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Abstract

We propose a theoretical framework for approximate planning and learning in partially
observed systems. Our framework is based on the fundamental notion of information state.
We provide two definitions of information state—i) a function of history which is sufficient
to compute the expected reward and predict its next value; ii) a function of the history
which can be recursively updated and is sufficient to compute the expected reward and
predict the next observation. An information state always leads to a dynamic programming
decomposition. Our key result is to show that if a function of the history (called approximate
information state (AIS)) approximately satisfies the properties of the information state,
then there is a corresponding approximate dynamic program. We show that the policy
computed using this is approximately optimal with bounded loss of optimality. We show
that several approximations in state, observation and action spaces in literature can be
viewed as instances of AIS. In some of these cases, we obtain tighter bounds. A salient
feature of AIS is that it can be learnt from data. We present AIS based multi-time scale
policy gradient algorithms and detailed numerical experiments with low, moderate and high
dimensional environments.

Keywords: Partially observed reinforcement learning, partially observable Markov decision
processes, approximate dynamic programming, information state, approximate information
state

1. Introduction

Reinforcement learning (RL) provides a conceptual framework for designing agents which
learn to act optimally in an unknown environment. RL has been successfully used in
various applications ranging from robotics, industrial automation, finance, healthcare, and
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natural language processing. The success of RL is based on a solid foundation of combining
the theory of exact and approximate Markov decision processes (MDPs) with iterative
algorithms that are guaranteed to learn an exact or approximate action-value function
and/or an approximately optimal policy (Sutton and Barto, 2018; Bertsekas and Tsitsiklis,
1996). However, for the most part, the research on RL theory is focused primarily on systems
with full state observations.

In various applications including robotics, finance, and healthcare, the agent only gets
a partial observation of the state of the environment. Such partially observed systems are
mathematically modeled as partially observable Markov decision processes (POMDPs) and
there is a fairly good understanding of how to identify optimal or approximately optimal
policies for POMDPs when the system model is known to the agent.

Since the initial work on POMDPs (Aström, 1965), it is known that POMDPs can be
modeled as fully observed MDPs by considering the belief state (i.e., the posterior belief of
the unobserved state given all the observations made by the agent) as an information state.
Therefore, the theory and algorithms for exact and approximate planning for MDPs are also
applicable to POMDPs. One computational challenge is that the belief state is continuous
valued. However, the value function based on the belief state has a nice property—it is
piecewise linear and a convex function of the belief state—which can be exploited to develop
efficient algorithms to identify the optimal policy. Building on the one-pass algorithm of
Smallwood and Sondik (1973), various such algorithms have been proposed in the literature
including the linear support algorithm (Cheng, 1988), the witness algorithm (Cassandra et al.,
1994), incremental pruning (Zhang and Liu, 1996; Cassandra et al., 1997), the duality based
approach (Zhang, 2009), and others. Since POMDPs are PSPACE-complete (Papadimitriou
and Tsitsiklis, 1999), the worst case complexity of such algorithms is exponential in the size
of the unobserved state space. To overcome the worst case complexity of finding an optimal
policy, various point-based methods have been proposed in the literature which obtain an
approximate solution by sampling from the belief space (Pineau et al., 2003; Smith and
Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati et al., 2008; Poupart
et al., 2011); see Shani et al. (2013) for an overview and comparison.

However, the exact and approximate planning results are of limited value for partially
observed reinforcement learning (PORL) because they are based on the belief state, con-
structing which requires the knowledge of the system model. So, when an agent is operating
in an unknown environment, it cannot construct a belief state based on its observations. An
attempt to circumvent this difficulty was to use memoryless policies (i.e., choose the action
based only on the current observation) (Littman, 1994; Loch and Singh, 1998; Jaakkola
et al., 1995; Williams and Singh, 1999; Li et al., 2011; Azizzadenesheli et al., 2016). A
related idea is to choose the action based on k recent observations (Littman, 1994; Loch
and Singh, 1998) or choose the action based on a memory which is updated using a finite
state machine (Whitehead and Lin, 1995; McCallum, 1993; Hansen, 1997; Meuleau et al.,
1999; Amato et al., 2010). Such finite memory policies are also amenable to policy search
methods (Hansen, 1998; Baxter and Bartlett, 2001; Poupart and Boutilier, 2004). However,
there are no approximation guarantees available for such methods.

