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Renewal Monte Carlo: Renewal Theory-Based Reinforcement Learning
Jayakumar Subramanian and Aditya Mahajan

Abstract—An online reinforcement learning algorithm called re-
newal Monte Carlo (RMC) is presented. RMC works for infinite
horizon Markov decision processes with a designated start state.
RMC is a Monte Carlo algorithm that retains the key advantages
of Monte Carlo—viz., simplicity, ease of implementation, and low
bias—while circumventing the main drawbacks of Monte Carlo—
viz., high variance and delayed updates. Given a parameterized
policy πθ , the algorithm consists of three parts: estimating the
expected discounted reward Rθ and the expected discounted time
Tθ over a regenerative cycle; estimating the derivatives ∇θRθ

and ∇θTθ; and updating the policy parameters using stochastic
approximation to find the roots of Rθ∇θTθ − Tθ∇θRθ . It is shown
that under mild technical conditions, RMC converges to a locally
optimal policy. It is also shown that RMC works for postdecision
state models as well. An approximate version of RMC is proposed
where a regenerative cycle is defined as successive visits to a
prespecified “renewal set”. It is shown that if the value function of
the system is locally Lipschitz on the renewal set, then RMC con-
verges to an approximate locally optimal policy. Three numerical
experiments are presented to illustrate RMC and compare it with
other state-of-the-art reinforcement learning algorithms.

Index Terms—Markov decision processes (MDPs), Monte Carlo
methods, policy gradient, renewal theory, reinforcement learning,
stochastic approximation.

I. INTRODUCTION

In recent years, reinforcement learning [1]–[4] has emerged as an
effective framework for learning how to act optimally in unknown en-
vironments. Policy gradient methods [5]–[10] have played a prominent
role in the success of reinforcement learning. Such methods have two
critical components: policy evaluation and policy improvement. In pol-
icy evaluation, the performance of a parameterized policy is evaluated
while in policy improvement, the policy parameters are updated using
stochastic gradient ascent.

Policy gradient methods may be broadly classified as Monte Carlo
methods and temporal difference methods. In Monte Carlo methods,
performance of a policy is estimated using the discounted return of
one or more sample paths; in temporal difference methods, an initial
estimate for the (action-) value function is chosen arbitrarily and, then,
improved iteratively using temporal differences. Monte Carlo methods
are attractive because they have zero bias, are simple and easy to
implement, and work for both discounted and average reward setups as
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well as for models with continuous state and action spaces. However,
they suffer from various drawbacks. First, they have a high variance
because a single sample path is used to estimate performance. Second, in
Monte Carlo methods, it is implicitly assumed that the model is episodic
(i.e., there is an end state and the system stops when it reaches the end
state). To use these methods for infinite horizon models, the trajectory
is arbitrarily truncated to treat the model as an episodic model. For that
reason, the resultant policy is not asymptotically optimal. Third, the
policy improvement step cannot be carried out in tandem with policy
evaluation. One must wait until the end of the episode to estimate the
performance and only then can the policy parameters be updated. For
these reasons, the literature on policy gradient methods largely ignores
Monte Carlo methods and almost exclusively focuses on temporal
difference methods such as actor-critic with eligibility traces [3].

In this article, an online reinforcement learning algorithm called
renewal Monte Carlo (RMC) is presented. RMC works for infinite
horizon Markov decision processes (MDPs) with a designated start
state. RMC is a Monte Carlo algorithm that retains the key advantages
of Monte Carlo—viz., simplicity, ease of implementation, and low
bias—while circumventing the main drawbacks of Monte Carlo—viz.,
high variance and delayed updates. The key intuition behind RMC
is that, under any reasonable policy, the reward process is ergodic.
Therefore, using ideas from renewal theory, it can be shown that the
performance of any parameterized policy πθ is proportional to Rθ/Tθ ,
where Rθ and Tθ are the expected discounted reward and the expected
discounted time of the reward process over a regenerative cycle. Hence,
the performance gradient is proportional to Hθ = ∇RθTθ −Rθ∇Tθ .
Hence, any policy for which Hθ is zero is locally optimal.

In RMC,Rθ andTθ are estimated from Monte Carlo evaluations over
multiple regenerative cycles; ∇Rθ and ∇Tθ are estimated using either
likelihood ratio or simultaneous perturbation-based estimators; and the
root of Hθ is obtained using stochastic approximation. We show that
under mild technical conditions, RMC converges to a locally optimal
policy.

The RMC algorithm is generalized to postdecision state models,
where regenerative cycle is defined as successive visits to an initial
postdecision state.

