Structural results for two-user interactive communication

Jhelum Chakravorty, Aditya Mahajan

McGill University

IEEE International Symposium on Information Theory

July 11, 2016

Motivating example: self-driven cars

Motivating example: self-driven cars

- Operating in a common environment - evolving, Markovian
- Access to different information
- Goal: avoid collision
- Control strategy: involving zero-delay, sequential communication.

The model

- Two users; sequentially observe two correlated sources.

The model

- Two users; sequentially observe two correlated sources.

The model

- Source: $X_{t}^{i}=h_{t}^{i}\left(Z_{t}, W_{t}^{i}\right) ; W_{t}^{i}$: i.i.d and independent of Z_{t}, $Z_{\mathbf{t}}$ Markovian.

The model

- Source: $X_{t}^{i}=h_{t}^{i}\left(Z_{t}, W_{t}^{i}\right) ; W_{t}^{i}$: i.i.d and independent of Z_{t}, $\mathbf{Z}_{\mathbf{t}}$ Markovian.
- Action (encoder):

$$
U_{t}^{1}=f_{t}^{1}\left(X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right), \quad U_{t}^{2}=f_{t}^{2}\left(X_{1: t}^{2}, U_{1: t}^{1}, U_{1: t-1}^{2}\right)
$$

The model

- Source: $X_{t}^{i}=h_{t}^{i}\left(Z_{t}, W_{t}^{i}\right) ; W_{t}^{i}$: i.i.d and independent of Z_{t}, $\mathbf{Z}_{\mathbf{t}}$ Markovian.
- Action (encoder): $U_{t}^{1}=f_{t}^{1}\left(X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right), \quad U_{t}^{2}=f_{t}^{2}\left(X_{1: t}^{2}, U_{1: t}^{1}, U_{1: t-1}^{2}\right)$
- Communication cost: $c^{i}: \mathcal{U}^{i} \rightarrow \mathbb{R}_{\geq 0}$

The model

- Source: $X_{t}^{i}=h_{t}^{i}\left(Z_{t}, W_{t}^{i}\right) ; W_{t}^{i}$: i.i.d and independent of Z_{t}, $Z_{\mathbf{t}}$ Markovian.
- Action (encoder):

$$
U_{t}^{1}=f_{t}^{1}\left(X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right), \quad U_{t}^{2}=f_{t}^{2}\left(X_{1: t}^{2}, U_{1: t}^{1}, U_{1: t-1}^{2}\right)
$$

- Communication cost: $c^{i}: \mathcal{U}^{i} \rightarrow \mathbb{R}_{\geq 0}$
- Action (decoder):
$\hat{Z}_{t}^{1}=g_{t}^{1}\left(X_{1: t}^{1}, U_{1: t}^{1}, U_{1: t-1}^{2}\right), \quad \hat{Z}_{t}^{2}=g_{t}^{2}\left(X_{1: t}^{2}, U_{1: t}^{1}, U_{1: t}^{2}\right)$

The model

- Source: $X_{t}^{i}=h_{t}^{i}\left(Z_{t}, W_{t}^{i}\right) ; W_{t}^{i}$: i.i.d and independent of Z_{t}, $Z_{\mathbf{t}}$ Markovian.
- Action (encoder): $U_{t}^{1}=f_{t}^{1}\left(X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right), \quad U_{t}^{2}=f_{t}^{2}\left(X_{1: t}^{2}, U_{1: t}^{1}, U_{1: t-1}^{2}\right)$
- Communication cost: $c^{i}: \mathcal{U}^{i} \rightarrow \mathbb{R}_{\geq 0}$
- Action (decoder):
$\hat{Z}_{t}^{1}=g_{t}^{1}\left(X_{1: t}^{1}, U_{1: t}^{1}, U_{1: t-1}^{2}\right), \quad \hat{Z}_{t}^{2}=g_{t}^{2}\left(X_{1: t}^{2}, U_{1: t}^{1}, U_{1: t}^{2}\right)$
- Distortion function: $d_{t}^{i}: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}_{\geq 0}$

