Remote estimation over control area networks

Aditya Mahajan McGill University

NetV Workshop, VTC 2017 24 Sep 2017

The road to self-driving cars ...

- Level 1 Control either speed or steering

 Cruise control

 Automatic breaking
- Level 2 Control both speed or steering
 Automatic lane control (Tesla's autopilot)
- Level 3 Car can handle "dynamic driving tasks" but still need human intervention

 ...
- Level 4 Fully autonomous in certain situations
- Level 5 Fully autonomous in all situations

The road to self-driving cars

- vel 1 Control either speed or steering
 Cruise control > Automatic break
- Level 2 Control both speed or steering
 Automatic lane control (Tesla's autopilot)

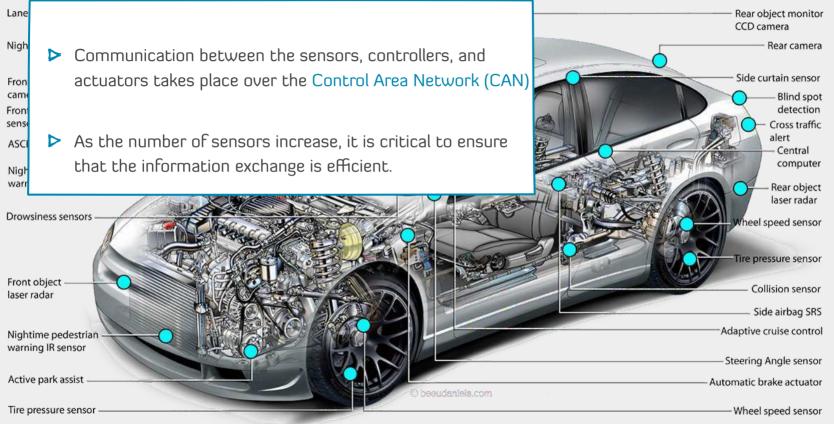
These advances are driven by sophisticated algorithms that rely on measurements from multiple sensors

Level 5 Fully autonomous in all situations

Vehicle Sensors

Lane departure system	Rear object monitor CCD camera
Night vision	Rear camera
Front object CCD	Side curtain sensor
camera	Blind spot
Front airbag	detection
sensors	Cross traffic
ASCD	alert
	computer
Nightime pedestrian	
warning	Rear object
	laser radar
Drowsiness sensors	Wheel speed sensor
	Tire pressure sensor
Front object	Collision sensor
laser radar	Collision sensor
	Side airbag SRS
	Adaptive cruise control
Nightime pedestrian warning IR sensor	
	Steering Angle sensor
Active park assist	
	Automatic brake actuator
Tire pressure sensor	Wheel speed sensor

Vehicle Sensors



Arbitration in Control Area Network

Arbitration in Control Area Network

Each data-frame consists of a 11 or 29 bit arbitrartion field and payload.

Arbitration in Control Area Network

- Each data-frame consists of a 11 or 29 bit arbitrartion field and payload.
- > When the CAN bus is idle, all nodes start transmitting at the same time.
- Bitwise transmission can be **dominant** (high voltage) or **recessive** (low voltage)
- > If any node transmits at a dominant level, the voltage of the bus is high.

Arbitration in Control Area Network

- Each data-frame consists of a 11 or 29 bit arbitrartion field and payload.
- > When the CAN bus is idle, all nodes start transmitting at the same time.
- Bitwise transmission can be **dominant** (high voltage) or **recessive** (low voltage)
- If any node transmits at a dominant level, the voltage of the bus is high.
- Nodes monitor the voltage on the bus. If a node transmitting at a recessive level detects a dominant voltage on the bus, it immediately quits transmitting.

Arbitration in Control Area Network

- Each data-frame consists of a 11 or 29 bit arbitrartion field and payload.
- > When the CAN bus is idle, all nodes start transmitting at the same time.
- Bitwise transmission can be **dominant** (high voltage) or **recessive** (low voltage)
- ▶ If any node transmits at a dominant level, the voltage of the bus is high.
- Nodes monitor the voltage on the bus. If a node transmitting at a recessive level detects a dominant voltage on the bus, it immediately quits transmitting.

Scheduling sensor measurements is different from scheduling data packets

Arbitration in Control Area Network

- Each data-frame consists of a 11 or 29 bit arbitrartion field and payload.
- > When the CAN bus is idle, all nodes start transmitting at the same time.
- Bitwise transmission can be dominant (high voltage) or recessive (low voltage)
- > If any node transmits at a dominant level, the voltage of the bus is high.
- Nodes monitor the voltage on the bus. If a node transmitting at a recessive level detects a dominant voltage on the bus, it immediately quits transmitting.

