A policy gradient algorithm to compute boundedly rational stationary mean field equilibria

Jayakumar Subramanian
McGill University
Montreal, Quebec
jayakumar.subramanian@mail.mcgill.ca

Aditya Mahajan
McGill University
Montreal, Quebec
aditya.mahajan@mcgill.ca

ABSTRACT
In this paper, we define a bounded rationality based generalization of stationary mean field equilibrium that we call gradient based stationary mean field equilibrium. Unlike Nash equilibrium and its variants, where each agent plays a best response policy given the policy of others, in a gradient based equilibrium, each plays a policy such that the performance gradient with respect to the policy parameters is zero. We then propose a policy gradient based algorithm to compute gradient-based stationary mean field equilibrium. We demonstrate the performance of this algorithm using a numerical experiment based on malware spread in networks.

KEYWORDS
Mean field games, multi-agent systems, stationary equilibria, policy gradient, bounded rationality

1 INTRODUCTION
Several problems such as automated trading in large financial markets, control of smart grids, decision making in industries with many firms involve systems with large number of agents. Another characteristic feature of such problems is that each agent is usually small, i.e., a single agent cannot meaningfully affect the system. Such systems are called mean field games and the corresponding solution concept is called mean field equilibrium (MFE) [11, 16, 23].

A mean field equilibrium is a trajectory of policies and a trajectory of mean field distributions satisfying sequential rationality and consistency. Here, sequential rationality requires that the specified policy trajectory of each agent is a best response to the given trajectory of mean field distributions. Consistency requires that the given trajectory of the mean field distributions is generated when agents play the specified policy trajectory.

Further simplification is possible when the system dynamics are such that the mean field becomes stationary. The relevant solution concepts in this case are stationary mean field equilibrium (SMFE) (also called stationary equilibrium) [1] and oblivious equilibrium [47]. A stationary mean field equilibrium is a time-homogeneous policy and a time-homogeneous mean field distribution satisfying sequential rationality and consistency. Here, sequential rationality requires that the specified time-homogeneous policy is a best response to the given time-homogeneous mean field distribution. Consistency requires that the given time-homogeneous mean field distribution is stationary when agents play the specified time-homogeneous policy.

However, even in such cases, computing the best response might be a challenging task for each agent. An agent with limited computational capability, or bounded rationality might choose to satisfice rather than optimize [40]. In this paper, motivated by bounded rationality, we define a generalization of SMFE that is easier to compute. We call this solution concept as gradient based stationary mean field equilibrium (V-SMFE). V-SMFE is a time-homogeneous oblivious policy and a time-homogeneous (stationary) mean field distribution (belief) satisfying gradient based sequential rationality and consistency. Here, gradient based sequential rationality requires that the specified time-homogeneous policy is a local best response (i.e., the policy at which the gradient of the agent’s assessment of performance is zero) to the given time-homogeneous mean field distribution. Consistency requires that the given time-homogeneous mean field distribution is generated when agents play the specified time-homogeneous policy. In this paper, we present an algorithm to compute V-SMFE that is a stochastic approximation algorithm consisting of two components: (i) a particle filter based approach to compute the stationary distribution corresponding to a policy; and (ii) a policy gradient based approach to compute the gradient of the performance of a policy. We illustrate the algorithm using an example considering a stylized model of malware spread in networks.

Policy gradient based methods are one of the key approaches in reinforcement learning [2, 17, 21, 34, 44]. Recent extensions of policy gradient algorithms such as trust region based methods [36, 37, 49] have met with several successes. Reinforcement learning methods have also been used in game theory and multi-agent systems [6, 7, 10, 22, 24–30, 32, 33, 45, 46]. See [4, 38, 39] for an overview. Reinforcement learning in mean field games has also been presented in [20, 50, 51]. However, in this paper, we pursue a different approach to determining equilibria in stationary mean field games.