The model

The optimization problem

- Encoding strategy: $\mathbf{f}^{i}:=\left(f_{1}^{i}, \cdots, f_{T}^{i}\right), i \in\{1,2\}$
- Decoding strategy: $\mathbf{g}^{i}:=\left(g_{1}^{i}, \cdots, g_{T}^{i}\right), i \in\{1,2\}$
- Communication strategy: $\left(\mathbf{f}^{1}, \mathbf{f}^{2}, \mathbf{g}^{1}, \mathbf{g}^{2}\right)$

The optimization problem

- Encoding strategy: $\mathbf{f}^{i}:=\left(f_{1}^{i}, \cdots, f_{T}^{i}\right), i \in\{1,2\}$
- Decoding strategy: $\mathbf{g}^{i}:=\left(g_{1}^{i}, \cdots, g_{T}^{i}\right), i \in\{1,2\}$
- Communication strategy: $\left(\mathbf{f}^{1}, \mathbf{f}^{2}, \mathbf{g}^{1}, \mathbf{g}^{2}\right)$

Finite horizon optimization problem
Choose a communication strategy $\left(\mathbf{f}^{1}, \mathbf{f}^{2}, \mathbf{g}^{1}, \mathbf{g}^{2}\right)$ that minimizes

$$
J\left(\mathbf{f}^{1}, \mathbf{f}^{2}, \mathbf{g}^{1}, \mathbf{g}^{2}\right)=\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{2}\left[c^{i}\left(U_{t}^{i}\right)+d_{t}^{i}\left(Z_{t}, \hat{Z}_{t}^{i}\right)\right]\right] .
$$

The optimization problem

- A key feature: The estimate \hat{Z}_{t}^{i} is generated at each step

The optimization problem

- A key feature: The estimate \hat{Z}_{t}^{i} is generated at each step
- Difficulty: Information available (and hence the domain of the strategies) growing with time!

Example: binary alphabets; at time t, a minimum of $2^{3 t-2}$ possibilities for encoding-decosing strategies at each user! $T=3 ; \approx 10^{19}$ possible communication strategies!

The optimization problem

- A key feature: The estimate \hat{Z}_{t}^{i} is generated at each step
- Difficulty: Information available (and hence the domain of the strategies) growing with time!

Example: binary alphabets; at time t, a minimum of $2^{3 t-2}$ possibilities for encoding-decosing strategies at each user! $T=3 ; \approx 10^{19}$ possible communication strategies!

- This paper: Constant Z.

Literature overview: real-time communication

- Point-to-point case
- Witsenhausen, 1979; source-coding, structure of optimal strategies

Literature overview: real-time communication

- Point-to-point case
- Witsenhausen, 1979; source-coding, structure of optimal strategies
- Walrand and Varaiya, 1983; source-channel coding, noisy channel with noiseless feedback, structural results, DP decomposition

Literature overview: real-time communication

- Point-to-point case
- Witsenhausen, 1979; source-coding, structure of optimal strategies
- Walrand and Varaiya, 1983; source-channel coding, noisy channel with noiseless feedback, structural results, DP decomposition
- Teneketzis, 2006; source-channel coding, noisy channel, no feedback
- Mahajan and Teneketzis, 2009; DP decomposition

Literature overview: real-time communication

- Point-to-point case
- Witsenhausen, 1979; source-coding, structure of optimal strategies
- Walrand and Varaiya, 1983; source-channel coding, noisy channel with noiseless feedback, structural results, DP decomposition
- Teneketzis, 2006; source-channel coding, noisy channel, no feedback
- Mahajan and Teneketzis, 2009; DP decomposition
- Kaspi and Merhav, 2012; source-coding with variable-rate quantization

Literature overview: real-time communication

- Point-to-point case
- Witsenhausen, 1979; source-coding, structure of optimal strategies
- Walrand and Varaiya, 1983; source-channel coding, noisy channel with noiseless feedback, structural results, DP decomposition
- Teneketzis, 2006; source-channel coding, noisy channel, no feedback
- Mahajan and Teneketzis, 2009; DP decomposition
- Kaspi and Merhav, 2012; source-coding with variable-rate quantization
- Asnani and Weissman, 2013; source-coding with finite lookahead

