Thompson sampling for linear quadratic mean-field teams
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Abstract— We consider optimal control of an unknown multi-
agent linear quadratic (LQ) system where the dynamics and the
cost are coupled across the agents through the mean-field (i.e.,
empirical mean) of the states and controls. Directly using single-
agent LQ learning algorithms in such models results in regret
which increases polynomially with the number of agents. We
propose a new Thompson sampling based learning algorithm
which exploits the structure of the system model and show that
the expected Bayesian regret of our proposed algorithm for
a system with agents of |M| different types at time horizon
T is O(|M|"°V/T) irrespective of the total number of agents,
where the O notation hides logarithmic factors in 7". We present
detailed numerical experiments to illustrate the salient features
of the proposed algorithm.

I. INTRODUCTION

Linear dynamical systems with a quadratic cost (henceforth
referred to as LQ systems) are one of the most commonly
used modeling framework in Systems and Control. Part of
the appeal of LQ models is that the optimal control action
in such models is a linear or affine function of the state;
therefore, the optimal policy is easy to identify and easy to
implement.

Broadly speaking, the regret of three classes of learning
algorithms have been analyzed in the literature: Optimism
in the face of uncertainty (OFU) based algorithms, certainty
equivalence (CE) based algorithms, and Thompson sampling
(TS) based algorithms.

OFU-based algorithms are inspired by the OFU principle
for multi-armed bandits [1]. Starting with the work of [2], [3],
most of the papers following this approach [4]-[6] provide a
high probability bound on regret. As an illustrative example,
it is shown in [6] that, with high probability, the regret of
a OFU-based learning algorithm is O(d%5(d, + d,)VT),
where d, is the dimension of the state, d,, is the dimension
of the controls, 7" is the time horizon, and the O(-) notation
hides logarithmic terms in 7.

Certainty equivalence (CE) is a classical adaptive control
algorithm in Systems and Control [7], [8]. Most papers fol-
lowing this approach [9]-[12] also provide a high probability
bound on regret. As an illustrative example, it is shown in
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[12] that, with high probability, the regret of a CE-based
algorithm is O(d%%d, /T + d2).

Thompson sampling (TS) based algorithms are inspired
by TS algorithm for multi-armed bandits [13]. Most papers
following this approach [14]-[16] establish a bound on the
expected Bayesian regret. As an illustrative example, [15]
shows that the regret of a TS-based algorithm is (’j(dgb(dm +
d)VT).

Two aspects of these regret bounds are important: the
dependence on the time horizon T and the dependence on
the dimensions (d,,d,) of the state and the controls. For
all classes of algorithms mentioned above, the dependence
on the time horizon is O(v/T). Moreover, there are multiple
papers which show that, under different assumptions, the
regret is lower bounded by Q(\/T) [12], [17]. So, the
time dependence in the available regret bounds is nearly
order optimal. Similarly, even though the dependence of
the regret bound on the dimensions of the state and
the control varies slightly for each class of algorithms,
[12] recently showed that the regret is lower bounded by
Q(d%5d,\/T). So, there is only a small scope of improve-
ment in the dimension dependence in the regret bounds.

The dependence of the regret bounds on the dimensions
of the state and controls is critical for applications such as
formation control of robotic swarms and demand response in
power grids which have large numbers of agents (which can
be of the order of 10% to 10%). In such systems, the effective
dimension of the state and the controls is nd, and nd,,, where
n is the number of agents and d, and d,, are the dimensions
of the state and controls of each agent. Therefore, if we take
the regret bound of, say, the OFU algorithm proposed in [6],
the regret is O(n'*d%>(d, + d,,)v/T). Similar scaling with
n holds for CE- and TS-based algorithms. The polynomial
dependence on the number of agents is prohibitive and,
because of it, the standard regret bounds are of limited value
for large-scale systems.

There are many papers in the literature on the design of
large-scale systems which exploit some structural property of
the system to develop low-complexity design algorithms [18]-
[23]. However, there has been very little investigation on the
role of such structural properties in developing and analyzing
learning algorithms.

Our main contribution is to show that by carefully exploit-
ing the structure of the model, it is possible to design learning
algorithms for large-scale LQ systems where the regret does
not grow polynomially in the number of agents. In particular,
we investigate mean-field coupled control systems, which
have emerged as a popular modeling framework in multiple
research communities including Control Systems, Economics,



Finance, and Statistical Physics [24]-[28]. These models are
used in various applications ranging from demand response
in smart grids, large scale communication networks, UAVs,
finanancial markets, and many others. We refer the reader
to [29] for a survey. There has been considerable interest
in reinforcement learning for such models [30]-[35], but all
of these papers focus on identifying asymptotically optimal
policies and do not characterize regret.

Our main contribution is to design a TS-based algorithm
for mean-field teams (which is a specific mean-field model
proposed in [22], [23]) and show that the regret scales as
O(|M|*5d%5(d, + d,)V/'T), where |M| is the number of
types.