Scheduling sensor measurements is different from scheduling data packets

Suppose a sensor does not get access to the channel.

Arbitration in Control Area Network

- Each data-frame consists of a 11 or 29 bit arbitrartion field and payload.
- > When the CAN bus is idle, all nodes start transmitting at the same time.
- Bitwise transmission can be **dominant** (high voltage) or **recessive** (low voltage)
- > If any node transmits at a dominant level, the voltage of the bus is high.
- Nodes monitor the voltage on the bus. If a node transmitting at a recessive level detects a dominant voltage on the bus, it immediately quits transmitting.

Scheduling sensor measurements is different from scheduling data packets

- Suppose a sensor does not get access to the channel.
- > Then, it should simply discard the previous measurement rather than buffering it.
- Transmit fresh measurement at the next transmission instant.

System Model

System Model

Sensors

 $\begin{array}{c} X_{t}^{i} \rightarrow \underline{\text{Sensor 1}} (Z_{t}^{i}, X_{t}^{i}) & & \\ & Y_{t}^{i} \rightarrow \underline{\text{Sensor 1}} (Z_{t}^{i}, X_{t}^{i}) & & \\ & Y_{t+1}^{i} = a^{i} X_{t}^{i} + W_{t}^{i}, & \\ & a^{i}, X_{t}^{i}, W_{t}^{i} \in \mathbb{R}, & W_{t}^{i} \sim \phi^{i}(\cdot). \end{array}$

Assumptions

- > The observation processes across sensors are independent.
- > The noise process is independent across time (and independent of initial state)
- \blacktriangleright The density $\phi^i(\cdot)$ is even and unimodal.

System Model

Sensors

Assumptions

- > The observation processes across sensors are independent.
- > The noise process is independent across time (and independent of initial state)
- \blacktriangleright The density $\phi^i(\cdot)$ is even and unimodal.

 $\begin{array}{ll} \mbox{Network} & \mbox{Received packet } Y^i_t = \begin{cases} X^I_t, & \mbox{if sensor i has highest priority} \\ \mathfrak{E}, & \mbox{otherwise} \end{cases}$

System Model

Sensors

 $\begin{array}{c} X_{t}^{i} \rightarrow \underline{\text{Sensor 1}}^{(Z_{t}^{i}, X_{t}^{i})} & \downarrow \\ & \text{N sensors indexed by } N = \{1, \ldots, n\}. \\ & \text{Network} \\ & X_{t+1}^{i} = a^{i}X_{t}^{i} + W_{t}^{i}, \\ & a^{i}, X_{t}^{i}, W_{t}^{i} \in \mathbb{R}, \\ & W_{t}^{i} \sim \phi^{i}(\cdot). \end{array}$

Assumptions

- The observation processes across sensors are independent.
 The noise process is independent across time (and independent of initial state)
- \blacktriangleright The density $\phi^i(\cdot)$ is even and unimodal.

 $\begin{array}{ll} \mbox{Network} & \mbox{Received packet } Y^i_t = \begin{cases} X^I_t, & \mbox{if sensor i has highest priority} \\ \mathfrak{E}, & \mbox{otherwise} \end{cases}$

Receivers Estimate
$$\hat{X}_{t}^{i} = \begin{cases} Y_{t}^{i}, & \text{if } Y_{t}^{i} \neq \mathfrak{E} \\ a^{i} \hat{X}_{t-1}^{i}, & \text{if } Y_{t}^{i} = \mathfrak{E} \end{cases}$$

Distortion $d^i(X^i_t-\hat{X}^i_t)$, where $d^i(\cdot)$ is an even and increasing function.

Problem formulation

Information structure \triangleright S_t: Sensor with highest priority. All sensors observe S_t.

 $\blacktriangleright \text{ Priority Assignment rule } g^i_t : (X^i_{1:t}, S_{1:t-1}) \mapsto Z^i_t.$

 \triangleright S_t = arg max Z_tⁱ

Problem formulation

Information structure

- $\blacktriangleright\ S_t:$ Sensor with highest priority. All sensors observe $S_t.$
- $\blacktriangleright \text{ Priority Assignment rule } g^i_t : (X^i_{1:t}, S_{1:t-1}) \mapsto Z^i_t.$

$$\blacktriangleright S_t = \arg \max_{i \in N} Z_t^i$$

Objective

$$\min \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \sum_{\substack{i \in \mathbb{N} \\ i \neq S_t}} d^i (X_t^i - \hat{X}_t^i) \right]$$

Problem formulation

Information

 \triangleright S_t: Sensor with highest priority. All sensors observe S_t.

structure

▶ Priority Assignment rule
$$g_t^i$$
: $(X_{1:t}^i, S_{1:t-1}) \mapsto Z_t^i$.

$$\blacktriangleright S_t = \arg \max_{i \in N} Z_t^i$$

$$\min \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \sum_{\substack{i \in N \\ i \neq S_t}} d^i (X_t^i - \hat{X}_t^i) \right]$$

Salient Features

Decentralized stochastic control problem.