Literature overview: real-time communication

- Point-to-point case
- Witsenhausen, 1979; source-coding, structure of optimal strategies
- Walrand and Varaiya, 1983; source-channel coding, noisy channel with noiseless feedback, structural results, DP decomposition
- Teneketzis, 2006; source-channel coding, noisy channel, no feedback
- Mahajan and Teneketzis, 2009; DP decomposition
- Kaspi and Merhav, 2012; source-coding with variable-rate quantization
- Asnani and Weissman, 2013; source-coding with finite lookahead
- Multi-terminal case
- Nayyar and Teneketzis, 2011; source-coding without feedback
- Yuksel, 2013; source-coding with feedback

Literature overview: real-time communication

So, what is new?

Literature overview: real-time communication

> So, what is new?

Our paper:

- Real-time communication in tandem with interactive communication

Literature overview: real-time communication

So, what is new?

Our paper:

- Real-time communication in tandem with interactive communication
- Noiseless channel
- Finite-horizon optimization problem
- Structure of optimal strategies

Team-theoretic approach

We use Team Theory to characterize the qualitative properties of the solution

Team-theoretic approach

Team ?

Team-theoretic approach

Team ?

- Multiple players,

Team-theoretic approach

Team ?

- Multiple players,
- Access to different information,

Team-theoretic approach

Team ?

- Multiple players,
- Access to different information,
- Decentralized setup

Team-theoretic approach

Team ?

- Multiple players,
- Access to different information,
- Decentralized setup
- Common objective

Team-theoretic approach

Team ?

- Multiple players,
- Access to different information,
- Decentralized setup
- Common objective

Our model is a team.

Solution methodology for team problems

Mahajan, 2013-Control sharing
Nayyar, Mahajan and Teneketzis, 2013 - Partial history sharing

Solution methodology for team problems

Mahajan, 2013-Control sharing
Nayyar, Mahajan and Teneketzis, 2013 - Partial history sharing

- Step 1: Person-by-person approach: sufficient statistic for $\mathbf{X}_{1: t}^{\mathbf{i}}$

Solution methodology for team problems

Mahajan, 2013-Control sharing
Nayyar, Mahajan and Teneketzis, 2013 - Partial history sharing

- Step 1: Person-by-person approach: sufficient statistic for $\mathbf{X e}_{\text {1:t }}^{\mathbf{i}}$
- Step 2: Common information approach: sufficient statistic for $\left(\mathbf{U}_{\mathbf{1}: \mathbf{t}-\mathbf{1}}^{1}, \mathbf{U}_{\mathbf{1}: \mathbf{t}-\mathbf{1}}^{\mathbf{1}}\right)$ for user 1 and for $\left(\mathbf{U}_{\mathbf{1}: \mathbf{t}}^{1}, \mathbf{U}_{\mathbf{1}: \mathbf{t}-\mathbf{1}}^{\mathbf{1}}\right)$ for user 2 and a suitable dynamic program

Solution methodology for team problems

Person-by-person approach

- Arbitrarily fix the strategy of one user and search for the best response strategy of the other.
- Identify a sufficient statistic $\xi_{t \mid t-1}^{i}$ of $x_{1: t}^{i}$.
- No loss of optimality:

$$
U_{t}^{1}=\hat{f}_{t}^{1}\left(\Xi_{t \mid t-1}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right), U_{t}^{2}=\hat{f}_{t}^{2}\left(\Xi_{t \mid t-1}^{2}, U_{1: t}^{1}, U_{1: t-1}^{2}\right) .
$$

- Similar structure for the decoder.

Solution methodology for team problems

Common information approach

- Based on common information available to both users, identify a sufficient statistic: π_{t}^{1} of $\left(u_{1: t-1}^{1}, u_{1: t-1}^{2}\right)$ at user 1 and a sufficient statistic π_{t}^{2} of $\left(u_{1: t}^{1}, u_{1: t-1}^{2}\right)$ at user 2
- No loss of optimality: $U_{t}^{1}=\tilde{f}_{t}^{1}\left(\Xi_{t \mid t-1}^{1}, \Pi_{t}^{1}\right), \quad U_{t}^{2}=\tilde{f}_{t}^{2}\left(\Xi_{t \mid t-1}^{2}, \Pi_{t}^{2}\right)$

