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Abstract

In this paper, we are interested in systems with multiple agents that wish to cooperate in order to accomplish a common
task while a) agents have different information (decentralized information) and b) agents do not know the complete
model of the system i.e., they may only know the partial model or may not know the model at all. The agents must
learn the optimal strategies by interacting with their environment i.e., by multi-agent Reinforcement Learning (RL).
The presence of multiple agents with different information makes multi-agent (decentralized) reinforcement learning
conceptually more difficult than single-agent (centralized) reinforcement learning.

We propose a novel multi-agent reinforcement learning algorithm that learns ✏-team-optimal solution for systems with
partial history sharing information structure, which encompasses a large class of multi-agent systems including delayed
sharing, control sharing, mean field sharing, etc. Our approach consists of two main steps as follows: 1) the multi-
agent (decentralized) system is converted to an equivalent single-agent (centralized) POMDP (Partial Observable Markov
Decision Process) using the common information approach of Nayyar et al, TAC 2013, and 2) based on the obtained
POMDP, an approximate RL algorithm is constructed using a novel methodology. Particularly, in the second step, since
the POMDP obtained in the first step requires the complete-knowledge of system model, we introduce a new concept
that we call “Incrementally Expanding Representation (IER)”. The main feature of IER is to remove the dependency of
the POMDP from complete-knowledge of the model. Then, based on an appropriately defined IER, we follow three
sub-steps: 2a) convert the POMDP to a countable-state MDP ∆, 2b) approximate ∆ with a sequence of finite-state MDPs
{∆N}1N=1, and 2c) use a RL algorithm to learn optimal strategy of MDP ∆N .

We show that the performance of the RL strategy converges to the optimal performance exponentially fast. We illustrate
the proposed approach and verify it numerically by obtaining a multi-agent Q-learning algorithm for two-user Multi
Access Broadcast Channel (MABC) which is a benchmark example for multi-agent systems.
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1 Introduction

In this paper, we propose a multi-agent Reinforcement Learning (RL) algorithm that guarantees team-optimal solution.
Existing approaches for multi-agent learning may be categorized as follows: exact methods and heuristics. The exact
methods rely on the assumption that the information structure is such that all controllers can consistently update the
Q-function. These include approaches that rely on social convention and rules to restrict the decisions made by the
controllers [5]; approaches that use communication to convey the decisions to all controllers [6]; and approaches that
assume that the Q-function decomposes into a sum of terms, each of which is independently updated by a controller [7].
Heuristic approaches include joint action learners heuristic [8] where each controller learns the empirical model of the
system in order to estimate the control action of other controllers; frequency maximum Q-value heuristic [9] where
controllers keep track of the frequency with which each action leads to a “good” outcome; heuristic Q-learning [10]
which assigns a rate of punishment for each controller; and distributed Q-learning [11] which uses predator-prey models
to assign heuristic sub-goals to individual controllers. To best of our knowledge, there is no RL approach that guarantees
team optimal solution. In this paper, we present an approach that guarantees team-optimal solution.

2 System Model

Let Xt 2 X denote the state of a dynamical system controlled by n agents. At time t, agent i observes Y i
t 2 Yi and

chooses U i
t 2 U i. For ease of notation, we denote the joint action and the joint observation by Ut = (U1

t , . . . , U
n
t ) and

Yt = (Y 1
t , . . . , Y

n
t ), respectively. The dynamics of the system are given by

Xt+1 = f(Xt,Ut,W
s
t ), (1)

and the observations are given by
Yt = h(Xt,Ut�1,W

o
t ). (2)

In this paper, all system variables are considered finite valued. Let Iit ✓ {Y1:t,U1:t�1} be information available at agent i
at time t. The collection ({Iit}

1

t=1, i = 1, . . . , n) is called the information structure. In this paper, we restrict attention to an
information structure called partial history sharing (PHS) [1], which will be defined later.

At time t, agent i chooses action U i
t according to control law git as follows

U i
t = git(I

i
t). (3)

We denote gi = (gi1, g
i
2, . . .) as strategy of agent i and g = (g1, . . . ,gn) as joint strategy of agents. The performance of

strategy g is measured by the following infinite-horizon discounted cost

J(g) = E
g

"

1
X

t=1

�t�1`(Xt,Ut)

#

, (4)

where discount factor � 2 (0, 1). We are interested in the following problem.

Problem 1 Given the information structure, action spaces {U i}ni=1, observation spaces {Yi}ni=1, discount factor �, and any ✏ > 0,
develop a (model-based or model-free) reinforcement learning algorithm that guarantees an ✏-optimal strategy g⇤.