An approximate RMC algorithm is proposed where successive visits
to a prespecified “renewal set” is viewed as a regenerative cycle. We
show that if the value function for the system is locally Lipschitz
continuous on the renewal set, then RMC converges to approximate
locally optimal policy.

The effectiveness of RMC is illustrated on three examples: randomly
generated MDPs, event-driven communication, and inventory control.
The last two examples have continuous state space and show that RMC
works well for continuous state models as well.

Although renewal theory is commonly used to estimate performance
of stochastic systems [11], [12], those methods assume that the prob-
ability law of the primitive random variables and its weak derivative
are known, which is not the case in reinforcement learning. Renewal
theory is also commonly used in queuing theory and MDPs with average
reward criteria and a known system model. There is some prior work
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on using renewal theory for reinforcement learning [13], [14], where
renewal theory-based estimators for the average return and differential
value function for average reward MDPs are developed. In RMC,
renewal theory is used in a different manner for discounted reward
MDPs (and the results generalize to average cost MDPs).

II. RMC ALGORITHM

Consider an MDP with state St ∈ S and action At ∈ A. The system
starts in an initial state s0 ∈ S and at each time t, there is a controlled
transition from St to St+1 according to a transition kernel P (At). At
each time t, a per-step reward Rt = r(St, At, St+1) is received.

A (time-homogeneous and Markov) policy π maps the current state
to a distribution on actions, i.e., At ∼ π(St). We use π(a|s) to denote
P(At = a|St = s). The performance of a policy π is given by

Jπ = EAt∼π(St)

[ ∞∑
t=0

γtRt

∣∣∣∣ S0 = s0

]
(1)

where γ ∈ (0, 1) is the discount factor. We are interested in identifying
an optimal policy, i.e., a policy that maximizes the performance. When
S and A are Borel spaces, we assume that the model satisfies the
standard regularity conditions under which time-homogeneous Markov
policies are optimal [15].

Suppose policies are parameterized by a closed and convex subset Θ
of the Euclidean space.1 Given θ ∈ Θ, we use πθ to denote the policy
parameterized by θ andJθ to denoteJπθ

. We assume that for all policies
πθ , θ ∈ Θ, the designated start state s0 is positive recurrent.

The typical approach for policy gradient-based reinforcement learn-
ing is to start with an initial choice θ0 ∈ Θ and iteratively update it
using stochastic gradient ascent. In particular, let ∇̂Jθm be an unbiased
estimator of ∇θJθ

∣∣
θ=θm

, and consider the update

θm+1 =
[
θm + αm∇̂Jθm

]
Θ

(2)

where [θ]Θ denotes the projection of θ onto Θ, and {αm}m≥1 are
learning rates that satisfy the standard assumptions

∞∑
m=1

αm = ∞ and
∞∑

m=1

α2
m < ∞. (3)

Under mild technical conditions [16], the above iteration converges
to a θ∗ that is locally optimal, i.e., ∇θJθ

∣∣
θ=θ∗ = 0. In RMC, we

approximate ∇θJθ by a renewal theory-based estimator as explained
below.

Let τ (n) denote the stopping time when the system returns to the
start state s0 for the n-th time. In particular, let τ (0) = 0 and for n ≥
1 define τ (n) = min{t > τ (n−1) : st = s0}. We call the sequence of
(St, At, Rt) from τ (n−1) to τ (n) − 1 as then-th regenerative cycle. Let
R(n) and T(n) denote the total discounted reward and total discounted
time of the n-th regenerative cycle, i.e.,

R(n) = Γ(n)

τ(n)−1∑
t=τ(n−1)

γtRt and T(n) = Γ(n)

τ(n)−1∑
t=τ(n−1)

γt (4)

where Γ(n) = γ−τ(n−1)
. By the strong Markov property [17],

{R(n)}n≥1 and {T(n)}n≥1 are i.i.d. sequences. Let Rθ and Tθ denote

1Examples of such parametized policies include the weights of a Gibbs
softmax policy, the weights of a deep neural network, the thresholds in a control
limit policy, and so on.

E[R(n)] and E[T(n)], respectively. Define

R̂ =
1

N

N∑
n=1

R(n) and T̂ =
1

N

N∑
n=1

T(n) (5)

where N is an arbitrarily chosen number of cycles. Then, R̂ and T̂ are
unbiased and asymptotically consistent estimators of Rθ and Tθ .