We would like to highlight that although we focus on
a TS-based algorithm in the paper, it will be clear from
the derivation that it is possible to develop OFU- and CE-
based algorithms with similar regret bounds. Thus, the main
takeaway message of our paper is that there is significant
value in developing learning algorithms which exploit the
structure of the model.

II. BACKGROUND ON MEAN-FIELD TEAMS
A. Mean-field teams model

We start by describing a slight generalization of the basic
model of mean-field teams proposed in [22], [23]. Mean-
field teams are also called cooperative mean-field games or
mean-field control in the literature [36].

Consider a system with a large population of agents. The
agents are heterogeneous and have multiple types. Let M =
{1,...,|M|} denote the set of types of agents, N, m € M,
denote the set of all agents of type m, and N = J,,,cp; N™
denote the set of all agents.

a) States, actions, and their mean-fields: Agents of the
same type have the same state and action spaces. In particular,
the state and control action of agents of type m take values in
R%" and R%:, respectively. For any generic agent i € N™
of type m, we use zi € R% and u! € R% to denote its
state and control action at time t. We use x; = vec((xi);en)
and u; = vec((ul);en) to denote the global state and control
actions of the system at time ¢.

The empirical mean-field (Z}*,@}") of agents of type m,
m € M, is defined as the empirical mean of the states and
actions of all agents of that type, i.e.,
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The empirical mean-field (Z;, @,) of the entire population
is given by

=M

&y = vec(Ty,..., ;) a™!

and 1, = vec(dy,...,u; ).
As an example, consider the temperature control of a multi-
storied office building. In this case, N represents the set of
rooms, M represents the set of floors, N represents all
rooms in floor m, z¢ represents the temperature in room 4, 77"
represents the average temperature in floor m, and &; repre-
sents the collection of average temperature in each floor. Sim-
ilarly, ui represents the heat exchanged by the air-conditioner

in room ¢, u;" represents the average heat exchanged by the
air-conditioners in floor m, and 4, represents the collection
of average heat exchanged in each floor of the building.

b) System dynamics and per-step cost: The system starts
at a random initial state 71 = (2%);c, whose components
are independent across agents. For agent ¢ of type m, the
initial state =} ~ N'(0,X}), and at time ¢ > 1, the state
evolves according to

zi, =A™, +B™ul + D&y + EM Gy + w) + v} 4+ Fp,

(D
where A™, B™, D™, E™, F™ are matrices of appropriate
dimensions, {w}};>1, {vj"}+>1, and {v }+>1 are i.i.d. zero-
mean Gaussian processes which are independent of each other
and the initial state. In particular, wt € R%", v NS R,
and v € R4, and w! ~ N(0, W), v ~ N(O V™), and
v ~ N (0,V9).

Eq. (1) implies that all agents of type m have similar
dynamical couplings. The next state of agent 7 of type m
depends on its current local state and control action, the
current mean-field of the states and control actions of
the system, and is influenced by three independent noise
processes: a local noise process {w}}:>1, a noise process
{v{"}+>1 which is common to all agents of type m, and a
global noise process {v?};>1 which is common to all agents.

At each time-step, the system incurs a quadratic cost
c(xy, uy) given by

(@, u) = ‘ZQ@ + @] Rty
Xy 2 [ETQ + @) R @)
mEJV[ 16Nm

Thus, there is a weak coupling in the cost of the agents
through the mean-field.

¢) Admissible policies and performance criterion: There
is a system operator who has access to the states of all agents
and control actions and chooses the control action according
to a deterministic or randomized policy

Uy = 7Tt($1:t,’UJ1:t—1)- 3)

Let 6 = (0™)menr, where  (0™)7 =
[A™ B™ D™ E™, F™], denotes the parameters of the system
dynamics. The performance of any policy © = (7, m2,...)
is given by

T
1
J(m; 0 zlimsup—IE[ c(xe, w } 4)
(m;6) 1 SUp 7 tz:; (¢, us)

Let J(0) to denote the minimum of .J(7; @) over all policies.
We are interested in the setup where the system dynamics

6 are unknown and there is a prior p on 6. The Bayesian
regret of a policy m operating for a horizon T is defined as

T
RTin) =B | clanuw) ~TI0) )
t=1
where the expectation is with respect to the prior on 6,
the noise processes, the initial conditions, and the potential
randomizations done by the policy 7.



B. Planning solution for mean-field teams

In this section, we summarize the planning solution of
mean-field teams presented in [22], [23] for a known system
model.

Define the following matrices:

A = diag(A, ..., AM) 4 rows(D?, ..., DM,
B:diag(Bl,...,B‘Ml)—|—rows(E1,...,E|M‘),
and let Q = diag(Q", QMY + Q and R =
diag(R',...,RIMI) + R,

It is assumed that the system satisfies the following:
(A1) Q > 0 and R > 0. Moreover, for every m € M,
Q™ >0 and R™ > 0.
(A2) The system (A, B) is stabilizable.! Moreover, for
every m € M, the system (A™,B™) is stabilizable.
Now, consider the following | M |+1 discrete time algebraic
Riccati equations (DARE):?

