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Abstract— In this paper, we present an online reinforcement
learning algorithm, called Renewal Monte Carlo (RMC), for
infinite horizon Markov decision processes with a designated
start state. RMC is a Monte Carlo algorithm and retains
the advantages of Monte Carlo methods including low bias,
simplicity and ease of implementation while, at the same time,
circumvents their key drawbacks of high variance and delayed
(end of episode) updates. The key ideas behind RMC are as
follows. First, under any reasonable policy, the reward process
is ergodic. So, by renewal theory, the performance of a policy
is equal to the ratio of expected discounted reward to the
expected discounted time over a regenerative cycle. Second, by
carefully examining the expression for performance gradient,
we propose a stochastic approximation algorithm that only
requires estimates of the expected discounted reward and
discounted time over a regenerative cycle and their gradients.
We propose two unbiased estimators for evaluating performance
gradients—a likelihood ratio based estimator and a simulta-
neous perturbation based estimator—and show that for both
estimators, RMC converges to a locally optimal policy. We also
generalize the RMC algorithm to post-decision state models. We
conclude by presenting numerical experiments on a randomly
generated MDP and event driven communication.

I. INTRODUCTION

In recent years, reinforcement learning [1]–[4] has emerged
as a leading framework to learn how to act optimally in
unknown environments. Policy gradient methods [5]–[10]
have played a prominent role in the success of reinforcement
learning. Such methods have two critical components: policy
evaluation and policy improvement. In the policy evaluation
step, the performance of a parameterized policy is evaluated
while in the policy improvement step, the policy parameters
are updated using stochastic gradient ascent.

Policy gradient methods may be broadly classified as
Monte Carlo methods and temporal difference methods. In
Monte Carlo methods, performance of a policy is estimated
using the discounted return of a single sample path; in
temporal difference methods, the value(-action) function is
guessed and this guess is iteratively improved using temporal
differences. Monte Carlo methods are attractive because they
have zero bias, are simple and easy to implement, and work
for both discounted and average reward setups as well as for
models with continuous state and action spaces. However,
they suffer from various drawbacks. First, they have high
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variance because a single sample path is used to estimate
performance. Second, they are not asymptotically optimal
for infinite horizon models because it is effectively assumed
that the model is episodic; in infinite horizon models, the
trajectory is arbitrarily truncated to treat the model as an
episodic model. Third, the policy improvement step cannot
be carried out in tandem with policy evaluation. One must
wait until the end of the episode to estimate the performance
and only then can the policy parameters be updated. It is for
these reasons that Monte Carlo methods are largely ignored
in the literature on policy gradient methods, which almost
exclusively focuses on temporal difference methods such as
actor-critic with eligibility traces [3].

In this paper, we propose a Monte Carlo method—which
we call Renewal Monte Carlo (RMC)—for infinite horizon
Markov decision processes with designated start state. Like
Monte Carlo, RMC has low bias, is simple and easy to
implement, and works for models with continuous state and
action spaces. At the same time, it does not suffer from
the drawbacks of typical Monte Carlo methods. RMC is a
low-variance online algorithm that works for infinite horizon
discounted and average reward setups. One doesn’t have to
wait until the end of the episode to carry out the policy
improvement step; it can be carried out whenever the system
visits a designated reference state.

Although renewal theory is commonly used to estimate
performance of stochastic systems in the simulation optimiza-
tion community [11], [12], those methods assume that the
probability law of the primitive random variables and its weak
derivate are known, which is not the case in reinforcement
learning. Renewal theory is also commonly used in the
engineering literature on queuing theory and systems and
control for Markov decision processes (MDPs) with average
reward criteria and a known system model. There is some prior
work on using renewal theory for reinforcement learning [13],
[14], where renewal theory based estimators for the average
return and differential value function for average reward
MDPs is developed. In RMC, renewal theory is used in a
different manner for discounted reward MDPs (and the results
generalize to average cost MDPs).

II. RMC ALGORITHM

Consider a Markov decision process (MDP) with state
St ∈ S and action At ∈ A. The system starts in an initial
state s0 ∈ S and at time t:

1) there is a controlled transition from St to St+1 accord-
ing to a transition kernel P (At);

2) a per-step reward Rt = r(St, At, St+1) is received.