From ideas of renewal theory [18], we have the following.
Proposition 1 (Renewal Relationship): The performance of policy

πθ is given by

Jθ =
Rθ

(1− γ)Tθ

. (6)

Proof: Consider the performance

Jθ = EAt∼πθ(St)

[ τ(1)−1∑
t=0

γtRt+γτ(1)
∞∑

t=τ(1)

γt−τ(1)
Rt

∣∣∣∣ S0=s0

]

(a)
= Rθ + EAt∼πθ(St)[γ

τ(1)
]Jθ (7)

where the second expression in (a) uses the independence of random
variables from (0, τ (1) − 1) to those from τ (1) onwards due to the
strong Markov property [17].

Now, by definition, Tθ = (1− EAt∼πθ(St)[γ
τ(1)

])/(1− γ). Rear-

ranging terms, we get EAt∼πθ(St)[γ
τ(1)

] = 1− (1− γ)Tθ . Substitut-
ing this in (7), we get the result of the proposition. �

Differentiating both sides of (6) with respect to θ, we get

∇θJθ =
Hθ

T2
θ(1− γ)

,where Hθ = Tθ∇θRθ − Rθ∇θTθ. (8)

Therefore, instead of using stochastic gradient ascent to find a local
maximum of Jθ , we can use stochastic approximation to find a root
of Hθ .

Theorem 1: Consider the sequence {θm}m≥1, where the initial
θ0 ∈ Θ is chosen arbitrarily, and for m > 0

θm+1 =
[
θm + αmĤm

]
Θ

(9)

where {αm}m≥1 satisfies (3) and Ĥm is an unbiased estimator ofHθm .
Then, the sequence {θm}m≥1 converges almost surely and

lim
m→∞

∇θJθ

∣∣
θm

= 0.

Proof: The convergence of the {θm}m≥1 follows from [16, Th.
2.2] and the fact that the model satisfies conditions (A1)–(A4) of [16,
pp. 10–11]. �

Proposition 2: Let R̂m, T̂m, ∇̂Rm, and ∇̂Tm be unbiased esti-
mators of Rθm , Tθm , ∇θRθm , and ∇θTθm , respectively, such that
T̂m ⊥ ∇̂Rm and R̂m ⊥ ∇̂Tm.2 Then

Ĥm = T̂m∇̂Rm − R̂m∇̂Tm (10)

is an unbiased estimator of Hθm . Furthermore, assume that
1) Hθ is continuous;
2) the estimate Ĥm has bounded variance;
3) the differential equation dθ/dt = Hθ has isolated limit points that

are locally asymptotically stable.
Then, the sequence {θm}m≥1 generated by (9) converges almost surely
and

lim
m→∞

∇θJθ

∣∣
θm

= 0.

2X ⊥ Y denotes that random variables X and Y are independent.
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Proof: The independence assumption implies that Ĥm is unbiased.
The model satisfies conditions (A2.1)–(A2.6) of [19, pg. 126], so [19,
Th. 2.1] implies that {θm}m≥1 converges. The convergence to a local
maximum follows from the discussion in [19, Sec. 5.8]. �

We can estimate Rθ and Tθ using (5). We present two methods to
estimate the gradients ofRθ andTθ: 1) a likelihood ratio-based gradient
estimator, which works when the policy is differentiable with respect
to the policy parameters; and 2) a simultaneous perturbation-based
gradient estimator that uses finite differences, which is useful when
the policy is not differentiable with respect to the policy parameters.

A. Likelihood Ratio-Based Gradient Estimator

One approach to estimate the performance gradient is to use likeli-
hood radio-based estimates [12], [20], [21]. Suppose the policy πθ(a|s)
is differentiable with respect to θ. For any time t, define the likelihood
function

Λt = ∇θ log[πθ(At | St)] (11)

and, for σ ∈ {τ (n−1), . . . , τ (n) − 1}, define

R(n)
σ = Γ(n)

τ(n)−1∑
t=σ

γtRt and T(n)
σ = Γ(n)

τ(n)−1∑
t=σ

γt. (12)

In this notation, R(n) = R
(n)

τ(n−1) and T(n) = T
(n)

τ(n−1) . Then, define the
following estimators for ∇θRθ and ∇θTθ:

∇̂R =
1

N

N∑
n=1

τ(n)−1∑
σ=τ(n−1)

R(n)
σ Λσ (13)

∇̂T =
1

N

N∑
n=1

τ(n)−1∑
σ=τ(n−1)

T(n)
σ Λσ (14)

where N is an arbitrarily chosen number.
Proposition 3: ∇̂R and ∇̂T defined above are unbiased and asymp-

totically consistent estimators of ∇θRθ and ∇θTθ .