§™ — DARE(A™,B™Q™ R™), me M, (6a)

S = DARE(A, B, Q,R). (6b)
Moreover, define

L™ = —((B™)TS™B™ + R™) ' (B™)TS™A™, m e M,

(7a)

L=—(B"SB+R) 'BTSA, (7b)
and let rows(L!, ..., LIM) = L.

Finally, define @f" = o Sicnm 0, @ =
vec(wy, . .. oM and B, = vee(vl,..., oM. Let
Wm — INl’"l Y ieNm var(wi — @) and W = var(w;) +
diag(V',...,VIMI) 4 diag(F'VO,... FIMIV9) Note that

since the noise processes are i.i.d., these covariances do
not depend on time.

Now, split the state z¢ of agent i of type m into two parts:
the mean-field state ;" and the relative state Tl = xt -z
Do a similar split of the controls: u! = 4™ + . Since

Yienm & = 0and Y, . U = 0, the per-step cost (2)

can be written as
& o %
g |Nm| g (3,a;) (8)
meM ieEN™

C($t7’ll/t) = C :ct,ut

N1t

where &(Z;, ;) = ZQE, + @) Ry and & (i 4l) =

(ZH)TQ™Z: + (ul)TR™ k. Moreover, the dynamics of mean-
field and the relative components of the state are:
jt+1 = Ajt + Bﬁt + 'lIJt + ’l_)t + 'EU? (9)

where F = diag(F*, ..., F‘M‘) and for any agent ¢ of type m,

Fh= AT+ B™aL 4w, (10)

I'System matrices (A, B) are said to be stabilizable if there exists a gain
matrix L such that all eigenvalues of A + BL are strictly inside the unit
circle.

2For stabilizable (A, B) and Q > 0, DARE(A, B, Q, R) is the unique pos-
itive semidefinite solution of S = ATSA— (ATSB)(R+BTSB) "1 (ATSB)+
Q.

where ! = w! — w™.
The result below follows from [23, Theorem 6]°:

Theorem 1 Under assumptions (Al) and (A2), the optimal
policy for minimizing the cost (4) is given by

E?nvz Lm (1)
Furthermore, the optimal performance is given by
J(0) = > Tr(W™"S™)+ Tr(WS). (12)

meM

a) Interpretation of the planning solution: Note that
@y = L&, is the optimal control for the mean-field system
with dynamics (9) and per-step cost ¢(&¢, ). Moreover, for
agent i of type m, i} = L’”xt is the optimal control for
the relative system with dynamics (10) and per-step cost
& (%, 1t). Theorem 1 shows that at every agent i of type m,
we can consider the two decoupled systems—the mean-field
system and the relative system— solve them separately, and
then simply add their respective controls—}* and ii—to
obtain the optimal control action at agent ¢ in the original
mean-field team system. We will exploit this feature of the
planning solution in order to develop a learning algorithm
for mean-field teams.

III. LEARNING FOR MEAN-FIELD TEAMS

For the ease of exposition, we describe the algorithm for
the special case when all types are of the same dimension
(ie., d)' =d, and d]' = d, for all m € M) and the same
number of agents (i.e., |[N™| = n for all m € M). We further
assume that dg = d, and F™ = I. Moreover, we assume
noise covariances are given as Wi = JEJI, 1€ N,V = 012)],
m € M, and V° = o2 1.

The above assumptions are not strictly needed for the analy-
sis but we impose them because, under these assumptions, the
covariance matrices & and ¥ are scaled identity matrices.
In particular for any m € M, ©™ = (1 — f)a I= 3%
and ¥ = (2= + 02+ 02,)I = 2I. This simpler form of the
covariance matrlces simplifies the description of the algorithm
and the regret bounds.

Following the decomposition presented in Sec. II-B, we
define /7 = [A,B] to be the parameters of the mean-
field dynamics (9) and (6™)7 [A™,B™] to be the
parameters of the relative dynamics (10). We let S™(6™)
and S(f) denote the solution to the Riccati equations (6) and
L™ (§™) and L(d) denote the corresponding gains (7). Let
Jm(6™) = 52 Tr(S(6™)) and J(F) = 52 Tr(5(8)) denote
the performance of the m-th relative system and the mean-
field system, respectively. As shown in Theorem 1,

=Y J™O™) +J(0).

meM

(13)

3The model considered in [23] did not include common noise, but it is
easy to verify that their results continue to hold for models with common
noise.



a) Prior and posterior beliefs:: We assume that the
unknown parameters ém, m € M, lie in compact sub-
sets O™ of R(d=tdu)xds  Similarly, § lies in a compact
subset © of RIM|(detdu)x[Mlds [ et g™ () denote the (-
th column of ™. Thus 6™ = cols(0™(1),...,0™(d,)).
Similarly, let §(¢) denote the /-th column of #. Thus, § =
cols(0(1),...,0(|M|d,)).

