e*.

Performance

Performance of threshold based strategies

Fix a threshold based startegy $f^{(k)}$. Define

- $D^{(k)}$: the expected distortion.
- $N^{(k)}$: the expected number of transmissions.

 $\{E_t\}_{t=0}^{\infty}$ is regenerative process.

- $L^{(k)}(e)$: the expected distortion until the first transmission, starting from state e.
- *M*^(k)(*e*): the expected time until the first transmission, starting from state *e*.

Renewal relationship $D^{(k)} = \frac{L^{(k)}(0)}{M^{(k)}(0)}, \quad N^{(k)} = \frac{1}{M^{(k)}(0)}$

	0	0		÷		
		31	/ 5			

$$L^{(k)}(e) = e^{2} + \int_{-k}^{k} \phi(w - e) L^{(k)}(w) dw;$$

$$M^{(k)}(e) = 1 + \int_{-k}^{k} \phi(w - e) M^{(k)}(w) dw.$$

- Derived using balance equations.
- Solutions of Fredholm Integral Equations of second kind.

_						
	0	C	10	-	0	
		- 5 V	3	c		

$$L^{(k)}(e) = e^{2} + \int_{-k}^{k} \phi(w - e) L^{(k)}(w) dw;$$

$$M^{(k)}(e) = 1 + \int_{-k}^{k} \phi(w - e) M^{(k)}(w) dw.$$

- Derived using balance equations.
- Solutions of Fredholm Integral Equations of second kind.

Contraction. Use Banach fixed point theorem to show that

- Fredholm Integral Equations have a solution.
- the solution is unique.

_						
	0	C	10	-	0	
		- 5 V	3	c		

$$L^{(k)}(e) = e^{2} + \int_{-k}^{k} \phi(w - e) L^{(k)}(w) dw;$$

$$M^{(k)}(e) = 1 + \int_{-k}^{k} \phi(w - e) M^{(k)}(w) dw.$$

- Derived using balance equations.
- Solutions of Fredholm Integral Equations of second kind.

Computation

- Well-studied numerical methods.
- Examples use the resolvent kernel of the integral equation the Liouville-Neumann series; use quadrature method to discretize the integral.

The system	Main result	Optimal strategies	Performance
Main theorem			

Properties

- $L^{(k)}$, $M^{(k)}$, $D^{(k)}$ and $N^{(k)}$ are continuous, differentiable in k.
- $L^{(k)}$, $M^{(k)}$ and $D^{(k)}$ monotonically increasing in k.
- $N^{(k)}$ is strictly monotonically decreasing in k.

The system	Main result	Optimal strategies	Performance
Main theorem			

Properties

- $L^{(k)}$, $M^{(k)}$, $D^{(k)}$ and $N^{(k)}$ are continuous, differentiable in k.
- $L^{(k)}$, $M^{(k)}$ and $D^{(k)}$ monotonically increasing in k.
- $N^{(k)}$ is strictly monotonically decreasing in k.

Theorem

- For any $\alpha \in (0,1)$, $\exists k^*(\alpha) : N^{(k^*(\alpha))} = \alpha$.
- If the pair (λ, k) , $\lambda, k \in \mathbb{R}_{\geq 0}$, satisfies $\lambda = -\frac{\partial_k D^{(k)}}{\partial_k N^{(k)}}$, then $C^*(\lambda) = C(f^{(k)}, g^*; \lambda).$

•
$$D^*(\alpha) = D^{(k^*(\alpha))}$$

 The system
 Main result
 Optimal strategies
 Performance

 Scaling with variance

$$L_{\sigma}^{(k)}(e) = \sigma^2 L_{\mathbf{1}}^{(k/\sigma)}\left(\frac{e}{\sigma}\right), \quad M_{\sigma}^{(k)}(e) = M_{\mathbf{1}}^{(k/\sigma)}\left(\frac{e}{\sigma}\right),$$

 The system
 Main result
 Optimal strategies
 Performance

 Scaling with variance

$$L_{\sigma}^{(k)}(e) = \sigma^2 L_1^{(k/\sigma)}\left(\frac{e}{\sigma}\right), \quad M_{\sigma}^{(k)}(e) = M_1^{(k/\sigma)}\left(\frac{e}{\sigma}\right)$$

Scaling: distortion-transmission function

 $D^*_{\sigma}(\alpha) = \sigma^2 D^*_1(\alpha).$

<ロト < 部ト < 言ト < 言ト 言 の < で 14/16

The system	Main result	Optimal strategies	Performance
Summary			

- Remote state estimation of a Gauss-Markov source under constraints on the number of transmissions.
- Computable expression for distortion-transmission function.
- Simple threshold based strategies are optimal !