Finding optimal solution is notoriously difficult. Use a heuristic policy instead.

Motivated by value of information in economics.

A change of variables

Error process

$$\begin{split} \text{Define } E_0^i &= X_0^i \text{ and for } t \geqslant 0, \\ E_{t+1}^i &= \begin{cases} W_t^i, & \text{if } S_t = i \\ \mathfrak{a}^i E_t^i + W_t^i & \text{if } S_t \neq i \end{cases} \end{split}$$

A change of variables

Error process

Define
$$E_0^i = X_0^i$$
 and for $t \ge 0$,
 $E_{t+1}^i = \begin{cases} W_t^i, & \text{if } S_t = i\\ a^i E_t^i + W_t^i & \text{if } S_t \ne i \end{cases}$

Called the error process because when $S_t\neq i,\,X_t-\hat{X}_t^i=E_t^i.$ Thus, total estimation error can be written as

$$\min \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \sum_{\substack{i \in \mathbb{N} \\ i \neq S_t}} d^i(E_t^i) \right]$$

Defining the value of information

Value of Information (V0I)

The amount of money someone is willing to pay to access that information.

Defining the value of information

Value of Information The (V0I)

The amount of money someone is willing to pay to access that information.

- VOI for remote
estimation> Suppose that there is a single sensor, say i, and a dedicated communication
channel is available.
 - > The sensor has to pay an access fee λ^i each time it uses the channel.

Defining the value of information

Value of Information (V0I) The amount of money someone is willing to pay to access that information.

VOI for remote estimation

- Suppose that there is a single sensor, say i, and a dedicated communication channel is available.
 - > The sensor has to pay an access fee λ^i each time it uses the channel.
 - \blacktriangleright Let $U^i_t \in \{0,1\}$ denote the sensor's decision.

> Then, the error process is

$$E_{t+1}^{i} = \begin{cases} W_{t}^{i}, & \text{if } U_{t}^{i} = 1\\ a^{i}E_{t}^{i} + W_{t}^{i} & \text{if } U_{t}^{i} = 0 \end{cases}$$

Defining the value of information

Value of Information (VOI) The amount of money someone is willing to pay to access that information.

VOI for remote estimation
 Suppose that there is a single sensor, say i, and a dedicated communication channel is available.

 \triangleright The sensor has to pay an access fee λ^i each time it uses the channel.

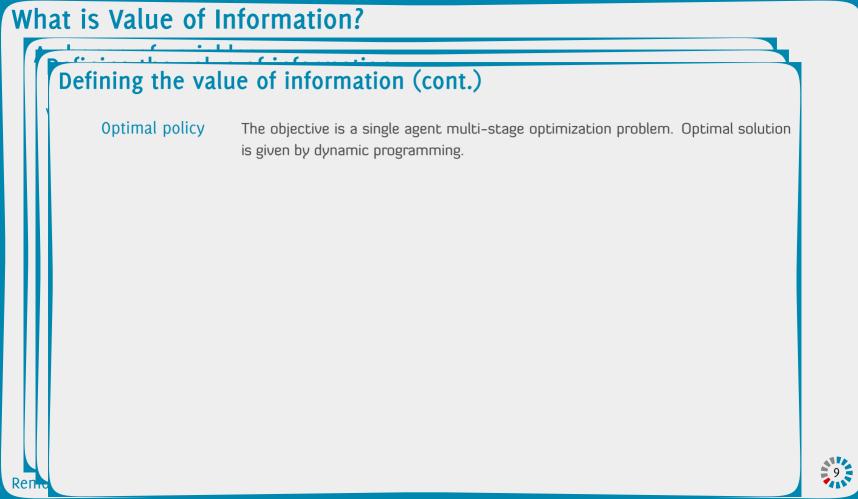
 \blacktriangleright Let $U^i_t \in \{0,1\}$ denote the sensor's decision.