Future is discounted at a rate γ ∈ (0, 1).
A (time-homogeneous and Markov) policy π maps the

current state to a distribution on actions, i.e., At ∼ π(St).
We use π(a|s) to denote P(At = a|St = s). The performance
of a policy π is given by

Jπ = EAt∼π(St)

[ ∞∑
t=0

γtRt

∣∣∣∣ S0 = s0

]
. (1)

A policy that maximizes the performance is called an
optimal policy. In the sequel, we present a sample path based
online learning algorithm, which we call Renewal Monte
Carlo (RMC), which identifies a locally optimal policy within
the class of parameterized policies.

Suppose policies are parameterized by a closed and convex
subset Θ of the Euclidean space. For example, Θ could be
the weight vector in a Gibbs soft-max policy, or the weights
of a deep neural network, or the thresholds in a control limit
policy, and so on. Given θ ∈ Θ, we use πθ to denote the
policy parameterized by θ and Jθ to denote Jπθ . We assume
that for all policies πθ, θ ∈ Θ, the designated start state s0

is positive recurrent.
The typical approach for policy gradient based reinforce-

ment learning is to start with an initial guess θ0 ∈ Θ
and iteratively update it using stochastic gradient ascent. In
particular, let ∇̂Jθm be an unbiased estimator of ∇θJθ

∣∣
θ=θm

,
then update

θm+1 =
[
θm + αm∇̂Jθm

]
Θ

(2)

where [θ]Θ denotes the projection of θ onto Θ and {αm}m≥1

is a sequence of learning rates that satisfies the standard
assumptions of

∞∑
m=1

αm =∞ and
∞∑
m=1

α2
m <∞. (3)

Under mild technical conditions [15], the above iteration
converges to a θ∗ that is locally optimal, i.e., ∇θJθ

∣∣
θ=θ∗

= 0.
In RMC, we approximate ∇θJθ by a Renewal theory based
estimator as explained below.

Let τ (n) denote the stopping time when the system returns
to the start state s0 for the n-th time. In particular, let τ (0) = 0
and for n ≥ 1 define

τ (n) = inf{t > τ (n−1) : st = s0}.
We call the sequence of (St, At, Rt) from τ (n−1) to τ (n) − 1
as the n-th regenerative cycle. Let R(n) and T(n) denote the
total discounted reward and total discounted time of the n-th
regenerative cycle, i.e.,

R(n) = Γ(n)
τ(n)−1∑
t=τ(n−1)

γtRt and T(n) = Γ(n)
τ(n)−1∑
t=τ(n−1)

γt, (4)

where Γ(n) = γ−τ
(n−1)

. By the strong Markov property,
{R(n)}n≥1 and {T(n)}n≥1 are i.i.d. sequences. Let Rθ and
Tθ denote E[R(n)] and E[T(n)], respectively. Define

R̂ =
1

N

N∑
n=1

R(n) and T̂ =
1

N

N∑
n=1

T(n), (5)

where N is arbitrarily chosen number of cycles. Then, R̂ and
T̂ are unbiased and asymptotically consistent estimators of
Rθ and Tθ.

From ideas similar to standard Renewal theory [16], we
have the following.

Proposition 1 (Renewal Relationship) The performance of
policy πθ is given by:

Jθ =
Rθ

(1− γ)Tθ
. (6)

PROOF For ease of notation, define

Tθ = EAt∼πθ(St)

[
γτ

(n)−τ(n−1)]
Using the formula for geometric series, we get that Tθ =
(1− Tθ)/(1− γ). Hence,

Tθ = 1− (1− γ)Tθ. (7)

Now, consider the performance:

Jθ = EAt∼πθ(St)

[ τ(1)−1∑
t=0

γtRt

+ γτ
(1)
∞∑

t=τ(1)

γt−τ
(1)

Rt

∣∣∣∣ S0 = s0

]
(a)
= Rθ + EAt∼πθ(St)[γ

τ(1)

] Jθ

= Rθ + TθJθ, (8)

where the second expression in (a) uses the independence of
random variables from (0, τ (1)−1) to those from τ (1) onwards
due to the strong Markov property. Substituting (7) in (8)
and rearranging terms, we get the result of the proposition.�

Differentiating both sides of (6) with respect to θ, we get
that

∇θJθ =
Hθ

T2
θ(1− γ)

, where Hθ = Tθ∇θRθ − Rθ∇θTθ.
(9)

Therefore, instead of using stochastic gradient ascent to
find the maximum of Jθ, we can use stochastic approximation
to find the root of Hθ. In particular, let Ĥm be an unbiased
estimator of Hθm . We then use the update

θm+1 =
[
θm + αmĤm

]
Θ

(10)

where {αm}m≥1 satisfies the standard conditions on learning
rates (3). The above iteration converges to a locally optimal
policy. Specifically, we have the following.