Step 1: person-by person approach

Key Lemma: conditional independence

$$
\begin{aligned}
\mathbb{P}\left(x_{1: t}^{1}, x_{1: t}^{2} \mid z, u_{1: t}^{1}, u_{1: t}^{2}\right) & =\prod_{i \in\{1,2\}} \mathbb{P}\left(x_{1: t}^{i} \mid z, u_{1: t}^{1}, u_{1: t}^{2}\right) \\
\mathbb{P}\left(x_{1: t}^{1}, x_{1: t}^{2} \mid z, u_{1: t-1}^{1}, u_{1: t-1}^{2}\right) & =\prod_{i \in\{1,2\}} \mathbb{P}\left(x_{1: t}^{i} \mid z, u_{1: t-1}^{1}, u_{1: t-1}^{2}\right)
\end{aligned}
$$

Similar results:

- CEO problem - V. Prabhakaran, Ramchandran and Tse; Allerton, 2004
- Control sharing - Mahajan; IEEE TAC, 2013
- Secret key agreement - Tyagi and Watanabe; IEEE TIT, 2015

Step 1: person-by person approach

The belief states

$$
\begin{aligned}
\xi_{t \mid t-1}^{i}(z) & =\mathbb{P}\left(Z=z \mid X_{1: t}^{i}=x_{1: t}^{i}, U_{1: t-1}=u_{1: t-1}\right), \\
\xi_{t \mid t}^{i}(z) & =\mathbb{P}\left(Z=z \mid X_{1: t}^{i}=x_{1: t}^{i}, U_{1: t}=u_{1: t}\right),
\end{aligned}
$$

Step 1: person-by person approach

The belief states

$$
\begin{aligned}
\xi_{t \mid t-1}^{i}(z) & =\mathbb{P}\left(Z=z \mid X_{1: t}^{i}=x_{1: t}^{i}, U_{1: t-1}=u_{1: t-1}\right), \\
\xi_{t \mid t}^{i}(z) & =\mathbb{P}\left(Z=z \mid X_{1: t}^{i}=x_{1: t}^{i}, U_{1: t}=u_{1: t}\right),
\end{aligned}
$$

Lemma: update of $\xi_{t \mid t-1}^{i}$ and $\xi_{t \mid t}^{i}$
There exist functions $F_{t \mid t}^{i}, F_{t+1 \mid t}^{i}, i \in\{1,2\}$, such that

$$
\xi_{t \mid t}^{i}=F_{t \mid t}^{i}\left(\xi_{t \mid t-1}^{i}, u_{1: t}, \mathbf{f}^{-i}\right), \xi_{t+1 \mid t}^{i}=F_{t+1 \mid t}^{i}\left(\xi_{t \mid t}^{i}, u_{1: t}, x_{t+1}^{i}\right) .
$$

Step 1: P-by-P approach - structure of optimal strategies

Decoder is solving a filtering problem.

Step 1: P-by-P approach - structure of optimal strategies

Decoder is solving a filtering problem.
Optimal decoding strategy

$$
\begin{align*}
\hat{Z}_{t}^{i} & =\hat{g}^{i}\left(\Xi_{t \mid t}^{i}\right), \quad i \in\{1,2\}, \tag{1}\\
\hat{g}^{i}\left(\xi^{i}\right) & =\arg \min _{\hat{z}^{i} \in \mathcal{Z}} \sum_{z \in \mathcal{Z}} d^{i}\left(z, \hat{z}^{i}\right) \xi^{i}(z) .
\end{align*}
$$

Step 1: P-by-P approach - structure of optimal strategies

Decoder is solving a filtering problem.
Optimal decoding strategy

$$
\begin{align*}
\hat{Z}_{t}^{i} & =\hat{g}^{i}\left(\bar{\Xi}_{t \mid t}^{i}\right), \quad i \in\{1,2\}, \tag{1}\\
\hat{g}^{i}\left(\xi^{i}\right) & =\arg \min _{\hat{z}^{i} \in \mathcal{Z}} \sum_{z \in \mathcal{Z}} d^{i}\left(z, \hat{z}^{i}\right) \xi^{i}(z) .
\end{align*}
$$