> Then, the error process is

$$E_{t+1}^{i} = \begin{cases} W_{t}^{i}, & \text{if } U_{t}^{i} = 1\\ a^{i}E_{t}^{i} + W_{t}^{i} & \text{if } U_{t}^{i} = 0 \end{cases}$$

Objective

$$\text{min} \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \left[\lambda^i U^i + (1 - U^i) d^i (E_t^i) \right] \right]$$



Defining the value of information (cont.)

Optimal policy

Ren

The objective is a single agent multi-stage optimization problem. Optimal solution is given by dynamic programming.

Let $h^i \in \mathbb{R}$ and $v^i : \mathbb{R} \to \mathbb{R}$ satisfy the following dynamic program: for any $e \in \mathbb{R}$ $h^i + v^i(e) = \min \left\{ \lambda^i + \int_{\mathbb{R}} \phi^i(w) v^i(w) dw, \quad d^i(e) + \int_{\mathbb{R}} \phi^i(w) v^i(ae+w) dw \right\}$

Defining the value of information (cont.)

Optimal policy

Ren

The objective is a single agent multi-stage optimization problem. Optimal solution is given by dynamic programming.

Let $h^i \in \mathbb{R}$ and $v^i : \mathbb{R} \to \mathbb{R}$ satisfy the following dynamic program: for any $e \in \mathbb{R}$ $h^i + v^i(e) = \min\left\{\lambda^i + \int_{\mathbb{R}} \phi^i(w)v^i(w)dw, \quad d^i(e) + \int_{\mathbb{R}} \phi^i(w)v^i(ae+w)dw\right\}$

Let $f_*^i(e) = 0$ if the first term is smaller and $f_*^i(e) = 1$ if the second term is smaller. Then, $f_*^i(e)$ is the optimal action at state e.

Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution is given by dynamic programming.

Let $h^i \in \mathbb{R}$ and $v^i : \mathbb{R} \to \mathbb{R}$ satisfy the following dynamic program: for any $e \in \mathbb{R}$ $h^i + v^i(e) = \min\left\{\lambda^i + \int_{\mathbb{R}} \phi^i(w)v^i(w)dw, \quad d^i(e) + \int_{\mathbb{R}} \phi^i(w)v^i(ae+w)dw\right\}$

Let $f_*^i(e) = 0$ if the first term is smaller and $f_*^i(e) = 1$ if the second term is smaller. Then, $f_*^i(e)$ is the optimal action at state e.

Theorem (Structure of optimal policy)

Proof relies on stochastic monotonicity, stochastic dominance, and submodularity.

Ren

There exists a threshold $k^i(\lambda^i)$ such that the optimal policy is of the form

$$f^i_*(e) = \begin{cases} 1, & \text{if } |e| < k^i (\lambda^i) \\ 0, & \text{otherwise.} \end{cases}$$

Moreover, at
$$k^*(\lambda^*)$$
,

$$\lambda^{i} + \int_{\mathbb{R}} \phi^{i}(w) v^{i}(w) dw = d^{i}(e) + \int_{\mathbb{R}} \phi^{i}(w) v^{i}(ae + w) dw$$

Defining the value of information (cont.)

1. 1

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution

VOI at e is the smallest value of access fee for which the sensor is indifferent between transmitting and not transmitting when the state is |e|, i.e.,

$$\mathsf{VOI}^{\mathfrak{i}}(e) = \mathsf{inf}\left\{\lambda^{\mathfrak{i}} \in \mathbb{R}_{\geqslant 0} : k^{\mathfrak{i}}(\lambda^{\mathfrak{i}}) = |e|\right\}$$

Theorem (Structure of optimal policy)

Proof relies on stochastic monotonicity, stochastic dominance, and submodularity.

Ren

There exists a threshold $k^i(\lambda^i)$ such that the optimal policy is of the form

$$\mathrm{f}^{\mathrm{i}}_{*}(e) = egin{cases} 1, & \mathrm{i}\mathrm{f}|e| < \mathrm{k}^{\mathrm{i}}(\lambda^{\mathrm{i}}) \ 0, & \mathrm{otherwise.} \end{cases}$$

Moreover, at
$$k^*(\lambda^*)$$

$$\lambda^{i} + \int_{\mathbb{R}} \phi^{i}(w) v^{i}(w) dw = d^{i}(e) + \int_{\mathbb{R}} \phi^{i}(w) v^{i}(ae+w) dw$$

Defining the value of information (cont.)

1. 1

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution

VOI at e is the smallest value of access fee for which the sensor is indifferent between transmitting and not transmitting when the state is |e|, i.e.,

$$\mathsf{VOI}^{\mathfrak{i}}(e) = \mathsf{inf}\left\{\lambda^{\mathfrak{i}} \in \mathbb{R}_{\geqslant 0} : k^{\mathfrak{i}}(\lambda^{\mathfrak{i}}) = |e|\right\}$$

Theorem (Structure of optimal policy)

Proof relies on stochastic monotonicity, stochastic dominance, and submodularity.