1.1 Notation
The letter \(n \) denotes the number of agents and \(N = \{1, \ldots, n\} \) denotes the set of agents. \(X \) denotes the state space and \(A \) denotes the action space. In general capital letters denote random variables such as \(X \) for state and \(A \) for action, while corresponding small letters such as \(x \) and \(a \) denote their values respectively. For any discrete set \(S \), \(\Delta(S) \) denotes the space of probability mass functions on \(S \). Policies are represented using \(\mu \) and their parameters using \(\theta \). In general, we assume stochastic policies, i.e., \(\mu : X \to \Delta(A) \). Using a slight abuse of notation, we also denote the probability of a particular action \(a \in A \), under policy \(\mu \) in state \(x \in X \) as \(\mu(a|x) \). \(\hat{\pi} \) denotes the empirical mean field (or population average) and \(\pi \) denotes the
statistical mean field (or infinite population limit of population average). We mostly use subscripts to denote time and in some cases the policy or the mean field. We sometimes use a subscript range to denote a set of quantities, such as, \(X_{0:t} = \{X_0, X_1, \ldots, X_t\}\). Bold letters are used to denote profiles, for instance, \(X_t = [X^i_t]_{i \in [1, \ldots, n]}\). \([\cdot]_0\) is projection onto \(\Theta\). Other variables are defined when they are introduced in the text.

2 MODEL

Consider a non-zero sum stochastic dynamic game with imperfect information that runs for an infinite horizon. Let \(N = [1, \ldots, n]\) denote the set of agents. Each agent \(i, i \in N\), has a local state \(X^i_t \in X\) and chooses actions \(A^i_t \in \mathcal{A}\). The state space \(X\) and the action space \(\mathcal{A}\) are finite and identical for all agents. Let \(X_t = [X^1_t, \ldots, X^n_t]\) and \(A_t = [A^1_t, \ldots, A^n_t]\) denote the state and action of all agents. The state of agent \(i, i \in N\), evolves in a controlled Markovian manner; in particular, for any \(x^t \in X\), we have

\[
\mathbb{P}[X_{t+1}^i = x^t \mid X_{1:t}, A_{1:t}] = \mathbb{P}[X_{t+1}^i = x^t \mid X^i_t, A^i_t] =: P(x^t \mid X_t^i, A_t^i).
\]

(1)

All agents have identical dynamics with controlled transition matrices \((P(\cdot, \cdot), a)_{a \in \mathcal{A}}\). The per-step payoff to agent \(i\) is given by a utility function \(u(X^i_t, A^i_t, \xi_t)\), where \(\xi_t \in \Delta(X)\) is the population average (or the empirical mean field), which is given by:

\[
\xi_t(x) = \frac{1}{n} \sum_{i \in N} \mathbb{1}(X^i_t = x), \quad \forall x \in X.
\]

(2)

Note that the utility function is the same for all agents. In general each agent \(i, i \in N\), may use a history dependent behavioral policy \(\mu^i_t : X^t \rightarrow \Delta(\mathcal{A})\). Let \(\mu^i = \{\mu^i_0, \mu^i_1, \ldots\}\) denote the policy of agent \(i\) for all time. The collection \(\mu = \{\mu^1, \ldots, \mu^N\}\) is called the policy profile for all agents. Given a policy profile \(\mu\), the payoff of agent \(i, i \in N\), is given by:

\[
U^i(x; \mu) = \mathbb{E}_{A_t^i \sim \mu^i_t(X^i_t)} \left[\sum_{t=0}^{\infty} y^t u(X^i_t, A^i_t, \xi_t) \mid X_0 = x \right].
\]

(3)

When the number of agents is large, identifying a perfect Bayesian equilibrium of the above game is quite challenging. Therefore, four simplifying assumptions have been considered in the literature [1, 5, 12, 15, 16, 23, 47]:

(1) First, attention is restricted to oblivious policies, i.e., it is assumed that an agent uses only its current state to pick a distribution of actions. Thus, \(\mu^i_t : X \rightarrow \Delta(\mathcal{A})\) and \(A^i_t \sim \mu^i_t(X^i_t)\).

(2) Second, attention is restricted to time-homogeneous oblivious policies, i.e., it is assumed that \(\mu^i_t\) does not depend on time.

