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Abstract

We develop reinforcement learning (RL) algorithms for a class of multi-agent systems called mean-field teams (MFT).
Teams are multi-agent systems where agents have a common goal and receive a common reward at each time step. The
team objective is to maximize the expected cumulative discounted reward over an infinite horizon. MFTs are teams
with homogeneous, anonymous agents such that the agents are coupled in their dynamics and rewards through the
mean-field (i.e., empirical distribution of the agents’ state). In our work, we consider MFTs with a mean-field sharing
information structure, i.e., each agent knows its local state and the empirical mean-field at each time step. We obtain a
dynamic programming (DP) decomposition for MFTs using a decomposition approach from literature called the common
information approach, which splits the decision making process into two parts. The first part is a centralized coordination
rule that yields the second part, which are prescriptions to be followed by each agent based on their local information.
We develop an RL approach for MFTs under the assumption of parametrized prescriptions. We consider the parameters
as actions and use conventional RL algorithms to solve the DP. We illustrate the use of these algorithms through two
examples based on stylized models of the demand response problem in smart grids and malware spread in networks.

Keywords: Reinforcement learning, mean-field teams, multi-agent reinforce-
ment learning.



1 Introduction

In this paper, we look at reinforcement learning in cooperative multi-agent systems. Several algorithms for multi-agent
reinforcement learning have been proposed in the literature [2–4, 9–12, 18–21]. These algorithms perform well on certain
benchmark domains but there is little theoretical analysis on whether these algorithms converge to a team optimal solution.
In this paper, we present a different view on multi-agent reinforcement learning. Our central thesis is that multi-agent
systems for which the team optimal planning solution can be obtained by dynamic programming [13–15], it should be
straightforward to translate these dynamic programs to reinforcement learning algorithms.

2 Model

Consider a multi-agent team with n agents, indexed by the set N = {1, . . . , n}. The team operates in discrete time for an
infinite horizon. Let Xi

t ∈ X and U it ∈ U denote the state and action of agent i ∈ N at time t. Note that the state space X
and action space U are the same for all agents. For ease of exposition, we assume that X and U are finite sets. Given a vector
x = (x1 . . . xn) ∈ Xn of length n, let ξ(x) denote the mean-field (or empirical distribution) of x, i.e., ξ(x) = 1

n

∑
i∈N δxi .

Let Zt = ξ(Xt) denote the mean-field of the team at time t and Z denote the space of space of realizations of Zt. Note that
Z has at most (n+ 1)|X | elements. Let ({xt}t≥0, {ut}t≥0) denote a realization of ({Xt}t≥0, {Ut}t≥0) and let zt = ξ(xt). We
assume that the initial states of all agents are independent, i.e., P(X0 = x0) =

∏
i∈N P(Xi

0 = xi0) =:
∏
i∈N P0(xi0), where

P0 denotes the initial state distribution of agents. We assume that the global state of the system evolves in a controlled
Markov manner, i.e., P(Xt+1 = xt+1 | X0:t = x1:t, U0:t = u0:t) = P(Xt+1 = xt+1 | Xt = xt, Ut = ut). All agents are
exchangeable, so the state evolution of a generic agent depends on the states and actions of other agents only through the
mean-fields of the states, i.e., for agent i:

P(Xt+1 = xt+1 | Xt = xt, Ut = ut) =
∏
i∈N

P(Xi
t = xit, U

i
t = uit, Zt = zt) =:

∏
i∈N

P (xit+1 | xit, uit, zt),

where P denotes the control transition matrix. Combining all of the above, we have

P(Xt+1 = xt+1 | X0:t = x0:t, U0:t = u0:t) =
∏
i∈N

P (xit+1 | xit, uit, zt). (1)

The system has mean-field sharing information-structure, i.e., the information available to agent i is given by: Iit = {Xi
t , Zt}.

We assume that all agents use identical (stochastic) control law: µt : X × Z → ∆(U) to choose the control action at time t,
i.e., U it ∼ µt(Xi

t , Zt). Let µ = (µ1, µ2, . . . ) denote the team policy for all times. Note that, in general, restricting attention to
identical policies may lead to a loss of optimality. See [1] for an example. Nonetheless, identical policies are attractive for
reasons of fairness, simplicity, and robustness.

The team receives a per-step reward given by: Rt ∼ r(Xt,Ut). Given strategy µ = (µ1, µ2, . . . ) the expected total reward
incurred by the team is given by:

J(µ) = Eµ
[ ∞∑
t=0

γtRt

]
, (2)

where γ ∈ (0, 1) is the discount factor. The objective is to choose a policy µ to maximize the performance J(µ) given by (2).