Another approach taken in the literature is to use a Bayesian RL framework (Ross
et al., 2008; Poupart and Vlassis, 2008; Ross et al., 2011; Katt et al., 2019) where a
posterior distribution over the models of the environment is maintained; at each step, a
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model is sampled from the posterior and the corresponding optimal policy is executed.
Appproximation error bounds in using such methods are derived in Ross et al. (2011).

A completely different class of model-based RL algorithms are methods using predictive
state representations (PSRs) (Littman et al., 2002; Singh et al., 2003). PSRs are constructed
only based on observational data so they can easily be adapted to the RL setup. There have
been a number of papers which use PSRs to propose model based RL algorithms (James
et al., 2004; Rosencrantz et al., 2004; Boots et al., 2011; Hamilton et al., 2014; Kulesza et al.,
2015b,a; Jiang et al., 2016).

Inspired by the recent successes of deep reinforcement learning, there are many recent
results which suggest using RNNs (Recurrent Neural Networks (Rumelhart et al., 1986))
or LSTMs (Long Short-Term Memories (Hochreiter and Schmidhuber, 1997)) for modeling
the action-value function and/or the policy function (Bakker, 2002; Wierstra et al., 2007,
2010; Hausknecht and Stone, 2015; Heess et al., 2015; Zhu et al., 2017; Ha and Schmidhuber,
2018; Baisero and Amato, 2018; Igl et al., 2018; Zhang et al., 2019). It is shown that
these approaches perform well on empirical benchmarks, but there are no approximation
guarantees available for such methods.

Our main contribution is to present a rigorous approach for PORL which is based on a
principled theory of approximate planning for POMDPs that we develop. In particular:

1. In Sec. 2, we formalize the notion of information state for partially observed systems
and provide two characterizations of information states.

2. In Secs. 3 and 4, we present the notion of an approximate information state (AIS) as a
compression of history which approximately satisfies the properties of an information
state. The two characterizations of information state lead to two slightly different
characterizations of AIS. We present bounds on the loss in performance (compared
to the optimal history dependent policy) when planning using an AIS. We generalize
these results to cover approximation in action spaces as well. We show that various
existing approximation results for MDPs and POMDPs in the literature may be viewed
as special cases of AIS (and in some cases, our bounds are tighter than those in the
literature).

3. In Sec. 5, we present a theory for approximate planning for decentralized (i.e., multi-
agent) partially observed systems using a common-information based AIS.

4. In Secs. 6 and 7, we then present policy gradient based online RL algorithms for
PORL which learn an AIS representation using multi-timescale stochastic gradient
descent. We provide detailed numerical experiments on several classes of partially
observed environments ranging from classical low-dimensional toy environments, to
moderate-dimensional environments, and high-dimensional grid-world environments.

2. Preliminaries: Information State and Dynamic Programming
Decomposition for Partially Observed Systems

2.1 General Model for a Partially Observed System

Traditionally, partially observed systems are modeled as partially observable Markov de-
cision processes (POMDPs) (Aström, 1965; Smallwood and Sondik, 1973), where there
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is a controlled state and an agent which makes noise corrupted observations of the state.
However, for the purpose of understanding approximation for partially observed systems,
it is conceptually cleaner to start with an input-output model of the system as described
below.

System
Stochastic input Wt

Controlled input At

Observation Yt

Reward Rt

Figure 1: A stochastic input-output system

A1W1

(Y1, R1)

A2W2

(Y2, R2)

At Wt

(Yt, Rt)

Figure 2: The timing diagram of the input-
output system.

We view a partially observed system as a black-box input-output system shown in Fig. 1.
At each time t, the system has two inputs and generates two outputs. The inputs to the
system are a control input (also called an action) At ∈ A and a disturbance Wt ∈W. The
outputs of the system are an observation Yt ∈ Y and a reward Rt ∈ R. For the ease of
exposition, we assume that A, W, and Y are finite sets. The analysis extends to general
spaces under appropriate technical conditions. The order in which the input and output
variables are generated is shown in Fig. 2.

As stated before, we do not impose a state space model on the system. Therefore, all we
can say is that the outputs (Yt, Rt) at time t are some function of all the inputs (A1:t,W1:t)
up to time t, i.e.,

Yt = ft(A1:t,W1:t) and Rt = rt(A1:t,W1:t),

where {ft : At×Wt → Y}Tt=1 are called the system output functions and {rt : At×Wt → R}Tt=1

are called the system reward functions.