3 Preliminaries on Partial History Sharing

Herein, we present a simplified version of partial history sharing information structure, originally presented in [1].

Definition 1 ( [1], Partial History Sharing (PHS)) Consider a decentralized control system with n agents. Let Iit denote the
information available to agent i at time t. Assume Iit ✓ Iit+1. Then, split the information at each agent into two parts: common
information Ct =

Tn

i=1
Iit i.e. the information shared between all agents and local information M i

t = Iit\Ct that is the local
information of agent i. Define Zt := Ct+1\Ct as common observation, then Ct+1 = Z1:t. An information structure is called partial
history sharing when the following conditions are satisfied:

a) The update of local information M i
t+1 ✓ {M i

t , U
i
t , Y

i
t+1}\Zt, i 2 {1, . . . , n}.

b) For every agent i, the size of local information M i
t and the size of common observation Zt are uniformly bounded in time t.

These conditions are fairly mild and are satisfied by a large class of models.

Remark 1 Note that conditions (a) and (b) are valid even if there is no common information between agents i.e., Ct = ;.
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4 Approach

In this section, we derive our results for systems that have partial history sharing information structure defined above.
Our approach consists of two steps. In the first step, we consider the setup of the complete-knowledge of the model
and use the common information approach of [1] to convert the multi-agent system with PHS information structure to an
equivalent single-agent POMDP. In the second step, based on the obtained POMDP, we develop an approximate RL
algorithm for the setup of incomplete-knowledge of the model. We show that the error associated with the approximate
RL converges to zero exponentially fast.

4.1 Step 1: An Equivalent single-agent POMDP

In this section, we present common information approach of [1] and its main results for the setup of complete-knowledge
of the model described in Section 2. Let Γi

t : M
i 7! U i be the mapping from the local information of subsystem i to action

of subsystem i at time t i.e. U i
t = Γ

i
t(M

i
t ).

Consider a virtual coordinator (single agent) that observes the common information shared between all subsystems by
time t i.e. Ct. Based on Ct, the coordinator prescribes functions Γt = (Γ1

t , . . . ,Γ
n
t ) 2 G to subsystems, where G =

Qn

i=1
Gi

denotes the space of joint mappings Γt and Gi denotes the space of mappings Γ
i
t. Hence, Γi

t =  i
t(Ct), 8i 2 {1, . . . , n}

where ψt = { 1
t , . . . , 

n
t } is called the coordination law and Γt = (Γ1

t , . . . ,Γ
n
t ) is called the prescription. In the sequel, for

ease of notation, we will use the following compact form for the coordinator’s law, Γt = ψt(Ct). We call ψ = {ψ1,ψ2, . . .}
as the coordination strategy. In the coordinated system, dynamics and cost function are as same as those in the original
problem in Section 2. In particular, the infintie-horizon discounted cost in the coordinated system is as follows:

J(ψ) = E
ψ

"

1
X

t=1

�t�1`(Xt,Γ
1
t (M

1
t ), . . . ,Γ

n
t (M

n
t ))

#

. (5)

Lemma 1 ( [1], Proposition 3) The original system described in Section 2 with PHS information structure is equivalent to the
coordinated system.

According to [1], Πt = P(Xt,Mt|Z1:t�1,Γ1:t�1) is an information state for the coordinated system with initial state
Π1 = PX . It is shown in [1] that

1. There exists a function � such that Πt+1 = �(Πt,Γt, Zt).

2. The observation Zt only depends on (Πt,Γt) i.e. P(Zt=zt|Π1:t=⇡1:t,Γ1:t=γ1:t)=P(Zt=zt|Πt=⇡t,Γt=γt).

3. There exists a function ˆ̀such that ˆ̀(⇡t,γt)=E[`(Xt,Ut|Z1:t�1=z1:t�1,Γ1:t=γ1:t)].

Assume that the initial state ⇡1 is fixed. Let R denote the reachable set of above centralized POMDP that contains all the
realizations of ⇡t generated by ⇡t+1 = �(⇡t,γ, z), 8γ 2 G, 8z 2 Z, 8t 2 N, with initial information state ⇡1. Note that
since all the variables are finite valued, then G (set of all prescriptions γ) and Z (set of all observations of the coordinator)
are finite sets. Hence, R is at most a countable set. In the next step, we develop an approximate RL algorithm based on
the obtained POMDP for the setup of incomplete-knowledge of the model.