Ren

There exists a threshold $k^i(\lambda^i)$ such that the optimal policy is of the form

$$\mathrm{f}^{\mathrm{i}}_{*}(e) = egin{cases} 1, & \mathrm{i}\mathrm{f}|e| < \mathrm{k}^{\mathrm{i}}(\lambda^{\mathrm{i}}) \ 0, & \mathrm{otherwise.} \end{cases}$$

Moreover, at
$$k^*(\lambda^*)$$

$$\lambda^{i} + \int_{\mathbb{R}} \phi^{i}(w) v^{i}(w) dw = d^{i}(e) + \int_{\mathbb{R}} \phi^{i}(w) v^{i}(ae+w) dw$$

How to compute value of information?

How to compute value of information?

Naive method

- For a given λ^i , find $k^i(\lambda^i)$ by numerically solving the dynamic program.
 - ▷ VOIⁱ(e) can be computed by doing a binary search of λ^i until $k^i(\lambda^i) = |e|$.
 - > This method is extremely inefficient because solving DP is hard.

Naive method

- ▶ For a given λⁱ, find kⁱ(λⁱ) by numerically solving the dynamic program.
 ▶ VOlⁱ(e) can be computed by doing a binary search of λⁱ until kⁱ(λⁱ) = |e|.
 - > This method is extremely inefficient because solving DP is hard.

First simplification

Let f_k^i denote the threshold policy with threshold k.

Define
$$D_k^i = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} (1 - U_t^i) d^i(E_t^i) \right]$$
 and $N_k^i = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} U_t^i \right]$

Naive method

For a given λⁱ, find kⁱ(λⁱ) by numerically solving the dynamic program.
 VOIⁱ(e) can be computed by doing a binary search of λⁱ until kⁱ(λⁱ) = |e|.
 This method is extremely inefficient because solving DP is hard.

First simplification

Let
$$f_k^i$$
 denote the threshold policy with threshold k.
Define $D_k^i = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} (1 - U_t^i) d^i(E_t^i) \right]$ and $N_k^i = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} U_t^i(E_t^i) \right]$

Then, $J^i(f_k^i) = D_k^i + \lambda^i N_k^i$. The policy is optimal if $\partial_k D_k^i + \lambda^i \partial_k N_k^i = 0$.

Therefore,
$$VOI^{i}(k) = -\frac{\partial_{k}D_{k}^{i}}{\partial_{k}N_{k}^{i}}$$

Computing $\partial_k D_k^i$ and $\partial_k N_k^i$

Renewal relationships Let τ denote the stopping time of the first transmission.

Define
$$L_k^i(x) = \mathbb{E}\left[\left|\sum_{t=0}^{\tau-1} d(E_t^i)\right| | E_0^i = x\right]$$
 and $M_k^i(x) = \mathbb{E}\left[\tau | E_0^i = x\right]$.

Computing $\partial_k D_k^i$ and $\partial_k N_k^i$

Renewal relationships

Let τ denote the stopping time of the first transmission.

Define
$$L_k^i(x) = \mathbb{E}\left[\left|\sum_{t=0}^{\tau-1} d(E_t^i)\right| | E_0^i = x\right]$$
 and $M_k^i(x) = \mathbb{E}\left[\tau | E_0^i = x\right]$.

Then, from renewal theory:
$$D_k^i = \frac{L_k^i(0)}{M_k^i(0)}$$
 and $N_k^i = \frac{1}{M_k^i(0)}$.

Computing $\partial_k D_k^i$ and $\partial_k N_k^i$

Renewal relationships Let τ denote the stopping time of the first transmission.

Define
$$L_k^i(x) = \mathbb{E}\left[\left|\sum_{t=0}^{\tau-1} d(E_t^i)\right| | E_0^i = x\right]$$
 and $M_k^i(x) = \mathbb{E}\left[\tau \left| E_0^i = x\right]\right]$.

Then, from renewal theory:
$$D_k^i=\frac{L_k^i(0)}{M_k^i(0)} \text{ and } N_k^i=\frac{1}{M_k^i(0)}$$
 .

Therefore,
$$VOI^{i}(k) = M_{k}^{i}(0) \frac{\partial_{k}L_{k}^{i}(0)}{\partial_{k}M_{k}^{i}(0)} - L_{k}^{i}(0)$$

Reniote estimation o (Ivianajan)

Computing $\partial_k D_k^i$ and $\partial_k N_k^i$

Renewal relationships

Let τ denote the stopping time of the first transmission.

