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ABSTRACT
We develop reinforcement learning (RL) algorithms for a class of

multi-agent systems called mean-field teams (MFT). Teams are

multi-agent systems where agents have a common goal and receive

a common reward at each time step. The team objective is to maxi-

mize the expected cumulative discounted reward over an infinite

horizon. MFTs are teams with homogeneous, anonymous agents

such that the agents are coupled in their dynamics and rewards

through the mean-field (i.e., empirical distribution of the agents’

state). In our work, we consider MFTs with a mean-field sharing

information structure, i.e., each agent knows its local state and

the empirical mean-field at each time step. We obtain a dynamic

programming (DP) decomposition for MFTs using a decomposition

approach from literature called the common information approach,

which splits the decision making process into a centralized coordi-

nation rule that yields prescriptions to be followed by each agent

based on their local information. We develop an RL approach for

MFTs under the assumption of parametrized prescriptions. We con-

sider the parameters as actions and use conventional RL algorithms

to solve the DP. We illustrate the use of these algorithms through

two examples based on stylized models of the demand response

problem in smart grids and malware spread in networks.
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1 INTRODUCTION
In this paper, we look at reinforcement learning in cooperative

multi-agent systems. Several algorithms for multi-agent reinforce-

ment learning have been proposed in the literature [2–4, 10–13, 21–

24]. These algorithms perform well on certain benchmark domains

but there is little theoretical analysis on whether these algorithms

converge to a team optimal solution.

In this paper, we present a different view on multi-agent rein-

forcement learning. Our central thesis is that multi-agent systems

for which the team optimal planning solution can be obtained

by dynamic programming [14–16], it should be straightforward o

translate these dynamic programs to reinforcement learning algo-

rithms.

2 MODEL
Consider a multi-agent team with n agents, indexed by the set

N = {1, . . . ,n}. The team operates in discrete time for an infinite

horizon. Let X i
t ∈ X and U i

t ∈ U denote the state and action of

agent i ∈ N at time t . Note that the state space X and action space

U are the same for all agents. For ease of exposition, we assume

that X andU are finite sets.

Given a vector x = (x1 . . . xn ) ∈ Xn of length n, let ξ (x ) denote
the mean-field (or empirical distribution) of x , i.e.,

ξ (x ) =
1

n

∑
i ∈N

δx i .

Let Zt = ξ (Xt ) denote the mean-field of the team at time t andZ
denote the space of space of realizations of Zt . Note thatZ has at

most (n + 1) |X | elements.

Let ({xt }t ≥0, {ut }t ≥0) denote a realization of ({Xt }t ≥0, {Ut }t ≥0)
and zt = ξ (xt ). We assume that the initial states of all agents are

independent, i.e.,

P(X0 = x0) =
∏
i ∈N

P(X i
0
= x i

0
) C
∏
i ∈N

P0 (x
i
0
),

where P0 denotes the initial state distribution of agents. We assume

that the global state of the system evolves in a controlled Markov

manner, i.e.,

P(Xt+1 = xt+1 | X0:t = x1:t ,U0:t = u0:t )

= P(Xt+1 = xt+1 | Xt = xt ,Ut = ut ).

All agents are partially exchangeable, so the state evolution of

a generic agent depends on the states and actions of other agents

only through the mean-fields of the states, i.e., for agent i:

P(Xt+1 = xt+1 | Xt = xt ,Ut = ut ) =
∏
i ∈N

P(X i
t = x it ,U

i
t = u

i
t ,Zt = zt )

C
∏
i ∈N

P (x it+1 | x
i
t ,u

i
t , zt ),

where P denotes the control transition matrix. Combining all of the

above, we have

P(Xt+1 = xt+1 | X0:t = x0:t ,U0:t = u0:t ) =
∏
i ∈N

P (x it+1 | x
i
t ,u

i
t , zt ).

(1)

The system has mean-field sharing information-structure, i.e.,

the information available to agent i is given by:

I it = {X
i
t ,Zt }. (2)

We assume that all agents use identical (stochastic) control law:

µt : X ×Z → ∆(U ) to choose the control action at time t , i.e.,

U i
t ∼ µt (X

i
t ,Zt ). (3)

Let µ = (µ1, µ2, . . . ) denote the team policy for all times. Note that,

in general, restricting attention to identical policies may lead to

a loss of optimality. See [1] for an example. Nonetheless, identi-

cal policies are attractive for reasons of fairness, simplicity, and

robustness.



The team receives a per-step reward given by:

Rt ∼ r (Xt ,Ut ). (4)

Given strategy µ = (µ1, µ2, . . . ) the expected total reward incurred

by the team is given by:

J (µ ) = Eµ
[ ∞∑
t=0

γ tRt

]
, (5)

where γ ∈ (0, 1) is the discount factor. The objective is to choose a

policy µ to maximize the performance J (µ ) given by (5).