4.2 Step 2: An Approximate RL algorithm for POMDP

In the previous step, we identified a single-agent POMDP that is equivalent to the multi-agent system with PHS infor-
mation structure. However, the obtained POMDP requires the complete knowledge of the model. To circumvent this
requirement, we introduce a new concept that we call Incrementally Expanding Representation (IER). The main feature of
IER is to remove the dependency of the POMDP from the complete knowledge of the model. Using the IER, we fol-
low three sub-steps: 2a) convert the POMDP to a countable-state MDP ∆, 2b) construct a sequence of finite-state MDPs
{∆N}1N=1 of MDP ∆, and 2c) use a generic RL algorithm to learn an optimal strategy of ∆N .

Definition 2 (Incrementally Expanding Representation (IER)) Let {Sk}
1

k=1
be a sequence of finite sets such that S1 ( S2 (

. . . ( Sk ( . . ., and S1 is a singleton, say S1 = {s⇤}. Let S = limk!1 Sk be the countable union of above finite sets, B : S ! R

be a sujrjective function that maps S to the reachable set R, and f̃ : S ⇥ G ⇥ Z ! S . The tuple h{Sk}
1

k=1
, B, f̃i is called an

incrementally expanding representation (IER), if it satisfies the following properties:

(P1) Incremental Expansion: For any γ 2 G, z 2 Z, and s 2 Sk, we have that

f̃(s,γ, z) 2 Sk+1. (6)

(P2) Consistency: For any (γ1:t�1, z1:t�1), let Πt be the information state of the obtained POMDP and St be the state obtained by
recursive application of (6) starting from S1 = s⇤. Then, Πt = B(St).
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Lemma 2 Every multi-agent system with PHS information structure has at least one IER.

4.2.1 Countable-state MDP ∆

Let the tuple h{Sk}
1

k=1
, B, f̃i be an IER of the POMDP obtained in the first step. Then, define MDP ∆ with countable

state space S , finite action space G, and dynamics f̃ such that:

(F1) S = limk!1 Sk is the (countable) state space and G is the finite action space of MDP ∆. The initial state is
singleton s⇤. The state St 2 Sk, k  t, evolves as follows:

St+1 = f̃(St,Γt, Zt), St+1 2 Sk+1,Γt 2 G, Zt 2 Z,

where observation Zt only depends on (St,Γt). At time t, there is a cost depending on the current state St 2 S

and action Γt 2 G given by ˜̀(St,Γt) = ˆ̀(B(St),Γt) = ˆ̀(Πt,Γt).

(F2) State space S , action space G, and dynamics f̃ do not depend on the unknowns.

The performance of a stationary strategy ψ̃ : S 7! G is quantified by J̃(ψ̃) = E
ψ̃
h

P

1

t=1
�t�1 ˜̀(St,Γt)

i

.

Lemma 3 There exists at least one ∆ that satisfies F1 and F2. Also, let ψ̃⇤ be an optimal strategy of MDP ∆. Construct a strategy

ψ⇤ for the coordinated system as follows: ψ̃⇤(s) =: ψ⇤(B(s)), 8s 2 S. Then, J̃(ψ̃⇤) = J(ψ⇤) and ψ⇤ is an optimal strategy for
the coordinated system, and therefore can be used to generate an optimal strategy for the original multi-agent system.

4.2.2 Finite-state incrementally expanding MDP ∆N

In this part, we construct a series of finite-state MDPs {∆N}1N=1, that approximate the countable-state MDP ∆ as follows.
Let ∆N be a finite-state MDP with state space SN and action space G. The transition probability of ∆N is constructed as
follows. Pick any arbitrary set D⇤ 2 SN . Remap every transition in ∆ that takes the state s 2 SN to s0 2 SN+1\SN to a
transition from s 2 SN to any (not necessarily unique) state in D⇤. In addition, the per-step cost function of ∆N is simply

a restriction of ˜̀ to SN ⇥ G. Also, we assume that there exists an action or a sequence of actions that if taken, the system
transmits to a known state (states) d⇤ in D⇤. Then, dynamics of ∆N is as follows.

St+1=

(

f̃(St,Γt, Zt) f̃(St,Γt, Zt)2SN

d⇤ f̃(St,Γt, Zt)2SN+1\SN

(7)

Theorem 1 Let ψ̃⇤ be an optimal strategy of MDP ∆ and ψ̃⇤

N be an optimal strategy of MDP ∆N . Then, the difference in

performance is bounded as follows: |J̃(ψ̃⇤) � J̃N (ψ̃⇤

N )|  2βτN

1�β
Lmax , where Lmax denotes the maximum instantaneous cost and

⌧N is a model dependent parameter that is N  ⌧N .