Define
$$L_k^i(x) = \mathbb{E}\left[\left|\sum_{t=0}^{\tau-1} d(E_t^i)\right| | E_0^i = x\right]$$
 and $M_k^i(x) = \mathbb{E}\left[\tau \left| E_0^i = x\right]\right]$.

Then, from renewal theory:
$$D_k^i=\frac{L_k^i(0)}{M_k^i(0)} \text{ and } N_k^i=\frac{1}{M_k^i(0)}$$
 .

Therefore,
$$VOI^{i}(k) = M_{k}^{i}(0) \frac{\partial_{k}L_{k}^{i}(0)}{\partial_{k}M_{k}^{i}(0)} - L_{k}^{i}(0)$$

Need to compute $M_k^i(0)$, $L_k^i(0)$, $\partial_k M_k^i(0)$, $\partial_k L_k^i(0)$ to compute VOI.

Computing $L^i_k(0)$ and $M^i_k(0)$

Ren

Balance equation $L_k^i(x) = d_k^i(x) + \int_{-k}^k \varphi^i(y - \alpha x) L_k^i(y) dy$ (Fredholm integral eqn of the 2nd kind)

Computing $L^i_k(\mathbf{0})$ and $M^i_k(\mathbf{0})$

Balance equation $L_k^i(x) = d_k^i(x) + \int_{-k}^k \phi^i(y - ax) L_k^i(y) dy$ (Fredholm integral eqn of the 2nd kind)

Solution using quadrature method

Ren

$$L_k^i(x_p) \approx d^i(x_p) + \sum_{q=-m}^m w_q \phi^i(x_p - ax_q) L_k^i(x_q)$$

Computing $L^i_k(0)$ and $M^i_k(0)$

Balance equation $L_k^i(x) = d_k^i(x) + \int_{-k}^k \phi^i(y - ax) L_k^i(y) dy$ (Fredholm integral eqn of the 2nd kind)

Solution using quadrature method

Ren

$$L_k^i(x_p) \approx d^i(x_p) + \sum_{q=-m}^m w_q \varphi^i(x_p - ax_q) L_k^i(x_q)$$

Computing $L^i_k(0)$ and $M^i_k(0)$

Balance equation $L_k^i(x) = d_k^i(x) + \int_{-k}^k \phi^i(y - ax) L_k^i(y) dy$ (Fredholm integral eqn of the 2nd kind)

Solution using quadrature method

Ren

$$L_k^i(x_p) \approx d^i(x_p) + \sum_{q=-m}^m w_q \phi^i(x_p - a x_q) L_k^i(x_q)$$

Or, in matrix form,
$$L^{i}=(I-\Phi^{i})^{-1}d^{i}$$
 and $M^{i}=(I-\Phi^{i})^{-1}1$

Ren

Computing $\partial_k L^i_k(0)$ and $\partial_k M^i_k(0)$

Balance equation
$$L_{k}^{i}(x) = d_{k}^{i}(x) + \int_{-k}^{k} \varphi^{i}(y - ax) L_{k}^{i}(y) dy$$

Computing $\partial_k L^i_k(0)$ and $\partial_k M^i_k(0)$

Li

Balance equation

$$d_k(x) = d_k^i(x) + \int_{-k}^k \varphi^i(y - ax) L_k^i(y) dy$$

Take derivative

Using Leibniz rule

$$\begin{aligned} \partial_k L_k^i(x) &= \phi^i(x - ak) L_k^i(x) + \phi^i(x + ak) L_k^i(-k) + \int_{-k}^k \phi^i(x - ay) L_k^i(y) dy \\ \partial_k M_k^i(x) &= \phi^i(x - ak) M_k^i(x) + \phi^i(x + ak) M_k^i(-k) + \int_{-k}^k \phi^i(x - ay) M_k^i(y) dy \end{aligned}$$

Computing $\partial_{k}L_{k}^{i}(0)$ and $\partial_{k}M_{k}^{i}(0)$

L

Balance equation

Ren

$$f_{k}(x) = d_{k}^{i}(x) + \int_{-k}^{k} \varphi^{i}(y - ax)L_{k}^{i}(y)dy$$

Take derivative

Using Leibniz rule

$$\partial_k L_k^i(x) = \varphi^i(x - ak)L_k^i(x) + \varphi^i(x + ak)L_k^i(-k) + \int_{-k}^{k} \varphi^i(x - ay)L_k^i(y)dy$$

$$\partial_k M_k^i(x) = \varphi^i(x - ak)M_k^i(x) + \varphi^i(x + ak)M_k^i(-k) + \int_{-k}^{k} \varphi^i(x - ay)M_k^i(y)dy$$