3 Solution approach

The mean-field team model formulated above is a multi-agent team problem with non classical information structure. A
planning solution of this model was presented in [1], which we summarize below for completeness. We then present a
framework for using reinforcement learning in such models.

3.1 Planning solution for mean-field teams

Given any policy µ = (µ1, µ2, . . . ) and any realization, z = (z1, z2, . . . ) of the mean-field, define prescriptions ht : X → ∆(A)
given by ht(x) = µt(x, zt), ∀x ∈ X . LetH denote the space of all such prescritions. When the mean field trajectory is a
random process, the prescriptions ht is a random vector which we denote Ht. The results of [1] relies on the following two
key properties. Let (z1:t+1, h1:t) denote any realization of (Z1:t+1, H1:t). We have:

1. {Zt}t≥1 is a controlled Markov process with control action ht, i.e., Pµ(Zt+1 = zt+1 | Z1:t = z1:t, H1:t = h1:t) =
P(Zt+1 = zt+1 | Zt = zt, Ht = ht). Note that the right hand side does not depend on the choice of de-
cision rule µ. Furthermore, the right hand side can be simplified as: P(Zt+1 = zt | Zt = zt, Ht = ht) =∑
xt+1:ξ(xt+1)=zt+1

∏
i∈N P (xit+1 | xit, ht(xit), zt), where xt is any state such that ξ(xt) = zt.
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2. The expected per-step reward simplifies as follows. E[r(Xt,Ut)|Z1:t, H1:t] = E[r(Xt,Ut)|Zt, Ht] =: r̃(Zt, Ht).

It is shown in [1] that these two properties imply that the optimal policy µ can be identified as follows.

Theorem 1 Let V : Z → R be the unique bounded fixed point of the following equation:

V (z) := max
h∈H

E[r̃(z, h) + γV (Zt+1)|Zt = z,Ht = h]. (3)

Let ψ(z) be an arg max of the right hand side of (3). Then the policy, µ(x, z) = ψ(z)(x), is an optimal policy for Problem (2). 2

The action space H of the above dynamic program is all functions functions from X to ∆(U). We assume that H is
approximated by some family of parametrized functions HΦ = {hφ}φ∈Φ (where Φ is a compact and convex set) such
as Gibbs/Boltzmann functions or neural networks. With such a parametrization, the dynamic program of (3) may be
approximated as:

V (z) = max
φ∈Φ

E[r̃(z, hφ) + γV (Zt+1) | Zt = z,Ht = hφ] (4)

Let ψ̂(z) be an arg max of the right hand side of (4). Then the policy, µ(x, z) = hψ̂(z)(x), is the best policy for Problem (2)
when µt(·, zt) is restricted to belong toHΦ.

3.2 Reinforcement learning for mean-field teams (MFT-RL)

In this section, we present a reinforcement learning algorithm for the special case where the reward is a cumulative
reward, i.e., Rt = 1

n

∑
i∈N R

i
t, where Rit ∼ r̂(Xi

t , U
i
t , Zt). We assume that we have access to a simulator for P (· | xit, uit, zt)

and r̂(xit, u
i
t, zt). This simulator is for a generic agent and takes the current local state, current local action and current

mean-field as input and generates a sample of the local next state and the total reward as output. Using n copies of this
simulator, we create a simulator for the mean-field dynamics. We start with n agents with initial local state sampled
according to P0. We assume that all these agents use a common stochastic policy ψ̂ : Z → Φ to generate prescription
parameters φt ∼ ψ̂(zt). Given this sampled value of φt, each agent independently samples a control action uit ∼ hφt(x

i
t).

The actions uit of agent i and the current mean-field zt are given as input to the ith simulator and the sampled output
(Xi

t+1, R
i
t) are averaged to obtain (Zt+1, Rt). Thus, we have a simulator with internal state zt. This simulator takes φt as

an input and gives (Zt+1, Rt) as sampled next mean-field state and reward. Thus, this is a simulator for P (zt+1 | zt, hφt
)

and r̃(zt, hφt
). We can use this simulator with any standard RL algorithm to find the optimal policy for the dynamic

program (4). In our experiments below, we use TRPO [16], PPO [17] and NAFDQN [5].

4 Numerical experiments

4.1 Benchmark domains

We consider the following domains to illustrate different decentralized reinforcement learning algorithms.