Theorem 1 Let R̂m, T̂m, ∇̂Rm and ∇̂Tm be unbiased
estimators of Rθm , Tθm , ∇θRθm , and ∇θRθm , respectively
such that T̂m ⊥ ∇̂Rm and R̂m ⊥ ∇̂Tm.1 Then,

Ĥm = T̂m∇̂Rm − R̂m∇̂Tm (11)

is an unbiased estimator of Hθ. Furthermore, assume that

1The notation X ⊥ Y means that the random variables X and Y are
independent.



1) Hθ is continuous,
2) the estimate Ĥm has bounded variance,
3) The ODE dθ/dt = Hθ has isolated limit points that

are locally asymptotically stable.
Then, the sequence {θm}m≥1 generated by (10) converges
almost surely and

lim
m→∞

∇θJθ
∣∣
θm

= 0.

PROOF The unbiasedness of Ĥm follows immediately from
the independence assumption. The convergence of the
{θm}m≥1 follows from [17, Theorem 2.1, page 127], the
fact that the model satisfies conditions (A2.1)–(A2.6) of [17,
pg 126] and the convergence to local optima is as per the
discussion in [17, Sec 5.8, page 157]. �

In the remainder of this section, we present two methods for
estimating the gradients of Rθ and Tθ. The first is a likelihood
ratio based gradient estimator which works when the policy
is differentiable with respect to the policy parameters. The
second is a simultaneous perturbation based gradient estimator
that uses finite differences, which is useful when the policy
is not differentiable with respect to the policy parameters.

A. Likelihood ratio based gradient based estimator

One approach to estimate the performance gradient is to
use likelihood ratio based estimates [12], [18], [19]. Suppose
the policy πθ(a|s) is differentiable with respect to θ. For any
time t, define the likelihood function

Lt = ∇θ log[πθ(At | St)], (12)

and for σ ∈ {τ (n−1), . . . , τ (n) − 1}, define

R(n)
σ = Γ(n)

τ(n)−1∑
t=σ

γtRt, T(n)
σ = Γ(n)

τ(n)−1∑
t=σ

γt. (13)

In this notation R(n) = R
(n)

τ(n−1) and T(n) = T
(n)

τ(n−1) . Then,
define the following estimators for ∇θRθ and ∇θTθ:

∇̂R =
1

N

N∑
n=1

τ(n)−1∑
σ=τ(n−1)

R(n)
σ L(n)

σ , (14)

∇̂T =
1

N

N∑
n=1

τ(n)−1∑
σ=τ(n−1)

T(n)
σ L(n)

σ , (15)

where N is arbitrary.

Proposition 2 ∇̂R and ∇̂T defined above are unbiased and
asymptotically consistent estimators of ∇θRθ and ∇θTθ.

PROOF Let Pθ denote the probability induced on the sample
paths when the system is following policy πθ. For t ∈
{τ (n−1), . . . , τ (n) − 1}, let D(n)

t denote the sample path
(Ss, As, Ss+1)t

s=τ(n−1) for the n-th regenerative cycle until
time t. Then,

Pθ(D
(n)
t ) =

t∏
s=τ(n−1)

πθ(As|Ss)P(Ss+1|Ss, As)

Algorithm 1: RMC Algorithm with likelihood ratio based
gradient estimates.

input : Intial policy θ0, discount factor γ, initial
state s0, number of regenerative cycles N

for iteration m = 0, 1, . . . do
for regenerative cycle n1 = 1 to N do

Generate n1-th regenerative cycle using πθm .
Compute R(n1) and T(n1) using (4).

Set R̂m = average(R(n1) : n1 ∈ {1, . . . , N}).
Set T̂m = average(T(n1) : n1 ∈ {1, . . . , N}).
for regenerative cycle n2 = 1 to N do

Generate n2-th regenerative cycle using πθm .
Compute R

(n2)
σ , T(n2)

σ and L(n2)
σ for all σ.

Compute ∇̂Rm and ∇̂Tm using (14) and (15).
Set Ĥm = T̂m∇̂Rm − R̂m∇̂Tm.

Update θm+1 =
[
θm + αmĤm

]
Θ

.

Therefore,

∇θ logPθ(D
(n)
t ) =

t∑
s=τ(n−1)

∇θ log πθ(As|Ss) =

t∑
s=τ(n−1)

Ls. (16)

Note that Rθ can be written as:

Rθ = Γ(n)
τ(n)−1∑
t=τ(n−1)

γtEAt∼πθ(St)[Rt].