There is an agent which observes the output Yt and generates a control input or the
action At as a (possibly stochastic) function of the history Ht = (Y1:t−1, A1:t−1) of the past
observations and actions, i.e.,

At ∼ πt(Ht),

where π := (πt)t≥1 is a (history-dependent and possibly stochastic) policy. We use Ht to
denote the space of all histories up to time t. Then the policy πt is a mapping from Ht to
∆(A) (which denotes the space of probability measures on A). We will use πt(at|ht) to denote
the probability of choosing action at at time t given history ht and use Supp(πt(ht)) to
denote the support of πt (i.e., the set of actions chosen with positive probability). We assume
that the disturbance {Wt}t≥1 is a sequence of independent random variables defined on a
common probability space (Ω,F ,P). Thus, if the control input process {At}t≥1 is specified,
then the output processes {Yt, Rt}t≥1 are random variables on (Ω,F ,P). Specifying a policy
π for the agent induces a probability measure on the output processes {Yt, Rt}t≥1, which we
denote by Pπ.

We start our discussion by looking at the planning problem faced by the agent when
the system runs for a finite horizon T . We will generalize our results to the infinite horizon
discounted reward setup later. In the finite horizon setup, the performance of any policy π
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is given by

J(π) := Eπ
[ T∑
t=1

Rt

]
, (1)

where Eπ denotes the expectation with respect to the probability measure Pπ.
We assume that the agent knows the system dynamics {ft}t≥1, the reward functions

{rt}t≥1, and the probability measure P on the primitive random variables {Wt}t≥1. The
objective of the agent is to choose a policy π which maximizes the expected total reward
J(π).

Since all system variables are assumed to be finite valued and the system runs for a finite
horizon, there are only a finite number of policies π. So, an optimal policy always exists and
the important question is to determine an efficient algorithm to compute the optimal policy.

In Sec. 2.2, we start by presenting a trivial dynamic programming decomposition which
uses the entire history of observations as a state. Such a history-dependent dynamic program
is not an efficient method to compute the optimal policy; rather it serve as a reference with
which we compare the more efficient exact and approximate dynamic programs that we
derive later.

In Sec. 2.3, we present sufficient conditions to identify an information state for dynamic
programming. Our main result, presented in Secs. 3 and 4, is to identify a notion of
approximate information state and derive approximation bounds when an approximate
policy is computed using an approximate information state.

2.2 A Dynamic Programming Decomposition

To obtain a dynamic program to identify an optimal policy for (1), we can view the history
Ht as a “state” of a Markov decision process (MDP) with transition probability

P(Ht+1 = (h′t, a
′
t, yt) | Ht = ht, At = at) =

{
P(Yt = yt|Ht = ht, At = at), if h′t = ht, a

′
t = at

0, otherwise

and per-step reward E[Rt|Ht, At]. Therefore, from standard results from Markov decision
processes (Bellman, 1957), we can recursively compute the performance of a given policy as
well as the best possible performance using “standard” dynamic program.

Proposition 1 (Policy evaluation) For any given (history dependent) policy π, define
the reward-to-go function for any time t and realization ht of history Ht as

V π
t (ht) := Eπ

[ T∑
s=t

Rs

∣∣∣∣ Ht = ht

]
. (2)

The reward-to-go functions defined above satisfy the following recursion. Define V π
T+1(hT+1) =

0 and for any t ∈ {T, . . . , 1},

V π
t (ht) = Eπ

[
Rt + V π

t+1(Ht+1)
∣∣ Ht = ht

]
. (3)

The reward-to-go function V π
t (ht) denotes the expected cumulative rewards obtained in the

future when starting from history ht at time t and following policy π. Note that V π
t (ht)
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depends on the policy π only through the choice of the future policy (πt, . . . , πT ) and
therefore can be computed without the knowledge of the past policy (π1, . . . , πt−1).

Note that h1 = ∅ and the performance J(π) defined in (1) equals V π(h1). Thus,
Proposition 1 gives a recursive method to evaluate the performance of any history dependent
policy π. Following the standard argument for Markov decision processes, we can modify
the recursion (3) to obtain a dynamic program to identify an optimal policy as follows.

Proposition 2 (Dynamic programming) Recursively define value functions {Vt : Ht →
R}T+1

t=1 as follows. VT+1(Ht+1) := 0 and for t ∈ {T, . . . 1},

Vt(ht) := max
at∈A

E
[
Rt + Vt+1(Ht+1)

∣∣ Ht = ht, At = at
]
. (4)

Then, a stochastic policy π = (π1, . . . , πT ) is optimal if and only if for all t ∈ {1, . . . T} it
satisfies

Supp(πt(ht)) ⊆ arg max
at∈A

E
[
Rt + Vt+1(Ht+1)

∣∣ Ht = ht, At = at
]
. (5)

Note that the expectation in (4) is with respect to the probability measure P on (Ω,F) and
can be computed without the knowledge of the policy π.