To find best performing encoder at user 1 :

- Fix $\mathbf{g}^{1}, \mathbf{g}^{2}$ as (1), \mathbf{f}^{2} arbitrarily

Step 1: P-by-P approach - structure of optimal strategies

Decoder is solving a filtering problem.
Optimal decoding strategy

$$
\begin{align*}
\hat{Z}_{t}^{i} & =\hat{g}^{i}\left(\Xi_{t \mid t}^{i}\right), \quad i \in\{1,2\}, \tag{1}\\
\hat{g}^{i}\left(\xi^{i}\right) & =\arg \min _{\hat{z}^{i} \in \mathcal{Z}} \sum_{z \in \mathcal{Z}} d^{i}\left(z, \hat{z}^{i}\right) \xi^{i}(z) .
\end{align*}
$$

To find best performing encoder at user 1 :

- Fix $\mathbf{g}^{1}, \mathbf{g}^{2}$ as (1), \mathbf{f}^{2} arbitrarily
- Find sufficient statistic for the encoder at user 1

Step 1: P-by-P approach - structure of optimal strategies

Lemma: sufficient statistic for encoder at user 1
$R_{t}^{1}=\left(\Xi_{t \mid t-1}^{i}, U_{1: t-1}\right)$ is an information state for the encoder at user 1.

Step 1: P-by-P approach - structure of optimal strategies

Lemma: sufficient statistic for encoder at user 1
$R_{t}^{1}=\left(\Xi_{t \mid t-1}^{i}, U_{1: t-1}\right)$ is an information state for the encoder at user 1.

- R_{t}^{1} is a function of $\left(X_{1: t}^{1}, U_{1: t-1}\right)$, available at user 1 .
- $\mathbb{P}\left(R_{t+1}^{1} \mid X_{1: t}^{1}, U_{1: t-1}, U_{t}^{1}\right)=\mathbb{P}\left(R_{t+1}^{1} \mid R_{t}^{1}, U_{t}^{1}\right)$

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{i \in\{1,2\}}\left(c^{i}\left(U_{t}^{i}\right)+d^{i}\left(Z, \hat{Z}_{t}^{i}\right)\right) \mid X_{1: t}^{1}, U_{1: t-1}, U_{t}^{1}\right] \\
& =\mathbb{E}\left[\sum_{i \in\{1,2\}}\left(c^{i}\left(U_{t}^{i}\right)+d^{i}\left(Z, \hat{Z}_{t}^{i}\right)\right) \mid R_{t}^{1}, U_{t}^{1}\right]
\end{aligned}
$$

Step 1: P-by-P approach - structure of optimal strategies

- R_{t}^{1} is a controlled Markov process! So,

Step 1: P-by-P approach - structure of optimal strategies

- R_{t}^{1} is a controlled Markov process! So,
- No loss of optimality for Markov strategies

Step 1: P-by-P approach - structure of optimal strategies

- R_{t}^{1} is a controlled Markov process! So,
- No loss of optimality for Markov strategies

Optimal enoding strategy

$$
U_{t}^{1}=\hat{f}_{t}^{1}\left(\overline{=}_{t \mid t-1}^{1}, U_{1: t-1}\right), \quad U_{t}^{2}=\hat{f}_{t}^{2}\left(\bar{\Xi}_{t \mid t-1}^{2}, U_{1: t-1}, U_{t}^{1}\right)
$$

Step 2: Common information approach

Common information?

Step 2: Common information approach

Common information?

- Data that is observed by all future decision makers

Step 2: Common information approach

Common information?

- Data that is observed by all future decision makers
- $C_{t}^{1}=U_{1: t-1}, \quad C_{t}^{2}=\left(U_{1: t-1}, U_{t}^{1}\right)$.

Step 2: Common information approach

Common information?

- Data that is observed by all future decision makers
- $C_{t}^{1}=U_{1: t-1}, \quad C_{t}^{2}=\left(U_{1: t-1}, U_{t}^{1}\right)$.

Remaining information - Local information: $L_{t}^{i}=\xi_{t \mid t-1}^{i}$

Step 2: Common information approach

Common information?