Proof: Let Pθ denote the probability induced on the sample paths
when the system is following policy πθ . For t ∈ {τ (n−1), . . . , τ (n) −
1}, let D(n)

t denote the sample path (Ss, As, Ss+1)
t
s=τ(n−1) for the

n-th regenerative cycle until time t. Then

Pθ(D
(n)
t ) =

t∏
s=τ(n−1)

πθ(As|Ss)P(Ss+1|Ss, As).

Therefore

∇θ logPθ(D
(n)
t ) =

t∑
s=τ(n−1)

∇θ log πθ(As|Ss) =
t∑

s=τ(n−1)

Λs.

(15)
Note that Rθ can be written as

Rθ = Γ(n)

τ(n)−1∑
t=τ(n−1)

γt
EAt∼πθ(St)[Rt].

Using the log derivative trick,3 we get

∇θRθ = Γ(n)

τ(n)−1∑
t=τ(n−1)

γt
EAt∼πθ(St)[Rt∇θ logPθ(D

(n)
t )]

(a)
= Γ(n)

EAt∼πθ(St)

[ τ(n)−1∑
t=τ(n−1)

[
γtRt

t∑
σ=τ(n−1)

Λσ

]]

(b)
= EAt∼πθ(St)

[ τ(n)−1∑
σ=τ(n−1)

Λσ

[
Γ(n)

τ(n)−1∑
t=σ

γtRt

]]

(c)
= EAt∼πθ(St)

[ τ(n)−1∑
σ=τ(n−1)

R(n)
σ Λσ

]
(16)

where (a) follows from (15), (b) follows from changing the order of
summations, and (c) follows from the definition of R(n)

σ in (12). ∇̂R is
an unbiased and asymptotically consistent estimator of the right-hand
side of the last equation in (16). The result for ∇̂T follows from a
similar argument. �

Algorithm 1 combines the above estimates with the stochastic gra-
dient ascent iteration of Theorem 1. An immediate consequence of
Proposition 2 and Theorem 1 is the following.

Corollary 1: The sequence {θm}m≥1 generated by Algorithm 1
converges to a local maximum.

Remark 1: Algorithm 1 is presented in its simplest form. It is pos-
sible to use standard variance reduction techniques such as subtracting
a baseline [21]–[23] to reduce variance.

Remark 2: In Algorithm 1, we use two separate runs to compute
(R̂m, T̂m) and (∇R̂m,∇T̂m) to ensure that the independence condition
of Proposition 2 is satisfied. In practice, we found that using a single
run to compute both (R̂m, T̂m) and (∇R̂m,∇T̂m) has negligible effect
on the accuracy of convergence (but speeds up convergence by a factor
of two).

3Log-derivative trick: For any distribution p(x|θ) and any function f

∇θEX∼p(X|θ)[f(X)] = EX∼p(X|θ)[f(X)∇θ log p(X|θ)].
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Remark 3: It has been reported in the literature [24] that using a
biased estimate of the gradient given by

R(n)
σ = Γ(n)

τ(n)−1∑
t=σ

γt−σRt (17)

(and a similar expression for T (n)
σ ) leads to faster convergence. We call

this variant RMC with biased gradients and, in our experiments, find
that it does converge faster than RMC.

B. Simultaneous Perturbation-Based Gradient Estimator

Another approach to estimate the performance gradient is to use
simultaneous perturbation-based estimates [25]–[28]. The general one-
sided form of such estimates is

∇̂Rθ = δ(R̂θ+cδ − R̂θ)/c

where δ is a random variable with the same dimension as θ and c
is a small constant. The expression for ∇̂Tθ is similar. When δi ∼
Rademacher(±1), the above method corresponds to simultaneous per-
turbation stochastic approximation [25], [26]; when δ ∼ Normal(0, I),
it corresponds to smoothed function stochastic approximation [27],
[28].

Substituting these estimates in (10) and simplifying, we get

Ĥθ = δ(T̂θR̂θ+cδ − R̂θT̂θ+cδ)/c.

The complete algorithm is shown in Algorithm 2. Since (R̂θ, T̂θ) and
(R̂θ+cδ, T̂θ+cδ) are estimated from separate sample paths, Ĥθ defined
above is an unbiased estimator ofHθ . Then, an immediate consequence
of Proposition 2 and Theorem 1 is the following.

Corollary 2: The sequence {θm}m≥1 generated by Algorithm 2
converges to a local maximum.