The system	Main result	Optimal strategies	Performance
Summary			

Countable-state Markov chain setup

- Similar results hold Kalman-like estimator is optimal.
- Randomized threshold based transmission strategy is optimal.
- Distortion-transmission function is piecewise linear, decreasing, convex.

The system	Main result	Optimal strategies	Performance
Summary			

Countable-state Markov chain setup

- Similar results hold Kalman-like estimator is optimal.
- Randomized threshold based transmission strategy is optimal.
- Distortion-transmission function is piecewise linear, decreasing, convex.

JC and AM, "Distortion-transmission trade-off in real-time transmission of Markov sources", ITW 2015.

The system	Main result	Optimal strategies	Performance	
Future direc	tions			

- The results are derived under an idealized system model.
- When the transmitter does transmit, it sends the complete state of the source.
- The channel is noiseless and does not introduce any delay.

The system	Main result	Optimal strategies	Performance	
Future direct	ions			

- The results are derived under an idealized system model.
- When the transmitter does transmit, it sends the complete state of the source.
- The channel is noiseless and does not introduce any delay.

Future directions

• Effects of quantization, channel noise and delay.

The system	Main result	Optimal strategies	Performance	
Future direct	ions			

- The results are derived under an idealized system model.
- When the transmitter does transmit, it sends the complete state of the source.
- The channel is noiseless and does not introduce any delay.

Future directions

• Effects of quantization, channel noise and delay.

http://arxiv.org/abs/1505.04829

The system	Main result	Optimal strategies	Performance
Some paramet	ers		

Let $\tau^{(k)}$ be the stopping time of first transmission (starting from $E_0 = 0$), under $f^{(k)}$. Then

17/16

•
$$L_{\beta}^{(k)}(e) = (1 - \beta) \mathbb{E} \Big[\sum_{t=0}^{\tau^{(k)} - 1} \beta^t d(E_t) \mid E_0 = 0 \Big].$$

• $M_{\beta}^{(k)}(e) = (1 - \beta) \mathbb{E} \Big[\sum_{t=0}^{\tau^{(k)} - 1} \beta^t \mid E_0 = 0 \Big].$

Regenerative process: The process $\{X_t\}_{t=0}^{\infty}$, if there exist $0 \le T_0 < T_1 < T_2 < \cdots$ such that $\{X_t\}_{t=T_k+s}^{\infty}$, $s \ge 0$,

- has the same distribution as $\{X_t\}_{t=T_0+s}^{\infty}$,
- is independent of $\{X_t\}_{t=0}^{T_k}$.

Step 1: Main idea

Proof technique followed after Lerma, Lasserre - Discrete-time Markov control processes: basic optimality criteria, Springer

- The model satisfies certain assumptions (4.2.1, 4.2.2)
- Hence, the structural results extend to the infinite horizon discounted cost setup (Theorem 4.2.3)
- The discounted model satisfies some more assumptions (4.2.1, 5.4.1)
- Hence, structural results extend to long-term average setup (Theorem 5.4.3)

- Assumption 4.2.1 The one-stage cost is l.s.c, non-negative and inf-compact on the set of feasible state-action pairs. The stochastic kernel ϕ is strongly continuous.
- Assumption 4.2.2 There exists a strategy π such that the value function V(π, x) < ∞ for each state x ∈ X.
- Theorem 4.2.3 Suppose Assumptions 4.2.1 and 4.2.2 hold. Then, in the discounted setup, there exists a selector which attains the minimum V^*_β and the optimal strategy, if it exists, is deterministic stationary.
- Assumption 5.4.1 There exixts a state $z \in X$ and scalars $\alpha \in (0, 1)$ and $M \ge 0$ such that

$$(1-\beta)V_{\beta}^*(z) \leq M, \, \forall \beta \in [\alpha, 1).$$

2 Let h_β(x) := V_β(x) - V_β(z). There exists N ≥ 0 and a non-negative (not necessarily measurable) function b(·) on X such that -N ≤ h_β(x) ≤ b(x), ∀x ∈ X and β ∈ [α, 1).