Taking ratios, we get $\frac{\partial_k L_k^i(x)}{\partial_k M_k^i(x)} = \frac{L_k^i(k)}{M_k^i(k)}$

Ren

Computing $\partial_k L_k^i(0)$ and $\partial_k M_k^i(0)$ Balance equation $L_k^i(x) = d_k^i(x) + \begin{bmatrix} k \\ k \end{bmatrix} \varphi^i(y - \alpha x) L_k^i(y) dy$ Take derivative Using Leibniz rule $\partial_k L_k^i(x) = \varphi^i(x - ak)L_k^i(x) + \varphi^i(x + ak)L_k^i(-k) + \int_{-\infty}^k \varphi^i(x - ay)L_k^i(y)dy$ $\partial_k M_k^i(x) = \varphi^i(x - ak) M_k^i(x) + \varphi^i(x + ak) M_k^i(-k) + \int_{-\infty}^k \varphi^i(x - ay) M_k^i(y) dy$ Taking ratios, we get $\frac{\partial_k L_k^i(x)}{\partial_k M_k^i(x)} = \frac{L_k^i(k)}{M_k^i(k)}$ $\mathsf{VOI}^{\mathfrak{i}}(k) = \mathsf{M}_0^{\mathfrak{i}} \frac{L_m^{\mathfrak{i}}}{\mathsf{M}_{\mathfrak{i}}^{\mathfrak{i}}} - L_0^{\mathfrak{i}}, \quad \text{where } L^{\mathfrak{i}} = (I - \Phi^{\mathfrak{i}})^{-1} \mathfrak{d}^{\mathfrak{i}} \text{ and } \mathsf{M}^{\mathfrak{i}} = (I - \Phi^{\mathfrak{i}})^{-1} \mathfrak{1} \ .$ Final expression

Numerical example

Scenarios

n sensors, each observing a Gauss-Markov process. Scenario A 50 homogeneous sensors with $(a^i, \sigma^i) = (1, 1)$. Scenario B 25 sensors with $(a^i, \sigma^i) = (1, 1)$ and 25 sensors with $(a^i, \sigma^i) = (1, 5)$. Scenario C 20 sensors $(a^i, \sigma^i) = (1, 1)$; 15 with (1, 5); 15 with (1, 10).

Remote estimation over CAN-(Mahajan)

Numerical example

 $\begin{array}{ll} \text{Scenarios} & n \text{ sensors, each observing a Gauss-Markov process.} \\ & \text{Scenario A 50 homogeneous sensors with } (a^i, \sigma^i) = (1,1). \\ & \text{Scenario B 25 sensors with } (a^i, \sigma^i) = (1,1) \text{ and 25 sensors with } (a^i, \sigma^i) = (1,5). \\ & \text{Scenario C 20 sensors } (a^i, \sigma^i) = (1,1); 15 \text{ with } (1,5); 15 \text{ with } (1,10). \end{array}$

ComparisonTDMASensors transmit periodicallyERRSensor with highest error transmitsVOISensor with the highest VOI transmits

Remote estimation over CAN-(Mahajan)

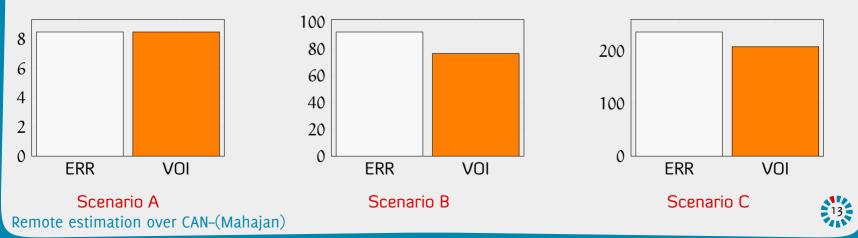
Numerical example

Scenariosn sensors, each observing a Gauss-Markov process.Scenario A 50 homogeneous sensors with $(a^i, \sigma^i) = (1, 1)$.Scenario B 25 sensors with $(a^i, \sigma^i) = (1, 1)$ and 25 sensors with $(a^i, \sigma^i) = (1, 5)$.Scenario C 20 sensors $(a^i, \sigma^i) = (1, 1)$; 15 with (1, 5); 15 with (1, 10).

