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These advances are driven by sophisticated algorithms

that rely on measurements from multiple sensors





Communication between the sensors, controllers, and

actuators takes place over the Control Area Network (CAN)

As the number of sensors increase, it is critical to ensure

that the information exchange is efficient.
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Arbitration in Control Area Network
Each data-frame consists of a 11 or 29 bit arbitrartion field and payload.

When the CAN bus is idle, all nodes start transmitting at the same time.

Bitwise transmission can be dominant (high voltage) or recessive (low voltage)

If any node transmits at a dominant level, the voltage of the bus is high.

Nodes monitor the voltage on the bus. If a node transmitting at a recessive level

detects a dominant voltage on the bus, it immediately quits transmitting.

Scheduling sensor measurements is different from scheduling data packets
Suppose a sensor does not get access to the channel.

Then, it should simply discard the previous measurement rather than buffering it.

Transmit fresh measurement at the next transmission instant.
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structure

St: Sensor with highest priority. All sensors observe St.

Priority Assignment rule git∶ (Xi
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St = arg max
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Salient Features Decentralized stochastic control problem.

Finding optimal solution is notoriously difficult. Use a heuristic policy instead.

Motivated by value of information in economics.
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Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution

is given by dynamic programming.
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Let fi∗(e) = 0 if the first term is smaller and fi∗(e) = 1 if the second term is smaller.

Then, fi∗(e) is the optimal action at state e.
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Theorem (Structure
of optimal policy)

There exists a threshold ki(λi) such that the optimal policy is of the form

fi∗(e) = {
1, if |e| < ki(λi)0, otherwise.

Moreover, at k∗(λ∗),
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Proof relies on stochastic monot-
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submodularity.
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VOI at e is the smallest value of access fee for which the sensor is indifferent

between transmitting and not transmitting when the state is |e|, i.e.,

VOIi(e) = inf{λi ∈ ℝ≥0 : ki(λi) = |e|}
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Let Ui
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t, if Ui
t = 1aiEit +Wi

t if Ui
t = 0

Objective min lim
T→∞

1T 𝔼 [
T−1∑
t=0

[λiUi + (1 − Ui)di(Eit)]]

Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution

is given by dynamic programming.

Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution

is given by dynamic programming.

Let hi ∈ ℝ and vi∶ℝ → ℝ satisfy the following dynamic program: for any e ∈ ℝ

hi + vi(e) = min{λi + ∫ℝ φi(w)vi(w)dw, di(e) + ∫ℝ φi(w)vi(ae + w)dw}

Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution

is given by dynamic programming.

Let hi ∈ ℝ and vi∶ℝ → ℝ satisfy the following dynamic program: for any e ∈ ℝ

hi + vi(e) = min{λi + ∫ℝ φi(w)vi(w)dw, di(e) + ∫ℝ φi(w)vi(ae + w)dw}
Let fi∗(e) = 0 if the first term is smaller and fi∗(e) = 1 if the second term is smaller.

Then, fi∗(e) is the optimal action at state e.

Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution

is given by dynamic programming.

Let hi ∈ ℝ and vi∶ℝ → ℝ satisfy the following dynamic program: for any e ∈ ℝ

hi + vi(e) = min{λi + ∫ℝ φi(w)vi(w)dw, di(e) + ∫ℝ φi(w)vi(ae + w)dw}
Let fi∗(e) = 0 if the first term is smaller and fi∗(e) = 1 if the second term is smaller.

Then, fi∗(e) is the optimal action at state e.
Theorem (Structure
of optimal policy)

There exists a threshold ki(λi) such that the optimal policy is of the form

fi∗(e) = {
1, if |e| < ki(λi)0, otherwise.

Moreover, at k∗(λ∗),
λi + ∫ℝ φi(w)vi(w)dw = di(e) + ∫ℝ φi(w)vi(ae + w)dw

Proof relies on stochastic monot-

onicity, stochastic dominance, and

submodularity.

Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution

is given by dynamic programming.

Let hi ∈ ℝ and vi∶ℝ → ℝ satisfy the following dynamic program: for any e ∈ ℝ

hi + vi(e) = min{λi + ∫ℝ φi(w)vi(w)dw, di(e) + ∫ℝ φi(w)vi(ae + w)dw}
Let fi∗(e) = 0 if the first term is smaller and fi∗(e) = 1 if the second term is smaller.

Then, fi∗(e) is the optimal action at state e.
Theorem (Structure
of optimal policy)

There exists a threshold ki(λi) such that the optimal policy is of the form
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𝐤 and ∂𝐤𝐍𝐢
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d(Eit) | Ei0 = x] and Mi
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Computing 𝐋𝐢𝐤(𝟎) and 𝐌𝐢
𝐤(𝟎)

Balance equation Lik(x) = dik(x) + ∫
k

−k

φi(y − ax)Lik(y)dy (Fredholm integral eqn of the 2nd kind)
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Final expression VOIi(k) = 𝐌i

0

𝐋im𝐌i
m
− 𝐋i0, where 𝐋i = (𝐈 −𝚽i)−1𝐝i and 𝐌i = (𝐈 −𝚽i)−1𝟏 .
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Numerical example

Scenarios n sensors, each observing a Gauss-Markov process.

Scenario A 50 homogeneous sensors with (ai, σi) = (1, 1).
Scenario B 25 sensors with (ai, σi) = (1, 1) and 25 sensors with (ai, σi) = (1, 5).
Scenario C 20 sensors (ai, σi) = (1, 1); 15 with (1, 5); 15 with (1, 10).
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Summary
System Model

Sensors n sensors indexed by N = {1, . . . , n}.Xi
t+1 = aiXi

t +Wi
t,ai, Xi

t,Wi
t ∈ ℝ, Wi

t ∼ φi(⋅).
Assumptions The observation processes across sensors are independent.