C. Remark on Average Reward Setup

The results presented above also apply to average reward models
where the objective is to maximize

Jπ = lim
th→∞

1

th
EAt∼π(St)

[th−1∑
t=0

Rt

∣∣∣∣ S0 = s0

]
. (18)

Let the stopping times τ (n) be defined as before. Define the total reward
R(n) and duration T(n) of the nth regenerative cycle as

R(n) =
τ(n)−1∑

t=τ(n−1)

Rt and T(n) = τ (n) − τ (n−1).

LetRθ andTθ denote the expected values ofR(n) andT(n) under policy
πθ . Then, from standard renewal theory, we have that the performance
Jθ is equal to Rθ/Tθ and, therefore, ∇θJθ = Hθ/T

2
θ , where Hθ is

defined as in (8). We can use both variants of RMC presented above to
obtain estimates of Hθ and use these to update the policy parameters
using (9).

III. RMC FOR POSTDECISION STATE MODEL

In many models, the state dynamics can be split into two parts:
a controlled evolution followed by an uncontrolled evolution. For
example, many continuous state models have dynamics of the form
St+1 = f(St, At) +Nt where {Nt}t≥0 is an independent noise pro-
cess. For other examples, see the inventory control and event-triggered
communication models in Section V. Such models can be written in
terms of a postdecision state model described below.

Consider a postdecision state MDP with a predecision state S−
t ∈

S−, postdecision state S+
t ∈ S+, action At ∈ A. The system starts at

an initial state s+0 ∈ S+ and at time t
1) there is a controlled transition from S−

t to S+
t according to a

transition kernel P−(At);
2) there is an uncontrolled transition from S+

t to S−
t+1 according to a

transition kernel P+;
3) a per-step reward Rt = r(S−

t , At, S
+
t ) is received.

Remark 4: When S+ = S− and P+ is identity, then the above
model reduces to the standard MDP model, considered in Section II.
When P+ is a deterministic transition, the model reduces to a standard
MDP model with postdecision states [29], [30].

As in Section II, we choose a (time-homogeneous and Markov)
policy π that maps the current predecision state S− to a distribution on
actions, i.e., At ∼ π(S−

t ). We use π(a|s−) to denote P(At = a|S−
t =

s−).
The performance when the system starts in a postdecision state s+0 ∈

S+ and follows policy π is given by:

Jπ = EAt∼π(St)

[ ∞∑
t=0

γtRt

∣∣∣∣ S+
0 = s+0

]
(19)

where γ ∈ (0, 1) is the discount factor. As before, we are interested
in identifying an optimal policy, i.e., a policy that maximizes the
performance. When S and A are Borel spaces, we assume that the
model satisfies the standard conditions under which time-homogeneous
Markov policies are optimal [15]. Let τ (n) denote the stopping times
such that τ (0) = 0 and, for n ≥ 1

τ (n) = min{t > τ (n−1) : s+t−1 = s+0 }.
The slightly unusual definition (using s+t−1 = s+0 rather than the more
natural s+t = s+0 ) is to ensure that the formulas for R(n) and T(n) used
in Section II remain valid for the postdecision state model as well. Thus,
using arguments similar to Section II, we can show that both variants of
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RMC presented in Section II converge to a locally optimal parameter θ
for the postdecision state model as well.

IV. APPROXIMATE RMC

In this section, we present a variant of RMC that trades off accuracy
with the speed of convergence. One potential limitation of RMC is that
the system may take a long time to revisit the initial state. We can
circumvent this limitation by considering a “renewal set” B around the
start state and pretending that a renewal takes place whenever the state
entersB. Doing so, results in a loss in accuracy. Since each regenerative
cycles does not start in the same state, the renewal relationship of
Proposition 1 is no longer valid. Nonetheless, in this section, we show
that if the model has sufficient regularity so that the value function is
locally Lipschitz in the renewal set, the error due to this approximation
is bounded.

Suppose that the state and action spacesS andA are separable metric
spaces (with metrics dS and dA). Given a “renewal set” B containing
the start state s0 and let ρB = sups∈B dS(s, s0) denote the radius of B
with respect to s0. Given a policy π, let τ (n) denote the stopping times
for successive visits to B, i.e., τ (0) = 0 and, for n ≥ 1

τ (n) = min{t > τ (n−1) : st ∈ B}.
Define R(n) and T(n) as in (4) and let RB

θ and TB
θ denote the expected

values of R(n) and T(n), respectively. Define

JB
θ =

RB
θ

(1− γ)TB
θ

.

Theorem 2: Given a policy πθ , let Vθ denote the value function

and T
B

θ = EAt∼πθ(St)[γ
τ(1) |S0 = s0] (which is always less than γ).