4.2.3 RL algorithm for MDP ∆N

Let T be a generic (model-based or model-free) RL algorithm designed for finite-state MDPs with infinite horizon dis-
counted cost. By a generic RL algorithm, we mean any algorithm which fits to the following framework. At each iteration
k 2 N, T knows the state of system, selects one action, and observes an instantaneous cost and the next state. The strategy
learned by T converges to an optimal strategy as k ! 1.

Let ψ̃k
N : SN ! G be the learned strategy associated with RL algorithm T operating on MDP ∆N at iteration k such that

lim
k!1

|J̃N (ψ̃k
N )� J̃N (ψ̃⇤

N )| = 0. (8)

Now, we convert (translate) the strategies in ∆N to strategies in the original multi-agent system described in Section 2,

where the actual learning happens. Hence, we define a strategy g
k
N := (gk,iN , . . . , g

k,n
N ), at iteration k, as follows:

g
k,i
N (s,mi) := ψ̃

k,i
N (s)(mi), 8s 2 SN , 8mi 2 Mi, 8i, (9)

where ψ̃
k,i
N denotes the ith term of ψ̃k

N and state s updates according to (7).

Theorem 2 Let J⇤ be the optimal performance of the original multi-agent system given in (4). Then, the approximation error
associated with using the learned strategy is bounded as follows:

lim
k!1

|J⇤ � J(gk
N )| = |J̃(ψ̃⇤)� J̃N (ψ̃⇤

N )|  ✏N , (10)

where ✏N = 2βτN

1�β
Lmax  2βN

1�β
Lmax. Note that the error goes to zero exponentially in N .
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5 Example

Consider a 2-user multi access broadcast channel (MABC) system first defined in [4]. The system consists of 2 users that
have a buffer of size 1 (thus, Xt = (X1

t , X
2
t ) 2 {0, 1}2). Packets arrive at each user i according to independent Bernoulli

processes with rate pi. Each user observes the state of its own queue i.e. (Y i
t = Xi

t) and transmits if it has a packet (i.e.
U i
t 2 {0, 1} and U i

t  Xi
t ). If only one user transmits, then the transmission is successful and the packet is removed from

the queue. If both users transmit, there is a ”collision” and the packets remain in the queues. Users can sense whether the
channel was used or if a collision took place. Thus, the information available at each user i is Iit = {Xi

t ,U1:t�1}, where
Ut = (U1

t , U
2
t ). The objective is to maximize the throughput. Hence, the instantaneous reward is defined as follows:

r(Xt,Ut) = U1
t + U2

t � 2U1
t U

2
t .

At time t, the common observation Zt = Ut and the common information Ct = {U1:t�1}. For this specific model,
the prescription �i is completely specified by Ai

t := �it(1) (since �it(0) is always 0). Hence, U i
t = �it(X

i
t) = Ai

t · X
i
t .

Therefore, we may equivalently assume that the coordinator generates actions At = (A1
t , A

2
t ). Define Πt = (Π1

t ,Π
2
t ),

Π
i
t = P(Xi

t = 1 | U1:t�1,A1:t�1), as information state for the coordinated system with initial state Π1 = (p1, p2). Thus,
the reachable set R is given by R := {(1, 1), (1, p1), (p2, 1), (p1, p2)} [ {(p1, Tn

2 p
2) : n 2 N} [ {(Tn

1 p
1, p2) : n 2 N},

where Tn
i q = Ti(T

n�1

i q). Let b1, b2 be any arbitrary number in (0, 1). Define S = {Sk}
1

k=1
as the countable state space

of ∆, where S1 = {(0, 0)} and Sk = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 1 � bi1), (1 � bi2, 0)}
k�1

i=1
, k � 2. The action space is

A = {(0, 1), (1, 0), (1, 1)} (note that the action (0, 0) is dominated, so it is removed without loss of optimality).

Figure 1: This figures shows the learning pro-
cess of MDP ∆N in a few snapshots. In this sim-
ulation, we use the following numerical values:
b1 = 0.25, b2 = 0.83, N = 20,� = 0.99, p1 =
0.3, p2 = 0.6. In particular, the optimal strategy
is a recurrent class consisting of states (0, 1� b11),
(1 � b12, 0), (1 � b22, 0), and (1 � b32, 0). The learn-
ing procedure is plotted in black and the optimal
recurrent class is plotted in red. It is seen that
the state of the system is eventually trapped in
the optimal recurrent class. The optimal strategy
says that user with rate of 0.6 must transmit 3
times more than the user with rate of 0.3.
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