- Data that is observed by all future decision makers
- $C_{t}^{1}=U_{1: t-1}, \quad C_{t}^{2}=\left(U_{1: t-1}, U_{t}^{1}\right)$.

Remaining information - Local information: $L_{t}^{i}=\xi_{t \mid t-1}^{i}$

$$
U_{t}^{i}=f_{t}^{i}\left(L_{t}^{i}, C_{t}^{i}\right)
$$

Step 2: Common information approach

Common information?

- Data that is observed by all future decision makers
- $C_{t}^{1}=U_{1: t-1}, \quad C_{t}^{2}=\left(U_{1: t-1}, U_{t}^{1}\right)$.

Remaining information - Local information: $L_{t}^{i}=\xi_{t \mid t-1}^{i}$
The coordinated system

- From the point of view of a virtual decision maker

Step 2: Common information approach

Common information?

- Data that is observed by all future decision makers
- $C_{t}^{1}=U_{1: t-1}, \quad C_{t}^{2}=\left(U_{1: t-1}, U_{t}^{1}\right)$.

Remaining information - Local information: $L_{t}^{i}=\xi_{t \mid t-1}^{i}$
The coordinated system

- From the point of view of a virtual decision maker
- Observes C_{t}^{i}

Step 2: Common information approach

Common information?

- Data that is observed by all future decision makers
- $C_{t}^{1}=U_{1: t-1}, \quad C_{t}^{2}=\left(U_{1: t-1}, U_{t}^{1}\right)$.

Remaining information - Local information: $L_{t}^{i}=\xi_{t \mid t-1}^{i}$
The coordinated system

- From the point of view of a virtual decision maker
- Observes C_{t}^{i}
- Chooses prescriptions $\phi_{t}^{i}: L_{t}^{i} \mapsto U_{t}^{i}$

Step 2: Common information approach

Common information?

- Data that is observed by all future decision makers
- $C_{t}^{1}=U_{1: t-1}, \quad C_{t}^{2}=\left(U_{1: t-1}, U_{t}^{1}\right)$.

Remaining information - Local information: $L_{t}^{i}=\xi_{t \mid t-1}^{i}$
The coordinated system

- From the point of view of a virtual decision maker
- Observes C_{t}^{i}
- Chooses prescriptions $\phi_{t}^{i}: L_{t}^{i} \mapsto U_{t}^{i}$
- Encoder i uses ϕ_{t}^{i} and its local information to generate U_{t}^{i}.

The coordinated system

The coordinated system

- Centralized system

The coordinated system

- Centralized system
- Tools from Markov Decision Theory

The coordinated system

- Centralized system
- Tools from Markov Decision Theory

Lemma: update of $\xi_{t \mid t-1}^{i}$

$$
\xi_{t \mid t}^{i}=F_{t \mid t}^{i}\left(\xi_{t \mid t-1}^{i}, u_{t}^{-i}, \phi_{t}^{-i}\right) .
$$

Recall: $\xi_{t \mid t}^{i}=F_{t \mid t}^{i}\left(\xi_{t \mid t-1}^{i}, u_{1: t}, \mathbf{f}^{-i}\right)$

The coordinated system

- Centralized system
- Tools from Markov Decision Theory

The belief states

$$
\begin{aligned}
& \pi_{t}^{1}\left(\xi^{1}, \xi^{2}\right)=\mathbb{P}\left(\Xi_{t \mid t-1}^{1}=\xi^{1}, \Xi_{t \mid t-1}^{2}=\xi^{2} \mid U_{1: t-1}=u_{1: t-1}\right) \\
& \pi_{t}^{2}\left(\xi^{1}, \xi^{2}\right)=\mathbb{P}\left(\Xi_{t \mid t-1}^{1}=\xi^{1}, \Xi_{t \mid t-1}^{2}=\xi^{2} \mid U_{1: t-1}=u_{1: t-1}, U_{t}^{1}=u_{t}^{1}\right)
\end{aligned}
$$

