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Sensor Networks

Internet of ThingsSmart Cities

Many remote estimation applications where:
Multiple sensors transmit over shared links
Link capacity varies exogenously

Salient features:
Adapt transmission rate at sensors to avoid
congestion and, at the same time, minimize
estimation errors

Adaptation should take place in a low
complexity and distributed manner

Show that such questions can be answered using dual decomposition theory
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Sampling process Sensor i samples process i at rate Ri = 1/Ti.

Network Rate region ℛ = {(R1, . . . , Rn) ∈ ℝn
≥0 : ∑

n
i=1 Ri ≤ C}

Estimated process At a sampling time: X̂i(t) = Xi(t). At other times: dX̂i(t) = aiX̂i(t)dt
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System Performance and Optimization Problem

Mean-square error Mi(Ri) = Ri ∫

1/Ri

0
(Xi(t) − X̂I(t))

2dt when sensor i is sampling at rate Ri.

Example If the noise process is a Wiener process with variance σ2i , then the state process is a

Gauss-Markov (or Ornstein-Uhlenbeck) process, andMi(Ri) =
σ2i
2ai [

e2ai/Ri−1

2ai/Ri
− 1
]
.
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Solution approach

Proposition Under assumptions (A1) and (A2), the optimization problem has a unique solution
which we denote by 𝐑∗ = (R∗1, . . . , R∗n).
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Solution approach

Proposition Under assumptions (A1) and (A2), the optimization problem has a unique solution
which we denote by 𝐑∗ = (R∗1, . . . , R∗n).

How do we find 𝐑∗ in a distributed manner?
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At each sensor i

Pick Ri,k to minMi(Ri) + λkRi,k

At the network

λk+1 =
[
λk − αk

(
C−

n

∑
i=1
Ri,k
)]

+

Distributed Solution via Dual Decomposition

Dual Decomposition Decomposes into two parts: Network and Sensor i

Syncronous
Algorithm

Network starts with a guess λ0.
At each iteration k = 0, 1, . . .
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Properties of synchronous algorithm

Theorem 1 Under (A1) and (A2), for any initial guess λ0 and appropriately chosen step sizes αk,
lim
k→∞

𝐑k ≔ lim
k→∞

(R1,k, . . . , Rn,k) = 𝐑∗.



Sampling over shared medium–(Mathew, Johannson, Mahajan)
6

Properties of synchronous algorithm

Theorem 1 Under (A1) and (A2), for any initial guess λ0 and appropriately chosen step sizes αk,
lim
k→∞

𝐑k ≔ lim
k→∞

(R1,k, . . . , Rn,k) = 𝐑∗.

Implementation The synchronous algorithm can be implemented as part of the initial handshaking
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Drawbacks Large signaling overhead.

Algorithm needs to be rerun when:
a sensor leaves, or
a new sensor comes on board, or
the network capacity changes.
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Properties of synchronous algorithm

Theorem 1 Under (A1) and (A2), for any initial guess λ0 and appropriately chosen step sizes αk,
lim
k→∞

𝐑k ≔ lim
k→∞

(R1,k, . . . , Rn,k) = 𝐑∗.

Implementation The synchronous algorithm can be implemented as part of the initial handshaking
protocol when the sensors come online.

Drawbacks Large signaling overhead.

Algorithm needs to be rerun when:
a sensor leaves, or
a new sensor comes on board, or
the network capacity changes.

Salient feature: The network doesn’t need to know Ri,k. It only needs an
estimate of∑Ri, which it can infer from the received packets.
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Asynchronous algorithm for choosing sampling rates

At the network Initialize λ > 0

Upon event ⟨new packet received⟩ do
Estimate received sum rate Ĉk based on packets received
in a sufficiently large sliding window of time.

λk+1 = [λk − αk(C − Ĉk)]
+.

Broadcast λk+1
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Asynchronous algorithm for choosing sampling rates

At the network Initialize λ > 0

Upon event ⟨new packet received⟩ do
Estimate received sum rate Ĉk based on packets received
in a sufficiently large sliding window of time.

λk+1 = [λk − αk(C − Ĉk)]
+.

Broadcast λk+1

At each sensor Upon event ⟨initialize⟩ or ⟨take new sample⟩ do
Observe λ

Pick Ri to minMi(Ri) + λRi

Set next sampling time = current time + 1Ri
.
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Properties of asynchronous algorithm

Assumption (A3) The time between the consecutive samples is bounded.

Theorem 2 Under (A1)–(A3), for any initial guess λ0 and appropriately chosen step sizes αk,
lim
k→∞

𝐑k ≔ lim
k→∞

(R1,k, . . . , Rn,k) = 𝐑∗.

Moreover, if the synchronous and the asynchronous algorithms use the same
learning rates {αk}k≥0, then the corresponding Lagrange multipliers converge to the
same value.
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Properties of asynchronous algorithm

Assumption (A3) The time between the consecutive samples is bounded.