Suppose the following condition is satisfied:
(C) The value function Vθ is locally Lipschitz in B, i.e., there exists

an Lθ such that for any s, s′ ∈ B

|Vθ(s)− Vθ(s
′)| ≤ LθdS(s, s

′).

Then

∣∣Jθ − JB
θ

∣∣ ≤ LθT
B

θ

(1− γ)TB
θ

ρB ≤ γ

(1− γ)
Lθρ

B . (20)

Proof: We follow an argument similar to Proposition 1.

Jθ = Vθ(s0) = EAt∼πθ(St)

[ τ(1)−1∑
t=0

γtRt

+ γτ(1)
∞∑

t=τ(1)

γt−τ(1)
Rt

∣∣∣∣ S0 = sτ(1)

]

(a)
= RB

θ + EAt∼πθ(St)[γ
τ(1) |S0 = s0]Vθ(sτ(1)) (21)

where (a) uses the strong Markov property [17]. Since Vθ is locally
Lipschitz with constant Lθ and sτ(1) ∈ B, we have that

|Jθ − Vθ(sτ(1))| = |Vθ(s0)− Vθ(sτ(1))| ≤ Lθρ
B .

Substituting the above in (21) gives

Jθ ≤ RB
θ + T

B

θ (Jθ + Lθρ
B).

Substituting TB
θ = (1− T

B

θ )/(1− γ) and rearranging the terms, we
get

Jθ ≤ JB
θ +

LθT
B

θ

(1− γ)TB
θ

ρB .

The proof for the other direction is similar. The second inequality in (20)

follows from T
B

θ ≤ γ and TB
θ ≥ 1. �

Based on Theorem 2, a policy that minimizes JB
θ is approximately

optimal. Such a policy can be identified by modifying both variants of
RMC to declare a renewal whenever the state lies in B.

Local Lipschitz continuity of value functions can be verified for
specific models (e.g., the model presented in Section V-C). Sufficient
conditions for global Lipschitz continuity have been identified in [31,
Th. 4.1], [32, Lemma 1, Th. 1], and [33, Lemma 1]). We state these
conditions below.

Proposition 4: Let Vθ denote the value function for any policy πθ .
Suppose the model satisfies the following conditions.
1) The transition kernel P is Lipschitz, i.e., there exists a constant LP

such that for all s, s′ ∈ S and a, a′ ∈ A
K(P (·|s, a), P (·|s,′ a′)) ≤ LP

[
dS(s, s

′) + dA(a, a
′)
]

where K is the Kantorovich metric (also called the Wasserstein
distance) between probability measures.

2) The per-step reward r is Lipschitz, i.e., there exists a constant Lr

such that for all s, s,′ s+ ∈ S and a, a′ ∈ A
|r(s, a, s+)− r(s,′ a,′ s+)| ≤ Lr

[
dS(s, s

′) + dA(a, a
′)
]
.

In addition, suppose the policy satisfies the following:
3) The policy πθ is Lipschitz, i.e., there exists a constant Lπθ

such
that for any s, s′ ∈ S

K(πθ(·|s), πθ(·|s′)) ≤ Lπθ
dS(s, s

′).

4) γLP (1 + Lπθ
) < 1.

5) The value function Vθ exists and is finite.
Then, Vθ is globally Lipschitz. In particular, for any s, s′ ∈ S

|Vθ(s)− Vθ(s
′)| ≤ LθdS(s, s

′)

where

Lθ = Lr(1 + Lπθ
)/
(
1− γLP (1 + Lπθ

)
)
.

V. NUMERICAL EXPERIMENTS

We present three experiments to evaluate the performance of RMC: a
randomly generated MDP, event-triggered communication, and inven-
tory management. The code for all the experiments is available at [34].

A. Randomized MDP (GARNET)

In this experiment, we study a randomly generated
GARNET(100, 10, 50) model [35], which is an MDP with 100
states, 10 actions, and a branching factor of 50 (which means that
each row of all transition matrices has 50 nonzero elements, chosen
Unif[0, 1] and normalized to add to 1). For each state-action pair, with
probability p = 0.05, the reward is chosen Unif[10, 100], and with
probability 1− p, the reward is 0. The discount factor γ = 0.9. The
first state is chosen as start state. The policy is parameterized by a
Gibbs softmax distribution (which has states × actions = 100× 10
parameters) where each parameter belongs to the interval [−10, 10]
and the temperature is kept constant and equal to 1.

We compare the performance of the following algorithms.
1) RMC with likelihood ratio-based gradient estimator (see Section II-

A) where the gradient is estimated using a single run (see Remark 2
in Section II). The policy parameters are updated after N = 4
renewals and the learning is adapted using ADAM(0.05)4 [36].