Using the log derivative trick,2 we get

∇θRθ = Γ(n)
τ(n)−1∑
t=τ(n−1)

γt EAt∼πθ(St)[Rt∇θ logPθ(D
(n)
t )]

(a)
= Γ(n)EAt∼πθ(St)

[ τ(n)−1∑
t=τ(n−1)

[
γtRt

t∑
σ=τ(n−1)

Lσ

]]
(b)
= EAt∼πθ(St)

[ τ(n)−1∑
σ=τ(n−1)

Lσ

[
Γ(n)

τ(n)−1∑
t=σ

γtRt

]]
(c)
= EAt∼πθ(St)

[ τ(n)−1∑
σ=τ(n−1)

R(n)
σ Lσ

]
(17)

where (a) follows from (16), (b) follows from changing the
order of summations, and (c) follows from the definition of
R

(n)
σ in (13). ∇̂R is an unbiased and asymptotically consistent

estimator of the right hand side of the first equation in (17).
The result for ∇̂T follows from a similar argument. �

To satisfy the independence condition of Theorem 1, we use
two independent sample paths: one to estimate R̂ and T̂ and
the other to estimate ∇̂R and ∇̂T. The complete algorithm

2Log-derivative trick: For any distribution p(x|θ) and any function f ,

∇θEX∼p(X|θ)[f(X)] = EX∼p(X|θ)[f(X)∇θ log p(X|θ)].



in shown in Algorithm 1. An immediate consequence of
Theorem 1 is the following.

Corollary 1 Under the conditions of Theorem 1, the se-
quence {θm}m≥1 generated by Algorithm 1 converges to
a locally optimal solution. 2

Remark 1 Algorithm 1 is presented in its simplest form. It
is possible to use standard variance reduction techniques such
as subtracting a baseline [19]–[21] to reduce variance. 2

Remark 2 In Algorithm 1, we use two separate runs to
compute (R̂m, T̂m) and (∇R̂m,∇T̂m) to ensure that the
independence conditions of Proposition 2 are satisfied. In
practice, we found that using a single run to compute both
(R̂m, T̂m) and (∇R̂m,∇T̂m) has negligible effect on the
accuracy of convergence (but speeds up convergence by a
factor of two). 2

Remark 3 It has been reported in the literature [22] that
using a biased estimate of the gradient where R(n)

σ is given
by:

R(n)
σ = Γ(n)

τ(n)−1∑
t=σ

γt−σRt, (18)

(and a similar expression for T (n)
σ ) leads to faster convergence.

We call this variant RMC with biased gradients and, in our
experiments, found that it does converge faster than RMC.2

B. Simultaneous perturbation based gradient estimator

Another approach to estimate performance gradient is to
use simultaneous perturbation based estimates [23]–[26]. The
general one-sided form of such estimates is

∇̂Rθ = δ(R̂θ+cδ − R̂θ)/c

where δ is a random variable with the same dimension as
θ and c is a small constant. The expression for ∇̂Tθ is
similar. When δi ∼ Rademacher(±1), the above method
corresponds to simultaneous perturbation stochastic approx-
imation (SPSA) [23], [24]; when δ ∼ Normal(0, I), the
above method corresponds to smoothed function stochastic
approximation (SFSA) [25], [26].

Substituting the above estimates in (11) and simplifying,
we get

Ĥθ = δ(T̂θR̂θ+cδ − R̂θT̂θ+cδ)/c.

The complete algorithm is shown in Algorithm 2. Since
(R̂θ, T̂θ) and (R̂θ+cδ, T̂θ+cδ) are estimated from separate
sample paths, Ĥθ defined above is an unbiased estimator
of Hθ. Then, an immediate consequence of Theorem 1 is the
following.

Corollary 2 The sequence {θm}m≥1 generated by Algo-
rithm 2 converges to a locally optimal solution. 2

III. RMC FOR POST-DECISION STATE MODEL

In many models, the state dynamics can be split into two
parts: a controlled evolution followed by an uncontrolled

Algorithm 2: RMC Algorithm with simultaneous pertur-
bation based gradient estimates.

input : Intial policy θ0, discount factor γ, initial
state s0, number of regenerative cycles N ,
constant c, perturbation distribution ∆

for iteration m = 0, 1, . . . do
for regenerative cycle n1 = 1 to N do

Generate n1-th regenerative cycle using πθm .
Compute R(n1) and T(n1) using (4).