The noise process is independent across time (and independent of initial state)

The density φi(⋅) is even and unimodal.

Network Received packet Yit = {
XI
t, if sensor i has highest priority𝔈, otherwise

Receivers Estimate X̂i
t = {

Yit, if Yit ≠ 𝔈aiX̂i
t−1, if Yit = 𝔈

Distortion di(Xi
t − X̂i

t), where di(⋅) is an even and increasing function.

Control Area

Network

Control Area

Network
⋮⋮

Receiver 1

Receiver n

Sensor 1

Sensor n

(Z1
t , X1

t)

(Zn
t , Xn

t )

Y1t

Ynt

X̂1
t

X̂n
t

X1
t

Xn
t
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Defining the value of information

Value of Information
(VOI)

The amount of money someone is willing to pay to access that information.

VOI for remote
estimation

Suppose that there is a single sensor, say i, and a dedicated communication

channel is available.

The sensor has to pay an access fee λi each time it uses the channel.

Let Ui
t ∈ {0, 1} denote the sensor’s decision.

Then, the error process is

Eit+1 = {
Wi

t, if Ui
t = 1aiEit +Wi

t if Ui
t = 0

Objective min lim
T→∞

1T 𝔼 [
T−1∑
t=0

[λiUi + (1 − Ui)di(Eit)]]
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The density φi(⋅) is even and unimodal.

Network Received packet Yit = {
XI
t, if sensor i has highest priority𝔈, otherwise

Receivers Estimate X̂i
t = {

Yit, if Yit ≠ 𝔈aiX̂i
t−1, if Yit = 𝔈

Distortion di(Xi
t − X̂i

t), where di(⋅) is an even and increasing function.
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Defining the value of information

Value of Information
(VOI)

The amount of money someone is willing to pay to access that information.

VOI for remote
estimation

Suppose that there is a single sensor, say i, and a dedicated communication

channel is available.

The sensor has to pay an access fee λi each time it uses the channel.

Let Ui
t ∈ {0, 1} denote the sensor’s decision.

Then, the error process is

Eit+1 = {
Wi

t, if Ui
t = 1aiEit +Wi

t if Ui
t = 0

Objective min lim
T→∞

1T 𝔼 [
T−1∑
t=0

[λiUi + (1 − Ui)di(Eit)]]

Naive method For a given λi, find ki(λi) by numerically solving the dynamic program.

VOIi(e) can be computed by doing a binary search of λi until ki(λi) = |e|.
This method is extremely inefficient because solving DP is hard.

First simplification Let fik denote the threshold policy with threshold k.

Define Di
k = lim

T→∞

1T 𝔼 [
T−1∑
t=0

(1 − Ui
t)di(Eit)] and Ni

k = lim
T→∞

1T 𝔼 [
T−1∑
t=0

Ui
t]

Then, Ji(fik) = Di
k + λiNi

k. The policy is optimal if ∂kDi
k + λi∂kNi

k = 0.

Therefore,
VOIi(k) = −∂kDi

k∂kNi
k
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Computing ∂𝐤𝐃𝐢
𝐤 and ∂𝐤𝐍𝐢

𝐤

Renewal relationships Let τ denote the stopping time of the first transmission.

Define Lik(x) = 𝔼 [
τ−1∑
t=0

d(Eit) | Ei0 = x] and Mi
k(x) = 𝔼 [τ | Ei0 = x].

Then, from renewal theory: Di
k = Lik(0)Mi

k(0) and Ni
k = 1Mi

k(0) .

Therefore,
VOIi(k) = Mi

k(0) ∂kLik(0)∂kMi
k(0) − Lik(0)

Need to compute Mi
k(0), Lik(0), ∂kMi

k(0), ∂kLik(0) to compute VOI.
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Computing 𝐋𝐢𝐤(𝟎) and 𝐌𝐢
𝐤(𝟎)

Balance equation Lik(x) = dik(x) + ∫
k

−k

φi(y − ax)Lik(y)dy (Fredholm integral eqn of the 2nd kind)

Solution using
quadrature method

Let {w−m, . . . , wm} and {x−m, . . . , xm} be the weights and abscissas for any

quadrature rule of 2m + 1 points over [−k, k]. Then the above integral equation

can be approximated as

Lik(xp) ≈ di(xp) + m∑
q=−m

wqφi(xp − axq)Lik(xq)

Or, in matrix form, 𝐋i = (𝐈 −𝚽i)−1𝐝i and 𝐌i = (𝐈 −𝚽i)−1𝟏
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Computing ∂𝐤𝐋𝐢𝐤(𝟎) and ∂𝐤𝐌𝐢
𝐤(𝟎)

Balance equation Lik(x) = dik(x) + ∫
k

−k

φi(y − ax)Lik(y)dy
Take derivative Using Leibniz rule

∂kLik(x) = φi(x − ak)Lik(x) + φi(x + ak)Lik(−k) + ∫
k

−k

φi(x − ay)Lik(y)dy
∂kMi

k(x) = φi(x − ak)Mi
k(x) + φi(x + ak)Mi

k(−k) + ∫
k

−k

φi(x − ay)Mi
k(y)dy

Taking ratios, we get
∂kLik(x)∂kMi

k(x) =
Lik(k)Mi

k(k)
Final expression VOIi(k) = 𝐌i

0

𝐋im𝐌i
m
− 𝐋i0, where 𝐋i = (𝐈 −𝚽i)−1𝐝i and 𝐌i = (𝐈 −𝚽i)−1𝟏 .