(3) Third, attention is restricted to symmetric policies, i.e., it is assumed that all agents play identical (oblivious) policies. Thus \(\mu = \{\mu, \mu, \ldots\}\). For ease of notation, we simply refer to the policy profile as \(\mu\). For a symmetric policy, we have that for any \(y \in X\):

\[
\xi_{t+1}(y) = \sum_{x \in X} \sum_{a \in \mathcal{A}} \xi_t(x) \mu(a \mid x) P(y \mid x, a).
\]

(4)

Thus, we may write,

\[
\xi_{t+1} = \Phi(\xi_t, \mu).
\]

(5)

(4) Finally, while evaluating the payoff, each agent assumes that the population average is stationary. Thus agent \(i\)'s assessment of its payoff is:

\[
V^i_{\mu, \pi}(x) = \mathbb{E}_{A^i_t \sim \mu^i(X^i_t)} \left[\sum_{t=0}^{\infty} y^t u(X^i_t, A^i_t, \pi) \mid X_0 = x \right].
\]

(6)

Note that this assessment is identical for all agents. So, in the sequel, we simply denote it by \(V_{\mu, \pi}\).

Under these conditions, the following refinement of Nash equilibrium is used as a solution concept [1, 47].

Definition 2.1 (Stationary mean field equilibrium (SMFE)). A stationary mean field equilibrium (SMFE) is a pair of a belief \(\pi : X \rightarrow \Delta(\mathcal{A})\) and a time-homogeneous oblivious policy \(\mu : X \rightarrow \Delta(\mathcal{A})\) which satisfies the following two properties:

(1) Sequential Rationality: For any other time-homogeneous oblivious policy \(\bar{\mu} : X \rightarrow \Delta(\mathcal{A})\),

\[
V_{\mu, \pi}(x) \geq V_{\bar{\mu}, \pi}(x), \quad \forall x \in X.
\]

(7)

(2) Consistency: The belief \(\pi\) is stationary under policy \(\mu\), i.e.,

\[
\pi = \Phi(\pi, \mu).
\]

(8)

Note that it is possible to write a recursive expression for \(V_{\mu, \pi}\) using the standard dynamic programming decomposition. In particular, \(V_{\mu, \pi}\) is given by the unique bounded solution of the following fixed point equation:

\[
Q_{\mu, \pi}(x, a) = u(x, a, \pi) + \gamma \sum_{y \in X} \mathbb{P}[y \mid x, a] V_{\mu, \pi}(y).
\]

(9)

\[
V_{\mu, \pi}(x) = \sum_{a \in \mathcal{A}} \mu(a|x) Q_{\mu, \pi}(x, a).
\]

(10)

Given the above dynamic program, we may rewrite the sequential rationality condition of SMFE as follows:

\[
(1') \text{ Given a } \pi \in \Delta(X), \text{ let } V^*_{\pi} \text{ be the unique bounded solution of the following fixed point equation:}
\]

\[
Q^*_{\pi}(x, a) = u(x, a, \pi) + \gamma \sum_{y \in X} \mathbb{P}[y \mid x, a] V^*_{\pi}(y).
\]

(11)

\[
V^*_{\pi}(x) = \max_{a \in \mathcal{A}} Q^*_{\pi}(x, a).
\]

(12)

Then a policy \(\mu : X \rightarrow \Delta(\mathcal{A})\) is sequentially rational given \(\pi\) if and only if

\[
\text{supp}(\mu(x)) \in \text{arg max}_{a \in \mathcal{A}} Q^*_{\pi}(x, a),
\]

(13)

which means that every action which has a positive weight under \(\mu(x)\) is a best response to \(\pi\).

3 BOUNDEDLY RATIONAL STATIONARY MEAN FIELD EQUILIBRIA

SMFE provides a drastic simplification over perfect Bayesian equilibrium or even Markov perfect equilibrium for large population games. In spite of this simplification, numerically computing SMFE is still a formidable task. The obvious solution approach is to start with a guess \(\pi^{(1)}\) for the stationary mean field distribution, find the best response \(\mu^{(1)}\) by solving (12), and then find the stationary distribution \(\pi^{(2)}\) corresponding to \(\mu^{(1)}\) and then iterate. There are two difficulties in such an approach. The first is a conceptual difficulty:

- **Challenge:** How do we choose a good guess \(\pi^{(1)}\)?
it is not clear that such an iteration will converge. The second is a computational difficulty: each step of the iteration requires solving a dynamic program, which can be prohibitively difficult when the state space is large or continuous. Various sufficient conditions under which the above iteration converges have been identified in [1, 9, 13, 15, 47]. These partially resolve the first conceptual difficulty.