3 SOLUTION APPROACH
The mean-field team model formulated above is a multi-agent team

problem with non classical information structure. A planning so-

lution of this model was presented in [1], which we summarize

below for completeness. We then present a framework for using

reinforcement learning in such models.

3.1 Planning solution for mean-field teams
Given any policy µ = (µ1, µ2, . . . ) and any realization, z = (z1, z2, . . . )
of the mean-field, define prescriptions ht : X → ∆(A) given by

ht (x ) = µt (x , zt ), ∀x ∈ X.

LetH denote the space of all such prescritions.When themean field

trajectory is a random process, the prescriptions ht (x ) is a random
vector which we denote Ht . The results of [1] relies on the follow-

ing two key properties. Let (z1:t+1,h1:t ) denote any realization of

(Z1:t+1,H1:t ). We have:

(1) {Zt }t ≥1 is a controlled Markov process with control action

ht , i.e.,

Pµ (Zt+1 = zt+1 | Z1:t = z1:t ,H1:t = h1:t )

= P(Zt+1 = zt+1 | Zt = zt ,Ht = ht ).

Note that the right hand side does not depend on the choice

of decision rule µ. Furthermore, the right hand side can be

simplified as:

P(Zt+1 = zt | Zt = zt ,Ht = ht )

=
∑

xt+1:ξ (xt+1 )=zt+1

∏
i ∈N

P (x it+1 | x
i
t ,ht (x

i
t ), zt ),

where xt is any state such that ξ (xt ) = zt .
(2) The expected per-step reward simplifies as follows.

E[r (Xt ,Ut ) |Z1:t ,H1:t ] = E[r (Xt ,Ut ) |Zt ,Ht ] C r̃ (Zt ,Ht ). (6)

It is shown in [1] that these two properties imply that the optimal

policy µ can be identified as follows.

Theorem 3.1. Let V : Z → R be the unique bounded fixed point
of the following equation:

V (z) := max

h∈H
E[r̃ (z,h) + γV (Zt+1) |Zt = z,Ht = h]. (7)

Letψ (z) be an argmax of the right hand side of (7). Then the policy,

µ (x , z) = ψ (z) (x ), (8)

is an optimal policy for Problem (5).

The action spaceH of the above dynamic program is all func-

tions functions fromX to∆(U ). We assume thatH is approximated

by some family of parametrized functionsHΦ = {hϕ }ϕ∈Φ (where

Φ is a compact and convex set) such as Gibbs/Boltzmann functions

or neural networks. With such a parametrization, the dynamic

program of (7) may be approximated as:

V (z) = max

ϕ∈Φ
E[r̃ (z,hϕ ) + γV (Zt+1) | Zt = z,Ht = hϕ ] (9)

Let
ˆψ (z) be an argmax of the right hand side of (9). Then the policy,

µ (x , z) = h
ˆψ (z ) (x ), (10)

is the best policy for Problem (5) when µt (·, zt ) is restricted to

belong toHΦ.

3.2 Reinforcement learning for mean-field
teams (MFT-RL)

In this section, we present a reinforcement learning algorithm for

the special case where the reward is a cumulative reward, i.e.,

Rt =
1

n

∑
i ∈N

Rit , (11)

where Rit ∼ r̂ (X i
t ,U

i
t ,Zt ). We assume that we have access to a

simulator for P (· | x it ,u
i
t , zt ) and r̂ (x

i
t ,u

i
t , zt ). This simulator is for

a generic agent and takes the current local state, current local action

and current mean-field as input and generates a sample of the local

next state and the total reward as output. Using n copies of this

simulator, we create a simulator for the mean-field dynamics. We

start with n agents with initial local state sampled according to P0.
We assume that all these agents use a common stochastic policy

ˆψ : Z → Φ to generate prescription parameters ϕt ∼ ˆψ (zt ).
Given this sampled value of ϕt , each agent independently sam-

ples a control actionuit ∼ hϕt (x
i
t ). The actionsu

i
t of agent i and the

current mean-field zt are given as input to the i
th

simulator and the

sampled output (X i
t+1,R

i
t ) are averaged to obtain (Zt+1,Rt ). Thus,

we have a simulator with internal state zt . This simulator takes

ϕt as an input and gives (Zt+1,Rt ) as sampled next mean-field

state and reward. Thus, this is a simulator for P (zt+1 | zt ,hϕt ) and
r̃ (zt ,hϕt ). We can use this simulator with any standard RL algo-

rithm to find the optimal policy for the dynamic program (9). In our

experiments below, we use TRPO [17], PPO [18] and NAFDQN [5].