Set R̂m = average(R(n1) : n1 ∈ {1, . . . , N}).
Set T̂m = average(T(n1) : n1 ∈ {1, . . . , N}).
Sample δ ∼ ∆.
Set θ′m = θm + cδ.
for regenerative cycle n2 = 1 to N do

Generate n2-th regenerative cycle using πθm .
Compute R(n2) and T(n2) using (4).

Set R̂′m = average(R(n2) : n2 ∈ {1, . . . , N}).
Set T̂′m = average(T(n2) : n2 ∈ {1, . . . , N}).
Set Ĥm = δ(T̂mR̂′m − R̂mT̂′m)/c.

Update θm+1 =
[
θm + αmĤm

]
Θ

.

evolution. For example, many continuous state models have
dynamics of the form

St+1 = f(St, At) +Nt,

where {Nt}t≥0 is an independent noise process. For another
example, see the event driven communication model in Sec IV.
Such models can be written in terms of a post-decision state
model described below. Note that the results of this section
apply to continuous state models as long as the model satisfies
the standard conditions under which the Bellman equation
has a solution [27].

Consider a post-decision state MDP with pre-decision state
S−t ∈ S−, post-decision state S+

t ∈ S+, action At ∈ A. The
system starts at an initial state s+

0 ∈ S+ and at time t:

1) there is a controlled transition from S−t to S+
t according

to a transition kernel P−(At);
2) there is an uncontrolled transition from S+

t to S−t+1

according to a transition kernel P+;
3) a per-step reward Rt = r(S−t , At, S

+
t ) is received.

Future is discounted at a rate γ ∈ (0, 1).

Remark 4 When S+ = S− and P+ is identity, then the
above model reduces to the standard MDP model, considered
in Sec II. When P+ is a deterministic transition, the
model reduces to a standard MDP model with post decision
states [28], [29]. 2

As in Sec II, we choose a (time-homogeneous and Markov)
policy π that maps the current pre-decision state S− to a
distribution on actions, i.e., At ∼ π(S−t ). We use π(a|s−) to
denote P(At = a|S−t = s−).

The performance when the system starts in post-decision



state s+
0 ∈ S+ and follows policy π is given by

Jπ = EAt∼π(St)

[ ∞∑
t=0

γtRt

∣∣∣∣ S+
0 = s+

0

]
. (19)

Let τ (n) denote the stopping times such that τ (0) = 0 and
for n ≥ 1,

τ (n) = inf{t > τ (n−1) : s+
t−1 = s+

0 }.
The slightly unusual definition (using s+

t−1 = s+
0 rather than

the more natural s+
t = s+

0 ) is to ensure that the formulas
for R(n) and T(n) used in Sec. II remain valid for the post-
decision state model as well. Thus, both variants of RMC
presented in Sec. II converge to a locally optimal parameter
θ for the post-decision state model as well.

IV. NUMERICAL EXPERIMENTS

We conduct two experiments to evaluate the performance
of RMC: a randomly generated MDP and event driven
communication.

A. Randomized MDP (GARNET)

In this experiment, we study a randomly generated
GARNET(100, 10, 50) model [30], which is an MDP with
100 states, 10 actions, and a branching factor of 50 (which
means that each row of all transition matrices has 50 non-
zero elements, chosen Unif[0, 1] and normalized to add to 1).
For each state-action pair, with probability p = 0.05, the
reward is chosen Unif[10, 100], and with probability 1− p,
the reward is 0. Future is discounted by a factor of γ = 0.9.
The first state is chosen as start state. The policy is a Gibbs
soft-max distribution parameterized by 100 × 10 (states ×
actions) parameters, where each parameter belongs to the
interval [−30, 30]. The temperature of the Gibbs distribution
is kept constant and equal to 1.

We compare the performance of RMC, RMC with biased
gradient (denoted by RMC-B, see Remark 2), and actor
critic with eligibility traces for the critic [3] (which we refer
to as SARSA-λ and abbreviate as S-λ in the plots), with
λ ∈ {0, 0.25, 0.5, 0.75, 1}. For both the RMC algorithms, we
use the same runs to estimate the gradients (see Remark 2
in Sec. II). Each algorithm3 is run 100 times and the mean
and standard deviation of the performance (as estimated
by the algorithms themselves) is shown in Fig. 1a. The
performance of the corresponding policy evaluated by Monte-
Carlo evaluation over a horizon of 250 steps and averaged
over 100 runs is shown in Fig. 1b. The optimal performance
computed using value iteration is also shown.