In this paper, we propose a methodology to resolve the second computational difficulty.

To obtain a computationally tractable method to solve the dynamic program, we assume that the agents have bounded rationality [40] and restrict attention to a class of parametrized policies μ_0, where the parameter θ belongs to a closed convex subset Θ of a Euclidean space. With a slight abuse of notation, we also sometimes use θ to denote μ_0. In addition, we assume that instead of finding a global best response,

$$\theta \in \arg\max_{\theta \in \Theta} V_{\theta, \pi},$$

the boundedly rational agent is satisfied with a local best response, θ is such that $\nabla_\theta V_{\theta, \pi} = 0$.

Based on this, we define the following generalization of SMFE, which we call gradient based SMFE and denote by V-SMFE.

Definition 3.1 (V-SMFE). A gradient based SMFE (V-SMFE) is a pair of belief $\pi \in \Delta(X)$ and a parametrized policy $\mu_0 : \mathcal{X} \to \Delta(\mathcal{A})$, where $\Theta \in \Theta$, which satisfies the following two properties:

1. **Gradient based sequential rationality:** Let $V_{\theta, \pi}$ be the fixed point of (9) and (10). Then,

$$\nabla_\theta V_{\theta, \pi} = 0.$$

2. **Consistency:** The belief π is stationary under policy μ_0, i.e.,

$$\pi = \Phi(\pi, \mu_0).$$

Proposition 3.2. Given a stationary belief $\pi \in \Delta(X)$, an initial distribution $\xi_0 \in \Delta(X)$, and a policy μ_0, $\theta \in \Theta$, define the agent’s assessment of the payoff as:

$$J_{\theta, \pi} := \mathbb{E}_{X \sim \xi_0} [V_{\theta, \pi}(x)] = \sum_{x \in X} V_{\theta, \pi}(x) \xi_0(x).$$

Then the policy μ_0 is gradient based sequentially rational with respect to π if and only if

$$\nabla_\theta J_{\theta, \pi} = 0.$$

Proof. We first prove if μ_0 is gradient based sequentially rational then $\nabla_\theta J_{\theta, \pi} = 0$. Now, $J_{\theta, \pi} = \mathbb{E}_{X \sim \xi_0} V_{\theta, \pi}(X)$. Therefore, $\nabla_\theta J_{\theta, \pi} = \mathbb{E}_{X \sim \xi_0} \nabla_\theta V_{\theta, \pi}(X)$. So, if θ is gradient based sequentially rational (i.e. $\nabla_\theta V_{\theta, \pi} = 0$), then $\nabla_\theta J_{\theta, \pi} = 0$.

We now prove the other direction, i.e., $\nabla_\theta J_{\theta, \pi} = 0$ implies μ_0 is gradient based sequentially rational. Suppose ξ_0 is a delta distribution with $\xi_0(x) = 1$ and $\xi_0(y) = 0$ for all $y \neq x$, where $x, y \in X$. Then $\nabla_\theta J_{\theta, \pi} = 0$ implies that $\nabla_\theta V_{\theta, \pi}(x) = 0$. Since the choice of x is arbitrary, we have $\nabla_\theta V_{\theta, \pi}(x) = 0$ for all $x \in X$. Thus, μ_0 is gradient based sequentially rational.

Based on Proposition 3.2, we propose an iterative algorithm to compute a V-SMFE. The main idea is as follows. For any $\theta \in \Theta$, let π_0 be the stationary distribution corresponding to policy μ_0 and let G_{θ} be an unbiased estimator of $\nabla_\theta J_{\theta, \pi_0}$. Then, we can start with any initial guess $\theta_0 \in \Theta$, and at each step, update the guess using stochastic gradient ascent:

$$\theta_{k+1} = [\theta_k + \alpha_k G_{\theta_k}]\omega.$$

where $\{\alpha_k\}_{k \geq 0}$ is a sequence of learning rates that satisfy the standard conditions: $\sum \alpha_k = \infty$ and $\sum \alpha_k^2 < \infty$. Then we have the following:

PROPOSITION 3.3. If the iteration (19) converges to a limit θ^* along any sample path, then $(\theta^*, \pi_{\theta^*})$ is a V-SMFE.