4We use ADAM(α) to denote the choice of the α parameter of ADAM. All
other parameters have their default value.
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Fig. 1. Comparison of RMC with other state-of-the-art algorithms for the three benchmark environments. The solid lines show the median values
and the shaded area shows the region between the first and third quartiles. (a) GARNET. (b) Event-Triggered communication. (c) Inventory control.

2) RMC with biased gradient denoted by RMC-B (see Remark 2)
where all parameters are same as in RMC.

3) Actor critic with eligibility traces for the critic [3], which we refer
to as AC-λ with λ ∈ {0, 0.5, 1}, where the learning rate for the
actor is adapted using ADAM(0.1) [36].

4) TPRO [8] and PPO [9], which are two state-of-the-art policy
gradient-based RL algorithms for models with discrete action
spaces, where we use the default architecture and parameters from
ChainerRL [37].

We run each algorithm for 2× 105 samples and repeat this exper-
iment 100 times. To compare the performance of these algorithms,
we periodically evaluate the performance of πθm for each trajectory
using Monte Carlo evaluation (over 200 samples averaged over 10
independent runs). The median, first quartile, and third quartile across
100 runs are shown in Fig. 1(a). The optimal performance (which is
computed using value iteration and the knowledge of the model) is also
shown.

We observe that AC-λ, TRPO, and PPO learn faster (which is
expected because the critic is keeping track of the entire value function)
but have higher variance. AC-λ gets stuck in a local minimum while
RMC, RMC-B, TRPO, and PPO do not. Policy gradient algorithms
only guarantee convergence to a local optimum. We are not sure why
AC-λ converges to a different local maximum from RMC, RMC-B,
TRPO, and PPO. We also observe that RMC-B (which is RMC with
biased evaluation of the gradient) learns faster than RMC.

It is worth highlighting that although TRPO/PPO converge in fewer
number of samples compared to RMC/RMC-B, they require signifi-
cantly more computational resources. In our experiments, each run of
TRPO took ≈ 10 min (wall clock time), PPO took ≈ 16 min, AC-λ
took ≈ 1 min, whereas RMC/RMC-B took ≈ 40 s.

B. Event-Triggered Communication

In this experiment, we study an event-triggered communication prob-
lem that arises in networked control systems [38], [39]. A transmitter
observes a first-order autoregressive process {Xt}t≥1, i.e., Xt+1 =
αXt +Wt, where α,Xt,Wt ∈ R, and {Wt}t≥1 is an i.i.d. process.
At each time, the transmitter uses an event-triggered policy (explained
below) to determine whether to transmit or not (denoted by At = 1 and
At = 0, respectively). Transmission takes place over an i.i.d. erasure
channel with erasure probability pd. Let S−

t and S+
t denote the “error”

between the source realization and its reconstruction at a receiver. It can
be shown that S−

t and S+
t evolve as follows [38], [39]. When At = 0,

S+
t = S−

t ; when At = 1, S+
t = 0 if the transmission is successful

(w.p. (1− pd)) and S+
t = S−

t if the transmission is not successful
(w.p. pd); andS−

t+1 = αS+
t +Wt. Note that this is a postdecision state

model, where the postdecision state resets to zero after every successful
transmission.5

The per-step cost has two components: a communication cost of
λAt, where λ ∈ R>0 and an estimation error (S+

t )2. The objective is
to minimize the expected discounted cost.

An event-triggered policy is a threshold policy that chooses At = 1
whenever |S−

t | ≥ θ, where θ is a design choice. Under certain condi-
tions, such an event-triggered policy is known to be optimal [38], [39].
When the system model is known, algorithms to compute the optimal θ
are presented in [40] and [41]. In this section, we use RMC to identify
the optimal policy when the model parameters are not known.

In our experiment, we consider an event-triggered model withα = 1,
λ = 500, pd = 0.0, Wt ∼ N (0, 1), γ = 0.9.

We compare the performance for the following algorithms.
1) RMC with simultaneous perturbation-based gradient estimate (see

Section II-B),6 where the policy is parameterized by the threshold
θ. We choose c = 0.3, N = 1, and Δ = N (0, 1) in Algorithm 2.
The learning rate is adapted using ADAM(0.01) [36].

2) TPRO [8] and PPO [9], which are two state-of-the-art policy
gradient-based RL algorithms for models with discrete action
spaces, where we use the default architecture and parameters from
ChainerRL [37].