The results show that SARSA-λ learns faster (this is
expected because the critic is keeping track of the entire
value function) but has higher variance and gets stuck in
local minima. On the other hand, RMC and RMC-B learn
slower but have a low bias and do not get stuck in local

3For all algorithms, the learning rate is chosen using ADAM [31] with
default hyper-parameters and the α parameter of ADAM equal to 0.05 for
RMC, RMC-B, and the actor in SARSA-λ and the learning rate is equal to
0.1 for the critic in SARSA-λ. For RMC and RMC-B, the policy parameters
are updated after N = 5 renewals.

minima. The same qualitative behavior was observed for
other randomly generated models although we are not sure
why RMC and SARSA differ in which local minima they
converge to. Also, it was observed that RMC-B (RMC with
biased evaluation of the gradient) learns faster than RMC.

B. Event Driven Communication

In this experiment, we study an event driven communication
problem that arises in networked control systems [32], [33].
A transmitter observes a first-order autoregressive process
{Xt}t≥1, i.e., Xt+1 = αXt + Wt, where α,Xt,Wt ∈
R, and {Wt}t≥1 is an i.i.d. process. At each time, the
transmitter uses an event-triggered policy (explained below)
to determine whether to transmit or not (denoted by At = 1
and At = 0, respectively). Transmission takes place over an
i.i.d. erasure channel with erasure probability pd. Let S−t and
S+
t denote the “error” between the source realization and

it’s reconstruction at a receiver. It can be shown that S−t and
S+
t evolve as follows [32], [33]: when At = 0, S+

t = S−t ;
when At = 1, S+

t = 0 if the transmission is successful (w.p.
(1− pd)) and S+

t = S−t if the transmission is not successful
(w.p. pd); and S−t+1 = αS+

t +Wt. Note that the post-decision
state resets to zero after every successful transmission.4

The per-step cost has two components: a communication
cost of λAt, where λ ∈ R>0 and an estimation error (S+

t )2.
The objective is to minimize the expected discounted cost.

An event-triggered policy is a threshold policy that chooses
At = 1 whenever |S−t | ≥ θ, where θ is a design choice. Under
certain conditions, such an event-triggered policy is known
to be optimal [32], [33]. When the system model is known,
algorithms to compute the optimal θ are presented in [34],
[35]. In this section, we use RMC to identify the optimal
policy when the model parameters are not known.

In our experiment we consider an event-triggered model
with α = 1, λ = 500, pd ∈ {0, 0.1, 0.2}, Wt ∼ N (0, 1),
γ = 0.9, and use simultaneous perturbation variant of RMC5

to identify θ. We run the algorithm 100 times and the result
for different choices of pd are shown in Fig. 1c.6 For pd = 0,
the optimal threshold computed using [35] is also shown. The
results show that RMC converges relatively quickly and has
low bias across multiple runs.

V. CONCLUSIONS

We present a renewal theory based reinforcement learning
algorithm called Renewal Monte Carlo. RMC retains the key
advantages of Monte Carlo methods and has low bias, is
simple and easy to implement, and works for models with
continuous state and action spaces. In addition, due to the
averaging over multiple renewals, RMC has low variance.
We also generalized RMC to post-decision state models.

4Had we used the standard MDP model instead of the model of Sec. II,
this restart would not have always resulted in a renewal.

5An event-triggered policy is a parametric policy but πθ(a|s−) is not
differentiable in θ. Therefore, the likelihood ratio method cannot be used to
estimate performance gradient.

6We choose the learning rate using ADAM with default hyper-parameters
and the α parameter of ADAM equal to 0.01. We choose c = 0.3, N = 100
and ∆ = N (0, 1) in Algorithm 2.
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Fig. 1: Performance of different learning algorithms on GARNET(100, 10, 50) with p = 0.05 and γ = 0.9 for a rollout
horizon of 250 and event-driven communication using RMC for different values of pd. The solid lines show the mean value
and the shaded region shows the ± one standard deviation region.

Although we restricted attention to discounted reward
model, all the results immediately extend to the average
reward model as well. To simplify the discussion, we assumed
that the reference state is the same as the start state. Even if
that is not the case, the arguments presented in this paper go
through with slight modification.

Finally, we only presented the simplest form of the RMC
algorithm. It is possible to obtain an “every step” variant of
RMC that can be used to estimate the entire value function
(or its approximation).
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