We use N (i1, Y) to denotes the Gaussian distribution with
mean p and covariance X and p’e to denote the projection
of probability distribution p on the set O.

We assume that the priors p; and p*,m € M, on § and
0™, me M, respectively, satisfy the following:

(A3) p; is given as:

where for ¢ € {1,...,|M|d,}, \{ = N (@1 (£),%1)
with mean fi;(¢) € RIMI(d=+du) and positive-definite
covariance 3 € RIM(da+du)x[M][(do+du)

(A4) pi* is given as:

prEm) = [T A @),

em

where for £ € {1,...,d,}, \/"" = N(ji* (£), 21) with
mean j17(¢) € R4+« and positive-definite covariance
S g R(detdu)x(detdu)
These assumptions are similar to the assumptions on the
prior in the recent literature on TS for LQ systems [14], [15].
Following the discussion after Theorem 1, we maintain
separate posterior distributions on 6 and 6™, m € M. In
particular, we maintain a posterior distribution p; on 0 based
on the mean-field state and action history as follows: for any
Borel subset B of R/M|(datdu)x[M|ds

pt(B) =P € B| Z1.4,U1.4-1)- (14)

For every m € M, we also maintain a separate posterior
distribution p;* on g™ as follows. At each time t > 1, we se-
lect an agent j, € N™ as arg max;eym (5 )T87 5,
where i)ﬁl is a covariance matrix defined recursively
by (18b). Then, for any Borel subset B of R(%=+du)xds

P(B) =P(0™ € B | {&#) il ,# hcsat}),  (15)

See the supplementary file of [37] for a discussion on the
rule to select j;" ;.

For the ease of notation, we use z; = vec(z}, ..., ELM‘),
where z/" = vec(z!", u/"), and %! = vec(Z!,u}). Then, we
can write the dynamics (9)—(10) of the mean-field and the
relative systems as

(16a)
(16b)

jt+1 = 0_th +’lDt +'l_}t +Ut0,
Fio =™ 4w, Yie N™,me M.
Recall that 2 = 02, /n + 02 4 02, and 52 = (1 — )02,

Lemma 1 The posterior distributions are as follows:

1) The posterior on 0 is

Mlda
po=[ [T Mew)|,.
=1
where for £ € {1,...,|M|d,}, X = N(:(£),%),

and

fer(0) = fu(e) + 22 En () — 1O7Z,)

(17a)
S =5 %ztzj (17b)
2) The posterior on 0™, m € M, at time t is
da
(O™ = [[Tx e @],
=1
where for € € {1,...,d,}, A\["" = N(m(¢),%m),

and
9 ;m

SPE (B0 — A (OTE")

i1 (6) = fg" (0) + TO—
o ! 52+ (HTSm

(18a)
1 jm

=1
FoRdl (th’ )T-

(S =EM T ! (18b)
PROOF Note that the dynamics of Z; and &% in (16) are linear
and the noises w; + ¥; + v) and w; are Gaussian. Therefore,
the result follows from standard results in Gaussian linear

regression [38]. n

b) The Thompson sampling algorithm:: We propose
a Thompson sampling algorithm referred to as TSDE-MF
which is inspired by the TSDE (Thompson sampling with
dynamic episodes) algorithm proposed in [14], [15] and the
structure of the optimal planning solution for the mean-field
teams described in Sec. II-B.

The TSDE-MF algorithm consists of a coordinator C and
|M|+1 actors: a mean-field actor A and a relative actor A™,
for each m € M. These actors are described below while the
whole algorithm is presented in Algorithm 1.

e At each time, the coordinator C observes the current
global state (x%);cn, computes the mean-field state &,
and the relative states (¥!);cn, and sends the mean-
field state Z; to be the mean-field actor A and the
relative states %" = (&!);cy= of the all the agents of
type m to the relative actor A™. The mean-field actor
A computes the mean-field control i, and the relative
actor A™ computes the relative control a7 = (U)jenm
(as per the details presented below) and sends it back
to the coordinator C. The coordinator then computes
and executes the control action u} = @} + 1} for each
agent ¢ of type m.

o The mean-field actor A maintains the posterior p; on
6 according to (17). The actor works in episodes of
dynamic length. Let 5, and T} denote the start and the
length of episode k, respectively. Episode k ends if the
determinant of covariance ¥; falls below half of its

b



value at the beginning of the episode (i.e., det(3;) <
0.5 det(3;, )) or if the length of the episode is one more
than the length of the previous episode (i.e., t — &} >
Tk—l)- Thus,

te41 = min{t >t : det(S;) < 0.5det(Z,)

ort —t >Tp_1}. (19)