We run each algorithm for 2× 106 samples and repeat this experi-
ment 100 times for RMC and 10 times for TRPO and PPO. To compare
the performance of these algorithms, we periodically evaluate the
performance of πθm for each trajectory using Monte Carlo evaluation
(over 200 samples averaged over 10 independent runs). The median,
first quartile, and third quartile across the runs are shown in Fig. 1(b).
The optimal total cost computed using [41] and the knowledge of the
model is also shown in Fig. 1(b).

We observe that all three algorithms converge to the optimal val-
ues. TRPO and PPO converge in fewer number of samples (which
is expected because the critic is keeping track of the entire value
function), but require significantly more computational resources. In
our experiments, each run of TRPO took ≈ 1.4 h (wall clock time),
PPO took ≈ 2.7 h whereas RMC took ≈ 0.5 s.

C. Inventory Control

In this experiment, we study an inventory management problem that
arises in operations research [42], [43]. Let St ∈ R denote the volume
of goods stored in a warehouse, At ∈ R≥0 denote the amount of goods

5Had we used the standard MDP model instead of the postdecision state
model, this restart would not have always resulted in a renewal.

6An event-triggered policy is a parametric policy but πθ(a|s−) is not differ-
entiable in θ. Therefore, the likelihood ratio method cannot be used to estimate
performance gradient.
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ordered, and Dt denotes the demand. The state evolves according to
St+1 = St +At −Dt+1.

We work with the normalized cost function

C(s) = aps(1− γ)/γ + ahs1{s≥0} − abs1{s<0}

where ap is the procurement cost, ah is the holding cost, and ab is the
backlog cost (see [44, Ch. 13] for details).

It is known that there exists a threshold θ such that the optimal policy
is a base stock policy with threshold θ (i.e., whenever the current stock
level falls below θ, one orders up to θ). Furthermore, for s ≤ θ, we have
that [44, Sec. 13.2]

Vθ(s) = C(s) +
γ

(1− γ)
E[C(θ −D)]. (22)

So for B ⊂ (0, θ), the value function is locally Lipschitz in B with

Lθ =

(
ah +

1− γ

γ
ap

)
.

So, we can use approximate RMC to learn the optimal policy.
In our experiments, we consider an inventory management model

with ah = 1, ab = 1, ap = 1.5, Dt ∼ Exp(λ) with λ = 0.025, start
state s0 = 1, discount factor γ = 0.9.

We compare the performance for the following algorithms.
1) RMC with simultaneous perturbation-based gradient (see Section

II-B), where the policy is parameterized by the threshold θ. We
choose c = 3.0, N = 100, and Δ = N (0, 1) in Algorithm 2 and
choose B = (0, 1) for approximate RMC. The learning rate is
adapted using ADAM(0.25) [36].

2) DDPG [45], which is of one of state-of-the-art RL algorithms for
models with continuous action spaces, where we use the default
architecture and implementation from ChainerRL [37].

We run each algorithm for ≈ 5× 106 samples and repeat this ex-
periment 100 times for RMC and 10 times for DDPG. To compare
the performance of these algorithms, we use Monte Carlo evaluation
(over 200 samples averaged over 100 independent runs for RMC and 10
independent runs for DDPG) periodically to evaluate the performance
of πθm for each trajectory. The median, first quartile, and third quartile
across the runs are shown in Fig. 1(c). The optimal performance
computed using [44, Sec. 13.2]7 is also shown.

We observe that DDPG learns in fewer number of samples but it takes
more time. In our experiments, each run of DDPG took ≈ 10 h (wall
clock time) whereas RMC took ≈ 30 s. In addition, RMC converges
smoothly to an approximately optimal parameter value with total cost
within the bound predicted in Theorem 2. The gray rectangular region
in Fig. 1(c) shows this bound.

VI. CONCLUSION

We present a renewal theory-based reinforcement learning algorithm
called RMC. RMC retains the key advantages of Monte Carlo methods
and has low bias, is simple and easy to implement, and works for
models with continuous state and action spaces. In addition, due to
the averaging over multiple renewals, RMC has low variance. We
generalize the RMC algorithm to postdecision state models and present
a variant that converges faster to an approximately optimal policy,
where the renewal state is replaced by a renewal set. The error in
using such an approximation is bounded by the size of the renewal
set.

7For Exp(λ) demand, the optimal threshold is (see [44, Sec. 13.2])

θ∗ =
1

λ
log

(
ah + ab

ah + ap(1− γ)/γ)

)
.

In certain models, one is interested in the performance at a reference
state that is not the start state. In such models, we can start with an
arbitrary policy and ignore the trajectory until the reference state is
visited for the first time and use RMC from that time onwards (assuming
that the reference state is the new start state).
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