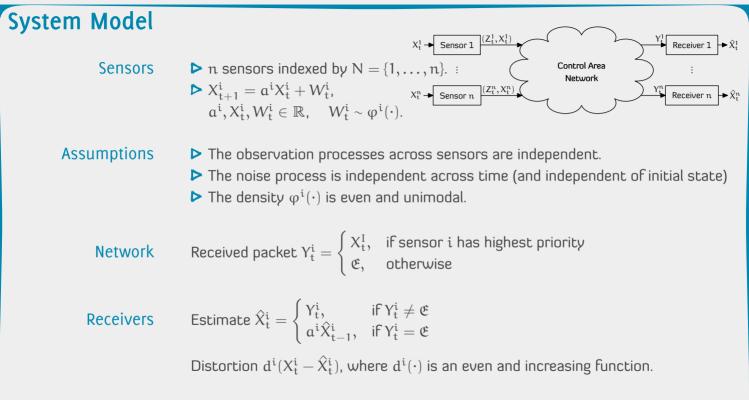
Comparison TDMA Sensors transmit periodically

ERR Sensor with highest error transmits

VOI Sensor with the highest VOI transmits



Remote estimation over CAN-(Mahajan)



Remote estimation over CAN-(Mahajan)

Defining the value of information

Value of Information (V0I)

The amount of money someone is willing to pay to access that information.

VOI for remote estimation

Suppose that there is a single sensor, say i, and a dedicated communication channel is available.

 \triangleright The sensor has to pay an access fee λ^i each time it uses the channel.

 \blacktriangleright Let $U^i_t \in \{0,1\}$ denote the sensor's decision.

> Then, the error process is

$$E^{i}_{t+1} = \begin{cases} W^{i}_{t}, & \text{if } U^{i}_{t} = 1\\ a^{i}E^{i}_{t} + W^{i}_{t} & \text{if } U^{i}_{t} = 0 \end{cases}$$

Objective

$$\text{min} \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \left[\lambda^i U^i + (1-U^i) d^i (E_t^i) \right] \right]$$

Ren

Naive method

c .

For a given λⁱ, find kⁱ(λⁱ) by numerically solving the dynamic program.
 VOIⁱ(e) can be computed by doing a binary search of λⁱ until kⁱ(λⁱ) = |e|.
 This method is extremely inefficient because solving DP is hard.

First simplification

Let f_k^i denote the threshold policy with threshold k.

Define
$$D_k^i = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{t} (1 - U_t^i) d^i(E_t^i) \right]$$
 and $N_k^i = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{t} U_t^i \right]$

Then, $J^i(f_k^i) = D_k^i + \lambda^i N_k^i$. The policy is optimal if $\partial_k D_k^i + \lambda^i \partial_k N_k^i = 0$.

Therefore,
$$VOI^{i}(k) = -\frac{\partial_{k}D_{k}^{i}}{\partial_{k}N_{k}^{i}}$$

. .

Ren

Computing $\partial_k D_k^i$ and $\partial_k N_k^i$

 (\cdot, \cdot)

Renewal relationships Let τ denote the stopping time of the first transmission.

. •

Define
$$L_k^i(x) = \mathbb{E}\left[\left|\sum_{t=0}^{\tau-1} d(E_t^i)\right| E_0^i = x\right]$$
 and $M_k^i(x) = \mathbb{E}\left[\tau \left| E_0^i = x \right]$.

Then, from renewal theory:
$$D_k^i = \frac{L_k^i(0)}{M_k^i(0)}$$
 and $N_k^i = \frac{1}{M_k^i(0)}$

Therefore,
$$\text{VOI}^{i}(k) = M^{i}_{k}(0) \frac{\partial_{k}L^{i}_{k}(0)}{\partial_{k}M^{i}_{k}(0)} - L^{i}_{k}(0)$$

Need to compute $M_k^i(0)$, $L_k^i(0)$, $\partial_k M_k^i(0)$, $\partial_k L_k^i(0)$ to compute VOI.

Ren

Computing $L_k^i(0)$ and $M_k^i(0)$

c · · ·

. .

Balance equation

$$L_k^i(x) = d_k^i(x) + \int_{-k}^k \phi^i(y - \alpha x) L_k^i(y) dy \quad \text{(Fredholm integral eqn of the 2nd kind)}$$

Solution using quadrature method

$$L_k^i(x_p) \approx d^i(x_p) + \sum_{q=-m}^m w_q \varphi^i(x_p - ax_q) L_k^i(x_q)$$

Or, in matrix form,
$$L^{i}=(I-\Phi^{i})^{-1}d^{i}$$
 and $M^{i}=(I-\Phi^{i})^{-1}$ 1