At the beginning of episode k, the mean-field actor A
samples a parameter 6, from the posterior distribution
P;. During episode k, the mean-field actor A generates
the mean-field controls using the samples 0y, i.e., @; =
L(6x) ;. y

« Each relative actor .A™ is similar to the mean-field actor.
Actor A™ maintains the posterior p"* on o™ according
to (18). The actor works in episodes of dynamic length.
The episodes of each relative actor A™ and the mean-
field actor A are separate from each other.* Let ¢7* and
Tg"' denote the start and length of episode k, respectively.
The termination condition for each episode is similar to
that of the mean-field actor .A. In particular,

7y = min{t > £ : det(3") < 0.5 det(S7)

ort — i >1T L. (20)

At the beginning of episode k, the relative actor Am
samples a parameter 6} from the posterior distribution
¢". During episode k, the relative actor Am generates
the relative controls using the sample or, ie., uyt =

(L™ (07) ) ienm.

Note that the algorithm does not depend on the horizon T
A partially distributed version of the algorithm is presented
in the conclusion.

c) Regret bounds:: We make the following assumption
to ensure that the closed loop dynamics of the mean field
state and the relative states of each agent are stable. We use
the notation || - || to denote the induced norm of a matrix.

(A5) There exists § € (0,1) such that

o forany 0,¢ € © where 07 = [A;
1Ag+BoL(d)| <5

e for any m € M, 9m,¢m € O™, where
(0™)7 = [Agn:Bynl, we have [|Az. +
By, L(6™) < 4.

This assumption is similar to an assumption imposed in
the literature on TS for LQ systems [15]. According to
Theorem 11 in [12], the assumption is satisfied if

, Bg], we have

6 ={(A,B):

ém _ {(Am, ém) .

IA = Ao|| < &1[B—Bo|l < &}

A" — Agri| < e, B — By < e}

for stabilizable (A7, B7*) and (A7*, By*), and small constants

™ depending on the choice of (AZ7', BY") and (A7, BI").
In other words, the assumption holds when the true system
is in a small neighborhood of a known nominal system, and

4We use the episode count k as a local variable which is different for
each actor.

Algorithm 1 TSDE-MF

I: initialize mean-field actor: ©, (ji;, %), ty =0,7_; =
0,k=0

2: initialize relative-actor-m: O™, (i}, X7, i = 0,
T =0,k=0

3: fort=1,2,... do

4 observe (zt)ien

5. compute Ty, (X7 )mem

6: Uy < MEAN-FIELD-ACTOR(Z;)

7. for m € M do

8 U}" < RELATIVE-ACTOR-m(E]")

9 for : € N™ do

10: agent i applies control ui = W + i

11: end for

12 end for

13: end for

1: function MEAN-FIELD-ACTOR(Z;)

2 global var ¢

3:  Update p; according (17)

4 ift —1 > Ty or det(X;) < 0.5det(Z;) then
5: Tt —tp, k< k+1, 4, <t

6 sample O ~ Py

7 LeL(By)

8 end if

9:  return LZ;

end function

@

1: function RELATIVE-ACTOR-m((%});e nm)

2:  global var ¢

3 Update p;* according (18)

4 it =1 > Ty or det(S]") < 0.5det(2)) then
5: Tt =t ke k+ 1,47 1

6 sample Hm ~ pi

7 Lm Lm(ém)

8: end if

return (L"#);c ym

10: end function

R

the small neighborhood can be learned with high probability
by running some stabilizing procedure [12].

The following result provides an upper bound on the regret
of the proposed algorithm.

Theorem 2 Under (A1)—(AS), the regret of TSDE-MF is
upper bounded as follows:

R(T; TSDE-MF) < O((52|M|**+5%|M|)d%® (dy+d )VT).

Recall that 62 = 2

o2/n + o2 + o2 and &2 =

(1 — +)on. So, we can say that R(T;TDSE-MF) <
O(5%| M |*5d%5(d, + d,)v/'T). Compared with the original
TSDE regret (9( 15| M|'-5y/T) which scales superlinear with
the number of agents, the regret of the proposed algorithm is
bounded by O(|M|'-5\/T) irrespective of the total number

of agents.



The following special cases are of interest:

e In the absence of common noises (i.e., 03

02, = 0), and when n > |M|, R(T;TDSE-MF) <

O(52| M |d%5(d, + du)VT).

o For homogeneous systems (i.e., |M| = 1), we have
R(T; TDSE-MF) < O((5% + §%)d%%(dy + du)VT).
Thus, the scaling with the number of agents is O((1 +
VT,

Note that these results show that in mean-field systems with
common noise regret scales as O(|M|!-%) in the number of
types, while in mean-field systems without common noise, the
regret scales as O(|M|). Thus, the presence of common noise
fundamentally changes the scaling of the learning algorithm.