Theorem 2 Under (A1)–(A3), for any initial guess λ0 and appropriately chosen step sizes αk,
lim
k→∞

𝐑k ≔ lim
k→∞

(R1,k, . . . , Rn,k) = 𝐑∗.

Moreover, if the synchronous and the asynchronous algorithms use the same
learning rates {αk}k≥0, then the corresponding Lagrange multipliers converge to the
same value.

Example 2 sensors: GaussMarkov(1, 1) and GaussMarkov(1, 2). Network capacity C = 1.
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Robustness to packet drops and delays
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Illustrative example

Changing network
conditions

Sensors arrive according to a Poisson process and stay in the system for an
exponentially distributed amount of time.
Sensor parameters are distributed randomly.
Network capacity changes exogeneously.
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Illustrative example

Changing network
conditions

Sensors arrive according to a Poisson process and stay in the system for an
exponentially distributed amount of time.
Sensor parameters are distributed randomly.
Network capacity changes exogeneously.

Network Network is not aware of the number of sensors.
Adapts λ according to the asynchronous algorithm
Broadcasts the value of λ.

Sensors Sensors don’t know the network capacity.
Run the asynchronous algorithm to adapt rate Ri.
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Comparison with baseline schemes

Scheme 1: Ri = C/30.

Scheme 2: Ri = C/N(t).
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Comparison with baseline schemes

Scheme 1: Ri = C/30.

Scheme 2: Ri = C/N(t).

Performance of Asynchronous algorithm
is better than baseline, and significantly
so when the network capacity is low.
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Dual Decomposition Decomposes into two parts: Network and Sensor i
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Algorithm

Network starts with a guess λ0.
At each iteration k = 0, 1, . . .
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Asynchronous algorithm for choosing sampling rates

At the network Initialize λ > 0

Upon event ⟨new packet received⟩ do
Estimate received sum rate Ĉk based on packets received
in a sufficiently large sliding window of time.

λk+1 = [λk − αk(C − Ĉk)]
+.

Broadcast λk+1

At each sensor Upon event ⟨initialize⟩ or ⟨take new sample⟩ do
Observe λ

Pick Ri to minMi(Ri) + λRi
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System Performance and Optimization Problem

Mean-square error Mi(Ri) = Ri ∫

1/Ri

0
(Xi(t) − X̂I(t))

2dt when sensor i is sampling at rate Ri.

Example If the noise process is a Wiener process with variance σ2i , then the state process is a

Gauss-Markov (or Ornstein-Uhlenbeck) process, andMi(Ri) =
σ2i
2ai [

e2ai/Ri−1

2ai/Ri
− 1
]
.

Assumptions (A1) For any sensor i and rate Ri > 0,Mi(Ri) is strictly decreasing and convex in Ri.

(A2)Mi(Ri) is twice differentiable and there exists a positive constant ci such that

M″i (Ri) ≥ ci for all Ri > 0.

Problem formulation Find rate (R1, . . . , Rn) ∈ ℝn
≥0 to min

n

∑
i=1
Mi(Ri) such that

n

∑
i=1
Ri ≤ C.
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Primal Problem
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𝐑∗∈ℝn

≥0

n

∑
i=1
Mi(Ri)

s.t.
n

∑
i=1
Ri ≤ C

Lagrangian Dual

min
λ∈ℝ≥0

L(𝐑, λ)

where L(𝐑, λ) =
n

∑
i=1
[Mi(Ri) + λRi] − λC

[Kelly et al 1998]
[Low Lapsley 1999]
[Chiang et al 2007]

At each sensor i

Pick Ri,k to minMi(Ri) + λkRi,k

At the network

λk+1 =
[
λk − αk

(
C−

n

∑
i=1
Ri,k
)]

+

Distributed Solution via Dual Decomposition

Dual Decomposition Decomposes into two parts: Network and Sensor i

Syncronous
Algorithm

Network starts with a guess λ0.
At each iteration k = 0, 1, . . .
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Asynchronous algorithm for choosing sampling rates

At the network Initialize λ > 0

Upon event ⟨new packet received⟩ do
Estimate received sum rate Ĉk based on packets received
in a sufficiently large sliding window of time.

λk+1 = [λk − αk(C − Ĉk)]
+.

Broadcast λk+1

At each sensor Upon event ⟨initialize⟩ or ⟨take new sample⟩ do
Observe λ

Pick Ri to minMi(Ri) + λRi

Set next sampling time = current time + 1Ri
.
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Conclustion

The asynchronous event-driven algorithm can adapt to slowly varying network conditions in a distributed
manner. Asymptotically, the algorithm converges to the optimal rates.

The sensors and the estimators don’t need synchronous clocks!

Robust to packet drops, delays, and slow variation in system parameters.

Dual decomposition does not ensure that the constraint∑Ri ≤ C is satisfied at all iterations. In practice,
violation of this constraint will lead to congestion. To understand its impact, we need to consider a more
elaborate network model where congestion leads to delay.