4 NUMERICAL EXPERIMENTS
4.1 Benchmark domains
We consider the following domains to illustrate different decentral-

ized reinforcement learning algorithms.

4.1.1 Demand response in smart grids. This is a stylized model

for demand response in smart grids [1]. The system consists of n
agents, where X = {0, 1},U = {∅, 0, 1},

P (· | ·, ∅, z) = M (12)

P (· | ·, 0, z) = (1 − ε1)
[
1 0

1 0

]
+ ε1M (13)

P (· | ·, 1, z) = (1 − ε2)
[
0 1

0 1

]
+ ε2M, (14)

whereM denotes the “natural” dynamics of the systems and ε1 and
ε2 are small positive constants.
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Figure 1: Performance of different variants of MFT-RL for
demand response domain (25 independent runs).

The per-step reward is given by:

Rt = −*
,

1

n

∑
i ∈N

(
c01{U i

t =0}
+ c11{U i

t =1}

)
+ KL(Zt ∥ζ )+

-
, (15)

where c0 and c1 are costs for taking actions 0 and 1 respectively, ζ
is a given target distribution and KL(Zt ∥ζ ) denotes the Kullback-
Leibler divergence between Zt and ζ .

In our experiments, we consider we consider a system with

n = 100 agents, initial state distribution P0 = [1/3, 2/3], M =[
0.25 0.75
0.375 0.625

]
, c0 = 0.1, c1 = 0.2, ζ = [0.7, 0.3], ε1 = ε2 = 0.2 and

discount factor γ = 0.9.

4.1.2 Malware spread in networks. This is a stylized model for

malware spread in networks [6–8]. The system consists of n agents

where X = [0, 1],U = {0, 1}. The dynamics are given by:

X i
t+1 =




X i
t + (1 − X i

t )ωt , forUt = 0,

0 forUt = 1,

where ωt ∼ Uniform[0, 1]. The per-step reward is given by:

Rt = −
(
1

n

∑
i ∈N

(k + ⟨Zt ⟩)X
i
t + λU

i
t

)
,

where ⟨Zt ⟩ denotes the average of Zt , and λ is the cost of taking

action 1.

In our experiments, we consider k = 0.2, initial state distribution

P0 = Uniform(X), λ = 0.5 and discount factor γ = 0.9. For the

simulation, we discretize the state space into 11 bins—0, 0.1, . . . , 1.

4.2 Simulation results
We consider three variants of MFT-RL algorithms, which use dif-

ferent RL algorithms for the mean-field system—TRPO, PPO and

NAFDQN. Figure 1 shows the result for the demand response do-

main and Figure 2 shows the result for the malware spread domain.

For each of the MFT-RL algorithms, the dark line shows the median

performance and the shaded region shows the region between the

first and third quartiles across multiple independent runs. For the

demand response domain we also show the optimal performance

obtained using the value iteration algorithm presented in [1].
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Figure 2: Performance of different variants of MFT-RL for
malware spread domain (15 independent runs).
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Figure 3: Performance of policy obtained in 100 agent system
in systems with larger number of agents.

4.3 Mean-field approximations
Mean-field approximations are a common approach to simplify the

planning solution of mean-field coupled systems. The main idea

is to approximate a large population system with an infinite pop-

ulation system, find the optimal policy for the infinite population

system and use that policy in the finite population system. Under

appropriate regularity conditions, it can be shown that such an ap-

proximate policy is ε-optimal where ε is O (1/n) or O (1/
√
n). Such

approximations rely on the system model and are not appropriate

in the learning setup.

However, the mean-field approximation results suggest some

form of continuity in the optimal policy as the number of agents

becomes large. This motivates us to investigate the reverse question.

Can we find an approximate policy for a n−agent mean-field team

by running MFT-RL onm agents, wherem < n.
We investigate this idea in the demand response domain. We

use MFT-RL form = 100 agents using TRPO and PPO, and use the

resultant policy in the systems with n > 100 agents. We compare

this performance with optimal planning solution obtained using

value iteration. The results are shown in Figure 3. This shows that

the policy obtained for the 100 agent RL environment performs

reasonably well in environments with larger number of agents as

well.
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5 CONCLUSION
There are many results in the Dec-POMDP/decentralized control

literature where a team optimal solution can be obtained using

dynamic programming. Our central thesis is that for such models

one can easily translate the dynamic program to a reinforcement

learning algorithm. We illustrate this point by using mean-field

teams as an example. This allows us to use standard off-the-shelf

RL algorithms to obtain solutions for some MARL setups.
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