IV. REGRET ANALYSIS

For the ease of notation, we simply use R(T) instead of
R(T; TSDE-MF) in this section. Eq. (13) and (8) imply that
the regret may be decomposed as

RT) =R+ S L 3 i)

meM 1EN™

21

where
T
l:z (Bt, Ut J(@)] s
t=1
T
D ER
t=1

Note that R(T) is the regret associated with the mean-field
system and Ri’m(T) is the regret of the i-th relative system of
type m. Observe that for the mean-field actor in our algorithm
is essentially implementing the TSDE algorithm of [14], [15]
for the mean-field system with dynamics (9) and per-step
cost ¢(Z&¢, u). This is because:

i - T3],

1) As mentioned in the discussion after Theorem 1, we
can view u; = L(0)Z; as the optimal control action of
the mean-field system.

2) The posterior distribution p; on 6 depends only on
(1.4, Wrsp—1).

Thus, R(T) is precisely the regret of the TSDE algorithm
analyzed in [15]. Therefore, we have the following.

Lemma 2 For the mean-field system,
R(T) < O(5*|M|**d%® (dy + du)VT).

Unfortunately, we cannot use the same argument to bound
R*™(T). Even though we can view #: = L™ (0™)&! as the
optimal control action of the LQ system with dynamlcs (10),
the posterior p;* on o™ depends on terms other than
(2%.,,u%, ). Therefore, we cannot directly use the results
of [15] to bound R*™(T). In the rest of this section, we
present a bound on R“™(T).

For the ease of notation, for any episode k, we use L’" and
Sm to denote Lm(Qm) and 5™ (Hm). Recall that the relative
Value function for average cost LQ problem is 27Sx, where
S is the solution to DARE. Therefore, at any time ¢, episode

(22)

m"’L

k, agent ¢ of type m, and state Tt € R, with 4} = L
and 2} = vec(&,1!), the average cost Bellman equatlon is

TG + () TSy = (3, )
E[((6) 5 + i) Sy ()T

Adding and subtracting E[(#},,)"Sp*4i,, | %] and noting

Z +p)].

that &%, , = (0™)7 % + b}, we get that
E™ (@, ) = J™O) + (21) TSyt — E(&,) TS E |%]
H((0™)TED)TSE(E™)TE) — (G DTS (0T ED.
(23)

Let K. 7 denote the number of episodes of the relative systems
of type m until the horizon T'. For each k > K, we define
52” to be T'+ 1. Then, using (23), we have that for any agent ¢
of type m,

RT m ij(ém):|

|:Z Tm Jm

regret due to sampling error ::Ré’m (T)

K t?—yl

vE[Y Y [

- @S|
k=1 = i

regret due to time-varying controller =: R%'"™ (T')
Km t}jﬂ 1
[Z SO =TSR (™)

= (=TS0 2]

regret due to model mismatch ::Iv%;’m(T)

(24)
Lemma 3 The terms in (24) are bounded as follows:
1) Ry™(T) < O(62/(dy + du)T).
2) Rl "(T) < 0(6*\/(dy + du)T).

3) Rl ™(T) < O(52(dy + dy)Vd,T).
PROOF We provide an outline of the proof. See the supple-
mentary file of [37] for complete details.

The first term R (T') can be bounded using the basic
property of Thompson sampling: for any measurable function
£, E[f(0;™)] = E[f(6™)] because 67" is a sample from the
posterior distribution on om. ‘

Note that the second term R:™(T) is a telescopic sum,
which we can simplify to establish

RY™(T) < O(E[KF (X5)?),

where X! = max;<;<7 ||#i|| is the maximum norm of the
relative state along the entire trajectory. The final bound on
R7™(T) can be obtained by bounding K%' and E[(X%)?].

Using the sampling condition for p;* and an existing bound
in the literature, we first establish that

\/IE XT Zt 1(Z )szzt] x O(VT)
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Fig. 1: Expected regret vs time.

Then, we upper bound (¥)T¥7%i by (zt )TEm“J’
which follows from the deﬁnition of ji*. Finally, we
show that [( ) Zt(“]t )TEm”‘ ] is O(1) using the
fact that (Zm) is obtained by linearly combining
(A=) J1<seq as in (18b). n
Combining the three bounds in Lemma 3, we get that
Rv™(T) < O(62d0° (dy + du)VT). (25)

By subsituting (22) and (25) in (21), we get the result of
Theorem 2.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of TSDE-MF
for a homogeneous (i.e., = 1) mean-field LQ system for
different values of the number n of agents, with A =1,B =
03D—05E—02Q—1Q_1R_landR_O5
We set the local noise variance o2, = 1.

For the regret plots in Figure la,1b, we set the common
noise variance to a + O'Uo = 1. The prior distribution used
in the simulation are set according to (A3) and (A4) with

fi(€) = U11M0=[ 1S =1 and ¥ =1, 0 ={0:
A+BL(0) <6},0={:A+D+(B+E)L(A) <4} and
§ = 0.99.