4.1.1 Demand response in smart grids

This is a stylized model for demand response in smart grids [1]. The system consists of n agents, where X = {0, 1},
U = {∅, 0, 1},

P (· | ·, ∅, z) = M (5)
P (· | ·, 0, z) = (1− ε1) [ 1 0

1 0 ] + ε1M (6)
P (· | ·, 1, z) = (1− ε2) [ 0 1

0 1 ] + ε2M, (7)

where M denotes the “natural” dynamics of the systems and ε1 and ε2 are small positive constants.

The per-step reward is given by: Rt = −
(

1
n

∑
i∈N

(
c01{Ui

t=0} + c11{Ui
t=1}

)
+ KL(Zt‖ζ)

)
, where c0 and c1 are costs for

taking actions 0 and 1 respectively, ζ is a given target distribution and KL(Zt‖ζ) denotes the Kullback-Leibler divergence
between Zt and ζ. In our experiments, we consider we consider a system with n = 100 agents, initial state distribution
P0 = [1/3, 2/3], M = [ 0.25 0.75

0.375 0.625 ], c0 = 0.1, c1 = 0.2, ζ = [0.7, 0.3], ε1 = ε2 = 0.2 and discount factor γ = 0.9.
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Figure 1: Demand response domain (25 independent runs).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps ×105

−4.6

−4.4

−4.2

−4.0

R
et

ur
ns

Malware Spread - 100 Agents

NAFDQN

PPO

TRPO

Figure 2: Malware spread domain (15 independent runs).

4.1.2 Malware spread in networks

This is a stylized model for malware spread in networks [6–8]. The system consists of n agents where X = [0, 1], U = {0, 1}.
The dynamics are given by:

Xi
t+1 =

{
Xi
t + (1−Xi

t)ωt, for Ut = 0,

0 for Ut = 1,

where ωt ∼ Uniform[0, 1]. The per-step reward is given by: Rt = −
(

1
n

∑
i∈N (k + 〈Zt〉)Xi

t + λU it

)
, where 〈Zt〉 denotes

the average of Zt, and λ is the cost of taking action 1. In our experiments, we consider k = 0.2, initial state distribution
P0 = Uniform(X ), λ = 0.5 and discount factor γ = 0.9. For the simulation, we discretize the state space into 11
bins—0, 0.1, . . . , 1.

4.2 Simulation results

We consider three variants of MFT-RL algorithms, which use different RL algorithms for the mean-field system—TRPO,
PPO and NAFDQN. Figure 1 shows the result for the demand response domain and Figure 2 shows the result for the
malware spread domain. For each of the MFT-RL algorithms, the dark line shows the median performance and the shaded
region shows the region between the first and third quartiles across multiple independent runs. For the demand response
domain we also show the optimal performance obtained using the value iteration algorithm presented in [1]. All these
variants of MFT-RL algorithms converge almost to the optimal value.

4.3 Mean-field approximations

Mean-field approximations are a common approach to simplify the planning solution of mean-field coupled systems. The
main idea is to approximate a large population system with an infinite population system, find the optimal policy for the
infinite population system and use that policy in the finite population system. Under appropriate regularity conditions, it
can be shown that such an approximate policy is ε-optimal where ε is O(1/n) or O(1/

√
n). Such approximations rely on

the system model and are not appropriate in the learning setup. However, the mean-field approximation results suggest
some form of continuity in the optimal policy as the number of agents becomes large. This motivates us to investigate the
reverse question. Can we find an approximate policy for a n−agent mean-field team by running MFT-RL on m agents,
where m < n?

We investigate this idea in the demand response domain. We use MFT-RL for m = 100 agents using TRPO and PPO, and
use the resultant policy in the systems with n > 100 agents. We compare this performance with optimal planning solution
obtained using value iteration. The results are shown in Figure 3. This shows that the policy obtained for the 100 agent RL
environment performs reasonably well in environments with larger number of agents as well.

5 Conclusion

There are many results in the Dec-POMDP/decentralized control literature where a team optimal solution can be obtained
using dynamic programming. Our central thesis is that for such models one can easily translate the dynamic program to a
reinforcement learning algorithm. We illustrate this point by using mean-field teams as an example. This allows us to use
standard off-the-shelf RL algorithms to obtain solutions for some MARL setups. The numerical results show that standard
single agent RL algorithms work for RL for MFTs.
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Figure 3: Performance of policy obtained in 100 agent system in systems with larger number of agents.
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