Update similar to $\xi_{t \mid t-1}^{i}$

The coordinated system

Theorem: Sufficient statistic

 No loss of optimality$$
U_{t}^{1}=\tilde{f}_{t}^{1}\left(\xi_{t \mid t-1}^{1}, \Pi_{t}^{1}\right), \quad U_{t}^{2}=\tilde{f}_{t}^{2}\left(\xi_{t \mid t-1}^{2}, \Pi_{t}^{2}\right) .
$$

The coordinated system

Theorem: Dynamic program

- $D_{t}^{i}\left(\xi_{t \mid t}^{i}\right):=\sum_{z \in \mathcal{Z}} d_{t}^{i}\left(z, \hat{g}^{i}\left(\xi_{t \mid t}^{i}\right)\right) \xi_{t \mid t}^{i}(z), i \in\{1,2\}$
- $V_{T+1}^{2}\left(\pi^{2}\right)=0$. For $t=T, T-1, \ldots, 1$

$$
\begin{array}{r}
V_{t}^{2}\left(\pi^{2}\right)=\min _{\phi_{t}^{2}: \Delta(\mathcal{Z}) \rightarrow \mathcal{U}^{2}} \mathbb{E}\left[c^{2}\left(U_{t}^{2}\right)+D_{t}^{2}\left(\bar{\Xi}_{t \mid t}^{2}\right)+V_{t+1}^{1}\left(\Pi_{t+1}^{1}\right) \mid\right. \\
\left.\Pi_{t}^{2}=\pi^{2}, U_{t}^{2}=\phi_{t}^{2}\left(\bar{\Xi}_{t \mid t-1}^{2}\right)\right], \\
V_{t}^{1}\left(\pi^{1}\right)=\min _{\phi_{t}^{1}: \Delta(\mathcal{Z}) \rightarrow \mathcal{U}^{1}} \mathbb{E}\left[c^{1}\left(U_{t}^{1}\right)+D_{t}^{1}\left(\bar{\Xi}_{t \mid t}^{1}\right)+V_{t}^{2}\left(\Pi_{t}^{2}\right) \mid\right. \\
\left.\Pi_{t}^{1}=\pi^{1}, U_{t}^{1}=\phi_{t}^{1}\left(\Xi_{t \mid t-1}^{1}\right)\right] .
\end{array}
$$

Discussion

Contributions? Limitations?

Discussion

Contributions

- Identify a sufficient statistic at the encoder and the decoder; the domain of which does not depend on time
- The DP: identify optimal strategies
- The search complexity increases linearly with time horizon (rather than double exponentially, as for brute force search)
- Natural extension to Infinite horizon setup; time-homogeneous optimal strategies
- Extension to multi-terminal setup: n users; sequentially broadcasts their own action to all users and generates its own estimate and so on.

Discussion

Computational issues

- Computationally formidable!
- Special case: Finite \mathcal{Z} (say, cardinality n). Then, $\Delta(\mathcal{Z})=\mathbb{R}^{n-1}$; $\Delta(\Delta(\mathcal{Z}) \times \Delta(\mathcal{Z}))=\mathbb{R}^{2 n-2}$.

Discussion

Computational issues

- Computationally formidable!
- Special case: Finite \mathcal{Z} (say, cardinality n). Then, $\Delta(\mathcal{Z})=\mathbb{R}^{n-1}$; $\Delta(\Delta(\mathcal{Z}) \times \Delta(\mathcal{Z}))=\mathbb{R}^{2 n-2}$.
- DP similar to POMDP.

Discussion

Computational issues

- Computationally formidable!
- Special case: Finite \mathcal{Z} (say, cardinality n). Then, $\Delta(\mathcal{Z})=\mathbb{R}^{n-1}$; $\Delta(\Delta(\mathcal{Z}) \times \Delta(\mathcal{Z}))=\mathbb{R}^{2 n-2}$.
- DP similar to POMDP. Minimization over functional space.

Discussion

Computational issues

- Computationally formidable!
- Special case: Finite \mathcal{Z} (say, cardinality n). Then, $\Delta(\mathcal{Z})=\mathbb{R}^{n-1}$; $\Delta(\Delta(\mathcal{Z}) \times \Delta(\mathcal{Z}))=\mathbb{R}^{2 n-2}$.
- DP similar to POMDP. Minimization over functional space.
- Point-based algorithms for continuous-state POMDPs
- Discretization based algorithms developed for real-time communication - Wood, Linder and Yuksel, ISIT 2015

Why is Markovian Z_{t} difficult?