In the comparison of TSDE-MF method with TSDE in
Figure 1c, we consider the same dynamics and cost parameters
as above but without common noise (i.e. 03 + 050 = 0).

a) Empirical evaluation of regret:: We run the system
for 500 different sample paths and plot the mean and standard
deviation of the expected regret R(7T) for T' = 5000. The
regret for different values of n is shown in la—1b. As seen
from the plots, the regret reduces with the number of agents
and R(T)/v/T converges to a constant. Thus, the empirical
regret matches the upper bound of O((1 + %)\/T) obtained
in Theorem 2.

b) Comparison with naive TSDE algorithm:: We com-
pare the performance of TSDE-MF with that of directly using
the TSDE algorithm presented in [14], [15] for different values
of n. The results are shown in Fig. 1c. As seen from the
plots, the regret of TSDE-MF is smaller than TSDE but more
importantly, the regret of TSDE-MF reduces with n while
that of TSDE increases with n. This matches their respective
upper bounds of O((1+ L)VT) and O(n'5\/T). These plots
clearly illustrate the significance of our results even for small
values of n.

VI. CONCLUSION

We consider the problem of controlling an unknown LQ
mean-field team. The planning solution (i.e., when the model
is known) for mean-field teams is obtained by solving the
mean-field system and the relative systems separately. Inspired
by this feature, we propose a TS-based learning algorithm
TSDE-MF which separately tracks the parameters 6 and gm
of the mean-field and the relative systems, respectively. The
part of the TSDE-MF algorithm that learns the mean-field
system is similar to the TSDE algorithm for single agent
LQ systems proposed in [14], [15] and its regret can be
bounded using the results of [14], [15]. However, the part of
the TSDE-MF algorithm that learns the relative component
is different and we cannot directly use the results of [14],
[15] to bound its regret. Our main technical contribution is to
provide a bound on the regret on the relative system, which
allows us to bound the total regret under TSDE-MF.

a) Distributed implementation of the algorithm:: Tt is
possible to implement Algorithm 1 in a distributed manner as
follows. Instead of a centralized coordinator which collects
all the observations and computes all the controls, we can
consider an alternative implementation in which there is an
actor A™ associated with type m and a mean-field actor A.
Each agent observes its local state and action. The actor A™
for type m computes (j;", Z}") using a distributed algorithm,
sends zy" to the mean-field actor, and locally computes
L™ (6)). The mean-field actor computes L(6,) and sends the
m-th block column L™(f},) to actors A™. Each actor A™
then sends (z,L™(A;),L™(f:)) to each agent of type m
using a distributed algorithm. Each agent then applies the
control law (11).

REFERENCES

[11 P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3,
pp. 235-256, 2002.

M. C. Campi and P. Kumar, “Adaptive linear quadratic Gaussian
control: the cost-biased approach revisited,” SIAM Journal on Control
and Optimization, vol. 36, no. 6, pp. 1890-1907, 1998.

Y. Abbasi-Yadkori and C. Szepesvdri, “Regret bounds for the adaptive
control of linear quadratic systems,” in Annual Conference on Learning
Theory, pp. 1-26, 2011.

M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Finite time
analysis of optimal adaptive policies for linear-quadratic systems.”
arXiv:1711.07230, 2017.

[2]

[3]

[4]



[5]

[6

=

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Cohen, T. Koren, and Y. Mansour, “Learning linear-quadratic
regulators efficiently with only v/T" regret,” in International Conference
on Machine Learning, pp. 1300-1309, PMLR, 2019.

M. Abeille and A. Lazaric, “Efficient optimistic exploration in
linear-quadratic regulators via lagrangian relaxation,” in International
Conference on Machine Learning, pp. 23-31, PMLR, 2020.

G. Goodwin, P. Ramadge, and P. Caines, “Discrete time stochastic
multivariable adaptive control,” IEEE Transactions on Automatic
Control, vol. 19, pp. 449-456, June 1980.

G. Goodwin, P. Ramadge, and P. Caines, “Discrete time stochastic
adaptive control,” SIAM J. Control and Optimization, vol. 19, pp. 829—
853, Nov. 1981.

S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “Regret bounds
for robust adaptive control of the linear quadratic regulator,” in Neural
Information Processing Systems, pp. 4192-4201, 2018.

H. Mania, S. Tu, and B. Recht, “Certainty equivalent control of LQR
is efficient.” arXiv:1902.07826, 2019.

M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Input per-
turbations for adaptive control and learning,” Automatica, vol. 117,
p. 108950, 2020.

M. Simchowitz and D. Foster, “Naive exploration is optimal for online
lqr,” in International Conference on Machine Learning, pp. 8937-8948,
PMLR, 2020.

S. Agrawal and N. Goyal, “Analysis of thompson sampling for the
multi-armed bandit problem,” in Conference on Learning Theory, 2012.
Y. Ouyang, M. Gagrani, and R. Jain, “Control of unknown linear
systems with thompson sampling,” in Allerton Conference on Commu-
nication, Control, and Computing, pp. 1198-1205, 2017.