Proof. At any step of the iteration, we have that π_{θ} is the stationary distribution corresponding to μ_0; and therefore consistency (17) is satisfied. At convergence, we have that $\nabla_{\theta} J_{\theta, \pi_{\theta}} = 0$. Therefore by Proposition 3.2, gradient based sequential rationality (16) is satisfied by θ^*.

To convert the above iteration to a complete algorithm, we need two components:

1. Given a policy μ_0, compute the stationary distribution π_{θ}.
2. Given a mean field π and a policy μ_0, compute an unbiased estimate of $\nabla_{\theta} J_{\theta, \pi_{\theta}}$.

For the first component, we use a particle filter based approach to compute the stationary distribution π_{θ}. The details are shown in Algorithm 1.

For the second component, we use standard policy gradient approaches from reinforcement learning: likelihood ratio based gradient estimate [21, 44] or simultaneous perturbation based gradient estimate [3, 18, 31, 41]. The details are given below.

3.1 Likelihood ratio based gradient estimation

One approach to estimate the performance gradient is to use likelihood radio based estimates [8, 35, 48]. Suppose the policy $\mu_0(x)$ is differentiable with respect to θ. For any time t, define the likelihood function

$$L^t_\theta = \nabla_\theta \log[\mu_0(A_t \mid X_t)],$$

where with a slight abuse of notation $\mu_0(A_t \mid X_t)$ denotes the probability of choosing action A_t in state X_t under policy μ_0. Then
Algorithm 2: Likelihood ratio based algorithm to compute ∇-SMFE

input: θ_0 : Initial policy parameter
K : Number of iterations
ξ_0 : Initial mean field distribution
B : Burn-in period
n_p : Number of particles

output: θ : Estimated ∇-SMFE parameter

for iterations $k = 1 : K$

1. $\pi_k = \text{StationaryDistribution}(\xi_0, \mu_{\theta_k}, B, n_p)$
2. $G_{\theta_k} = \text{PolicyGradient}(\theta_k, \xi_0, \pi_k)$
3. Compute θ_{k+1} using (19)

return θ_{K+1}

from [2, 44, 48] we know that:

$$\nabla_\theta V_{\theta,\pi}(x) = \mathbb{E}_{A \sim \mu(x)} \left[\sum_{\sigma = 0}^{\infty} \Lambda_{\theta}^{\sigma} V_{\theta,\pi}(X_{\sigma}) \mid X_0 = x \right].$$

Thus,

$$\nabla_\theta J_{\theta,\pi} = \mathbb{E}_{X \sim \xi_0} [\nabla_\theta V_{\theta,\pi}(X)].$$

An algorithm to compute ∇-SMFE based on the likelihood ratio approach is given in Algorithm 2. The PolicyGradient function in Algorithm 2 can be obtained by an actor only method such as Monte Carlo [43] or Renewal Monte Carlo [42], or using an actor critic method such as SARSA [43]. Additionally, variance reduction techniques such as subtracting a baseline or using minibatch averaging may also be used.

3.2 Simultaneous perturbation based gradient estimation

Another approach to estimate the performance gradient is to use simultaneous perturbation based methods [3, 18, 31, 41]. This approach is useful when the policy μ is not a differentiable function of its parameters θ. Now, given any distribution ξ_0, we can estimate $J_{\theta,\pi}$ using $V_{\theta,\pi}$ as:

$$J_{\theta,\pi} = \mathbb{E}_{X \sim \xi_0} [V_{\theta,\pi}(X)].$$

The two-sided form of simultaneous perturbation estimates are given as:

$$\nabla J_{\theta,\pi} = \eta(J_{\theta+\beta\eta,\pi} - J_{\theta-\beta\eta,\pi})/2\beta.$$

Thus,

$$\nabla J_{\theta,\pi} = \eta(\mathbb{E}_{X \sim \xi_0} [V_{\theta+\beta\eta,\pi}(X)] - \mathbb{E}_{X \sim \xi_0} [V_{\theta-\beta\eta,\pi}(X)])/2\beta.$$ (25)

where η is a random variable with the same dimension as θ and β is a small constant. The above method is called simultaneous perturbation stochastic approximation (SPSA) [31, 41], when $\eta_i \sim \text{Rademacher}(\pm 1)$; and it is called smoothed functional stochastic approximation (SFSA) [3, 18] when $\eta_i \sim \text{Normal}(0, 1)$.