The system	Main result	Optimal strategies	Performance	

• Theorem 5.4.3 - Suppose that Assumption 4.2.1 holds. Then the optimal stategy for average cost setup is deterministic stationary and is obtained by taking limit $\beta \uparrow 1$. The vanishing discount method is applicable and is employed to compute the optimal performance. Step 1: Optimal threshold-type transmitter strategy for long-term average setup

The DP satisfies some suitable conditions so that, the vanishing discount approach is applicable.

Step 1: Optimal threshold-type transmitter strategy for long-term average setup

The DP satisfies some suitable conditions so that, the vanishing discount approach is applicable.

- For discounted setup, $\beta \in (0, 1]$, optimal transmitting strategy $f^*_{\beta}(\cdot; \lambda)$ is deterministic, threshold-type.
- Let f^{*}(·; λ) be any limit point of f^{*}_β(·; λ) as β ↑ 1. Then the time-homogeneous transmission strategy f^{*}(·; λ) is optimal for β = 1 (the long-term average setup).

Performance

Step 1: The SEN conditions

For any $\lambda \geq 0$, the value function $V_{\beta}(\cdot; \lambda)$, as given by a suitable DP, satisfies the following SEN conditions of [Lerma, Lasserre]:

SEN conditions

- (S1) There exists a reference state $e_0 \in \mathbb{R}$ and a non-negative scalar M_{λ} such that $V_{\beta}(e_0, \lambda) < M_{\lambda}$ for all $\beta \in (0, 1)$.
- (S2) Define $h_{\beta}(e; \lambda) = (1 \beta)^{-1} [V_{\beta}(e; \lambda) V_{\beta}(e_0; \lambda)]$. There exists a function $K_{\lambda} : \mathbb{Z} \to \mathbb{R}$ such that $h_{\beta}(e; \lambda) \leq K_{\lambda}(e)$ for all $e \in \mathbb{R}$ and $\beta \in (0, 1)$.
- (S3) There exists a non-negative (finite) constant L_{λ} such that $-L_{\lambda} \leq h_{\beta}(e; \lambda)$ for all $e \in \mathbb{R}$ and $\beta \in (0, 1)$.

Performance

Step 2: Performance of threshold based strategies

Cost until first transmission: solution of FIE

Let $\tau^{(k)}$ be the stopping time when the Gauss-Markov process starting at state 0 at time t = 0 enters the set $\{e \in \mathbb{R} : |e| \ge \}$. Expected distortion incurred until stopping and expected stopping time under $f^{(k)}$ are solutions of Fredholm integral equations of second kind.

$$L^{(k)}(e) = e^{2} + \int_{-k}^{k} \phi(w - e) L^{(k)}(w) dw;$$

$$M^{(k)}(e) = 1 + \int_{-k}^{k} \phi(w - e) M^{(k)}(w) dw.$$

Note that we have dropped the subscript 1 for ease of notation.

Solutions to FIE

Let C^(k) denote the space of bounded functions from [-k, k] to ℝ. Define the operator B^(k) : C^(k) → C^(k) as follows. For any v ∈ C^(k),

$$\left[\mathcal{B}^{(k)}v\right](e) = \int_{-k}^{k} \phi(w-e)v(w)dw.$$

- The operator $\mathcal{B}^{(k)}$ is a contraction
- Hence, FIE has a unique bounded solution $L^{(k)}$ and $M^{(k)}$.

Renewal relationship

$$D^{(k)}(0) = \frac{L^{(k)}(0)}{M^{(k)}(0)}, \quad N^{(k)}(0) = \frac{1}{M^{(k)}(0)}$$

Renewal relationship

$$D^{(k)}(0) = rac{L^{(k)}(0)}{M^{(k)}(0)}, \quad N^{(k)}(0) = rac{1}{M^{(k)}(0)}$$

Properties

- $L^{(k)}$ and $M^{(k)}$ are continuous, differentiable and monotonically increasing in k.
- $D^{(k)}(0)$ and $N^{(k)}(0)$ are continuous and differentiable in k. Furthermore, $N^{(k)}(0)$ is strictly decreasing in k.
- $D^{(k)}(0)$ is increasing in k.