Key steps:

Why is Markovian Z_{t} difficult?

Key steps:

- Conditional independence

Why is Markovian Z_{t} difficult?

Key steps:

- Conditional independence
- Belief that is not growing with time

Why is Markovian Z_{t} difficult?

Key steps:

- Conditional independence
$\mathbb{P}\left(x_{1: t}^{1}, x_{1: t}^{2} \mid \mathbf{z}, u_{1: t}^{1}, u_{1: t}^{2}\right)=$
$\prod_{i \in\{1,2\}} \mathbb{P}\left(x_{1: t}^{i} \mid \mathbf{z}, u_{1: t}^{1}, u_{1: t}^{2}\right)$

$$
\begin{aligned}
& \mathbb{P}\left(x_{1: t}^{1}, x_{1: t}^{2} \mid \mathbf{z}_{1: t}, u_{1: t}^{1}, u_{1: t}^{2}\right)= \\
& \prod_{i \in\{1,2\}} \mathbb{P}\left(x_{1: t}^{i} \mid \mathbf{z}_{\mathbf{1}: \mathbf{t}}, u_{1: t}^{1}, u_{1: t}^{2}\right)
\end{aligned}
$$

Why is Markovian Z_{t} difficult?

Key steps:

- Conditional independence
$\mathbb{P}\left(x_{1: t}^{1}, x_{1: t}^{2} \mid \mathbf{z}, u_{1: t}^{1}, u_{1: t}^{2}\right)=$
$\prod_{i \in\{1,2\}} \mathbb{P}\left(x_{1: t}^{i} \mid \mathbf{z}, u_{1: t}^{1}, u_{1: t}^{2}\right)$
$\mathbb{P}\left(x_{1: t}^{1}, x_{1: t}^{2} \mid \mathbf{z}_{\mathbf{1}: \mathbf{t}}, u_{1: t}^{1}, u_{1: t}^{2}\right)=$
$\prod_{i \in\{1,2\}} \mathbb{P}\left(x_{1: t}^{i} \mid \mathbf{z}_{\mathbf{1}: \mathbf{t}}, u_{1: t}^{1}, u_{1: t}^{2}\right)$

Why is Markovian Z_{t} difficult?

Key steps:

- Belief that is not growing with time

$$
\begin{array}{cc}
\hat{t}_{t}^{1}\left(X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right) \longrightarrow & \hat{f}_{t}^{1}\left(X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right) \longrightarrow \\
\hat{f}_{t}^{1}\left(\mathbb{P}\left(\mathbf{Z} \mid X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right),\right. & \hat{f}_{t}^{1}\left(\mathbb{P}\left(\mathbf{Z}_{1: t} \mid X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right),\right. \\
\left.U_{1: t-1}^{1}, U_{1: t-1}^{2}\right) & \left.U_{1: t-1}^{1}, U_{1: t-1}^{2}\right)
\end{array}
$$

Why is Markovian Z_{t} difficult?

Key steps:

- Belief that is not growing with time

$$
\begin{array}{cc}
\hat{t}_{t}^{1}\left(X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right) \longrightarrow & \hat{f}_{t}^{1}\left(X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right) \longrightarrow \\
\hat{f}_{t}^{1}\left(\mathbb{P}\left(\mathbf{Z} \mid X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right),\right. & \hat{f}_{t}^{1}\left(\mathbb{P}\left(\mathbf{Z}_{1: t} \mid X_{1: t}^{1}, U_{1: t-1}^{1}, U_{1: t-1}^{2}\right),\right. \\
\left.U_{1: t-1}^{1}, U_{1: t-1}^{2}\right) & \left.U_{1: t-1}^{1}, U_{1: t-1}^{2}\right)
\end{array}
$$

Future scope

- Study of some special structure of Markovian Z_{t} so that the belief states do not grow with time
- Finite state machines - DP decomposition
- Lipsa and Martins, IEEE TAC, 2011: Optimality of threshold-based strategies for Gaussian setup and the transmitter may transmit or not

Thank you!