An algorithm to compute ∇-SMFE based on the simultaneous perturbation approach is given in Algorithm 3. As in the case of the likelihood ratio based approach, the PolicyEvaluation function in Algorithm 3 may be obtained by an actor only method such as Monte Carlo [43] or Renewal Monte Carlo [42], or using an actor critic method such as SARSA [43].

Algorithm 3: Simultaneous perturbation based algorithm to compute ∇-SMFE

input: θ_0 : Initial policy parameter
K : Number of iterations
ξ_0 : Initial mean field distribution
B : Burn-in period
β : Magnitude of perturbation
n_p : Number of particles

output: θ : Estimated ∇-SMFE parameter

for iterations $k = 1 : K$

1. $\pi_k = \text{StationaryDistribution}(\xi_0, \mu_{\theta_k}, B, n_p)$
2. Let $\eta \sim \text{Uniform}([-1, 1])$ or $\eta \sim \mathcal{N}(0, 1)$
3. $\theta_k^+ = \theta_k + \eta \beta$
4. $\theta_k^- = \theta_k - \eta \beta$
5. $J_{\theta_k^+,\pi} = \text{PolicyEvaluation}(\theta_k^+, \xi_0, \pi_k)$
6. $J_{\theta_k^-,\pi} = \text{PolicyEvaluation}(\theta_k^-, \xi_0, \pi_k)$
7. Compute G_{θ_k} as an estimate of $\nabla_\theta J_{\theta,\pi}$ using (24)
8. Compute θ_{k+1} using (19)

return θ_{K+1}

4 NUMERICAL STUDY

For our numerical study, we consider a stylized model of malware spread in networks [13, 14]. In this model, the state of an agent denotes its health. The state space is continuous with $X = [0, 1]$, where $X = 0$ is the most healthy state and $X = 1$ is the least healthy state. The action space is $\mathcal{A} = [0, 1]$, where $A = 0$ means do nothing and $A = 1$ means take corrective action. The dynamics are given by:

$$X^i_{t+1} = \begin{cases} X^i_t + (1 - X^i_t)\eta_t, & \text{for } A^i_t = 0, \\ X^i_t, & \text{for } A^i_t = 1, \end{cases}$$

where $\eta_t \sim \mathcal{N}(0, 1)$ is an i.i.d. process with probability density function f. The per-step payoff is:

$$u(x, a, \xi) = -(k + \tilde{\xi})x - \lambda a,$$

where $\tilde{\xi}$ is the mean of ξ and k, λ are given constants. It is shown in [13, 14] that the SMFE policy has a threshold structure. So we restrict attention to threshold based policies with $\Theta = [0, 1]$, where:

$$\mu_\theta(x) = \begin{cases} 0, & \text{if } x < \theta, \\ 1, & \text{if } x \geq \theta. \end{cases}$$

In our experiments, we choose $f = \text{Uniform}[0, 1]$, $k = 0.2$, $\lambda = 0.5$, and we discretize the state space into 101 uniformly sized cells $[0, 0.01, \ldots, 1]$. We use a discount factor of $\gamma = 0.9$. Since the policy is not differentiable, we estimate the gradient using simultaneous perturbation (Algorithm 3). We use the following parameters: $n_p = 1000, \theta_0 = 0.1, K = 200, B = 200$, $\beta = 0.1$, $\xi_0 \sim \text{Uniform}(\{-1, 1\})$, and $\xi_0 \sim \text{Uniform}(X)$, and choose the learning rates corresponding to ADAM [19] with the α parameter of ADAM as 0.01 and standard values for the other ADAM parameters.

The thresholds, performances and stationary mean fields versus samples over various iterations are given in figures 1a, 1b and 1c. The exact values (SMFE) for these parameters obtained using the method specified in [13] are shown in black in these figures. We
note that all these three parameters converge fairly quickly to the approximate values with small error.

5 CONCLUSION & FUTURE WORK
In this paper, we define a new equilibrium concept, gradient based stationary mean field equilibrium, for a class of large population games, based on stationary mean field equilibrium, which takes into account bounded rationality. We then develop an algorithm to compute this equilibrium and present a numerical example to illustrate computation of this equilibrium.