Y. Ouyang, M. Gagrani, and R. Jain, “Posterior sampling-based
reinforcement learning for control of unknown linear systems,” IEEE
Transactions on Automatic Control, 2019.

M. Abeille and A. Lazaric, “Improved regret bounds for thompson
sampling in linear quadratic control problems,” in International
Conference on Machine Learning, pp. 1-9, 2018.

A. Cassel, A. Cohen, and T. Koren, “Logarithmic regret for learning
linear quadratic regulators efficiently,” in International Conference on
Machine Learning, pp. 1328-1337, PMLR, 2020.

J. Lunze, “Dynamics of strongly coupled symmetric composite systems,”
International Journal of Control, vol. 44, no. 6, pp. 1617-1640, 1986.
M. K. Sundareshan and R. M. Elbanna, “Qualitative analysis and
decentralized controller synthesis for a class of large-scale systems
with symmetrically interconnected subsystems,” Automatica, vol. 27,
no. 2, pp. 383-388, 1991.

G.-H. Yang and S.-Y. Zhang, “Structural properties of large-scale
systems possessing similar structures,” Automatica, vol. 31, no. 7,
pp. 1011-1017, 1995.

S. C. Hamilton and M. E. Broucke, “Patterned linear systems,”
Automatica, vol. 48, no. 2, pp. 263-272, 2012.

J. Arabneydi and A. Mahajan, “Team-optimal solution of finite number
of mean-field coupled 1qg subsystems,” in Conf. Decision and Control,
(Kyoto, Japan), Dec. 2015.

J. Arabneydi and A. Mahajan, “Linear Quadratic Mean Field Teams:
Optimal and Approximately Optimal Decentralized Solutions,” 2016.
arXiv:1609.00056.

J.-M. Lasry and P-L. Lions, “Mean field games,” Japanese Journal of
Mathematics, vol. 2, no. 1, pp. 229-260, 2007.

M. Huang, P. E. Caines, and R. P. Malhamé, “Large-population
cost-coupled LQG problems with nonuniform agents: individual-mass
behavior and decentralized epsilon-Nash equilibria,” IEEE Transactions
on Automatic Control, vol. 52, no. 9, pp. 1560-1571, 2007.

M. Huang, P. E. Caines, and R. P. Malhamé, “Social optima in mean
field LQG control: centralized and decentralized strategies,” IEEE
Transactions on Automatic Control, vol. 57, no. 7, pp. 1736-1751,
2012.

G. Y. Weintraub, C. L. Benkard, and B. V. Roy, “Oblivious Equilibrium:
A Mean Field Approximation for Large-Scale Dynamic Games,” in
Neural Information Processing Systems, pp. 1489—1496, Dec. 2005.
G. Y. Weintraub, C. L. Benkard, and B. Van Roy, “Markov perfect
industry dynamics with many firms,” Econometrica, vol. 76, no. 6,
pp. 1375-1411, 2008.

D. A. Gomes and J. Satide, “Mean field games models—a brief survey,”
Dynamic Games and Applications, vol. 4, no. 2, pp. 110-154, 2014.
Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean
field multi-agent reinforcement learning,” in International Conference
on Machine Learning, pp. 5567-5576, Jul 2018.

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

J. Subramanian and A. Mahajan, “Reinforcement learning in stationary
mean-field games,” in International Conference on Autonomous Agents
and Multi-Agent Systems, pp. 251-259, 2019.

N. Tiwari, A. Ghosh, and V. Aggarwal, “Reinforcement learning for
mean field game,” arXiv preprint arXiv:1905.13357, 2019.

X. Guo, A. Hu, R. Xu, and J. Zhang, “Learning mean-field games,” in
Neural Information Processing Systems, pp. 4966-4976, 2019.

S. G. Subramanian, P. Poupart, M. E. Taylor, and N. Hegde, “Multi type
mean field reinforcement learning,” arXiv preprint arXiv:2002.02513,
2020.

M. A. uz Zaman, K. Zhang, E. Miehling, and T. Basar, “Reinforcement
learning in non-stationary discrete-time linear-quadratic mean-field
games,” in 2020 59th IEEE Conference on Decision and Control
(CDC), pp. 2278-2284, 1IEEE, 2020.

A. Angiuli, J.-P. Fouque, and M. Lauriere, “Unified reinforcement Q-
learning for mean field game and control problems.” arXiv:2006.13912,
2020.

M. Gagrani, S. Sudhakara, A. Mahajan, A. Nayyar, and Y. Ouyang,
“Thompson sampling for linear quadratic mean-field teams.” arXiv
preprint arXiv:2011.04686, 2020.

J. Sternby, “On consistency for the method of least squares using
martingale theory,” IEEE T. on Automatic Control, vol. 22, no. 3,
pp. 346-352, 1977.