Performance

(1)

Step 3: Identify critical Lagrange multipliers

Critical Lagrange multipliers

$$\lambda = -\frac{D_k^{(k)}(0)}{N_k^{(k)}(0)},$$

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 少 9 0 24 / 16

(1)

Step 3: Identify critical Lagrange multipliers

Critical Lagrange multipliers

$$\lambda = -\frac{D_k^{(k)}(0)}{N_k^{(k)}(0)},$$

Optimal transmission startegy

 $(f^{(k)}, g^*)$ is $\lambda^{(k)}$ -optimal for Lagrange relaxation. Furthermore, for any k > 0, there exists a $\lambda = \lambda^{(k)} \ge 0$ that satisfies (1).

Performance

(1)

Step 3: Identify critical Lagrange multipliers

Critical Lagrange multipliers

$$\lambda = -\frac{D_k^{(k)}(0)}{N_k^{(k)}(0)},$$

Optimal transmission startegy

 $(f^{(k)}, g^*)$ is $\lambda^{(k)}$ -optimal for Lagrange relaxation. Furthermore, for any k > 0, there exists a $\lambda = \lambda^{(k)} \ge 0$ that satisfies (1).

Proof

- The choice of λ implies that $C_k^{(k)}(0; \lambda) = 0$. Hence strategy $(f^{(k)}, g^*)$ is λ -optimal.
- $\lambda^{(k)} \ge 0$, by the properties of $D^{(k)}(0)$ and $N^{(k)}(0)$.

24 / 16

	0	0		÷		
		- 31	/ 5			

Step 4: The constrained setup

A strategy (f°, g°) is optimal for a constrained optimization problem, if

Sufficient conditions for optimality [Sennott, 1999]

(C1) $N(f^\circ, g^\circ) = \alpha$,

(C2) There exists a Lagrange multiplier $\lambda^{\circ} \ge 0$ such that (f°, g°) is optimal for $C(f, g; \lambda^{\circ})$.

The system	Main result	Optimal strategies	Performance		
Step 4:	The constrained setup				

• For $\alpha \in (0, 1)$, let $k^*(\alpha)$ be such that $N^{(k^*(\alpha))} = \alpha$. Find $k^*(\alpha)$ for a given α ;

Optimal deterministic strategy $f^* = f^{(k^*(\alpha))}$.

The system	Main result	Optimal strategies	Performance
Step 4:	The constrained setup		

• For $\alpha \in (0, 1)$, let $k^*(\alpha)$ be such that $N^{(k^*(\alpha))} = \alpha$. Find $k^*(\alpha)$ for a given α ;

Optimal deterministic strategy $f^* = f^{(k^*(\alpha))}$.

Proof

- (C1) is satisfied by $f^{\circ} = f^{(k^*(\alpha))}$ and $g^{\circ} = g^*$.
- For $k^*(\alpha)$, we can find a λ satisfying (1). Hence we have that $(f^{(k^*(\alpha))}, g^*)$ is optimal for $C(f, g; \lambda)$.
- Thus, $(f^{(k^*(\alpha))}, g^*)$ satisfies (C2).
- $D^*(\alpha) := D(f^{(k^*(\alpha))}, g^*) = D^{(k^*(\alpha))}(0)$

_						
	0	C1		÷		
	с.	31	3			

Algorithm

Algorithm 1: Computation of $D^*_{\beta}(\alpha)$

input : $\alpha \in (0, 1)$, $\beta \in (0, 1]$, $\varepsilon \in \mathbb{R}_{>0}$ output: $D_{\beta}^{(k^{\circ})}(\alpha)$, where $|N_{\beta}^{(k^{\circ})}(0) - \alpha| < \varepsilon$ Pick \underline{k} and \overline{k} such that $N_{\beta}^{(\underline{k})}(0) < \alpha < N_{\beta}^{(k)}(0)$ $k^\circ = (k + \overline{k})/2$ while $|N_{\beta}^{(k^{\circ})}(0) - \alpha| > \varepsilon$ do if $\textit{N}^{(k^{\circ})}_{eta}(0) < lpha$ then $|\vec{k} = \vec{k}^{\circ}$ else return $D_{\beta}^{(k^{\circ})}(\alpha)$