2.3 Information State and Simplified Dynamic Programs

The dynamic program of Proposition 2 uses the entire history as state and may not be
efficient for identifying an optimal policy. In this section, we present a general class of
dynamic programming decompositions which may be more efficient. This class of dynamic
programs is based on the notion of information state, which we describe next.

Definition 3 Let {Zt}Tt=1 be a pre-specified collection of Banach spaces. A collection
{σt : Ht → Zt}Tt=1 of history compression functions is called an information state generator
if the process {Zt}Tt=1, where Zt = σt(Ht), satisfies the following properties:

(P1) Sufficient for performance evaluation, i.e., for any time t, any realization ht of
Ht and any choice at of At, we have

E[Rt | Ht = ht, At = at] = E[Rt | Zt = σt(ht), At = at].

(P2) Sufficient to predict itself, i.e., for any time t, any realization ht of Ht and any
choice at of At, we have that for any Borel subset B of Zt+1,

P(Zt+1 ∈ B | Ht = ht, At = at) = P(Zt+1 ∈ B | Zt = σt(ht), At = at).

In the sequel, we will sometimes use the phrase “let {Zt}Tt=1 be an information state” to
specify an information state and will implicitly assume that the corresponding information
state spaces are {Zt}Tt=1 and the corresponding compression functions are {σt}Tt=1.

Note that both the probabilities in Property (P2) can be computed without the knowledge
of the policy π. Furthermore, there are no restrictions on the spaces {Zt}Tt=1 although in
practice an information state is useful only when these spaces are “small” in an appropriate
sense.

Condition (P1) is easy to verify but condition (P2) can be a bit abstract. For some
models, instead of (P2), it is easier to verify the following stronger conditions:
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(P2a) Evolves in a state-like manner, i.e., there exist measurable functions {ϕt}Tt=1

such that for any time t and any realization ht+1 of Ht+1, we have

σt+1(ht+1) = ϕt(σt(ht), yt, at).

Informally, the above condition may be written as Zt+1 = ϕt(Zt, Yt, At).

(P2b) Is sufficient for predicting future observations, i.e., for any time t, any real-
ization ht of Ht and any choice at of At, we have that for any subset D of Y,

P(Yt ∈ D | Ht = ht, At = at) = P(Yt ∈ D | Zt = σt(ht), At = at).

Proposition 4 (P2a) and (P2b) imply (P2).

Proof For any Borel subset D of Zt+1, we have

P(Zt+1 ∈ D | Ht = ht, At = at)

(a)
=
∑
yt∈Y

P(Yt = yt, Zt+1 ∈ D | Ht = ht, At = at)

(b)
=
∑
yt∈Y

1{ϕt(σt(ht), yt, at) ∈ D}P(Yt = yt | Ht = ht, At = at)

(c)
=
∑
yt∈Y

1{ϕt(σt(ht), yt, at) ∈ D}P(Yt = yt | Zt = σt(ht), At = at)

(d)
= P(Zt+1 ∈ D | Zt = σt(ht), At = at)

where (a) follows from the law of total probability, (b) follows from (P2a), (c) follows from
(P2b) and (d) from the law of total probability.

The following example illustrates how (P2a) and (P2b) are stronger conditions than (P2).
Consider a Markov decision process (MDP) with state (S1

t , S
2
t ) ∈ S1×S2 and action At ∈ A,

where the dynamics of the two components of the state are conditionally independent given
the action, i.e.,

P(S1
t+1 = s1

+, S
2
t+1 = s2

+|S1
t = s1, S2

t = s2, At = a)

= P(S1
t+1 = s1

+|S1
t = s1, At = a)P(S2

t+1 = s2
+|S2

t = s2, At = a).

Furthermore, suppose the reward Rt at any time t is given by Rt = rt(S
1
t , At). Since the

model is an MDP, the observation at time t is the same as the state. For this model, the
component {S1

t }t≥1 of the state satisfies properties (P1) and (P2). Therefore, {S1
t }t≥1 is an

information state process. However, {S1
t }t≥1 is not sufficient to predict the next observation

(S1
t+1, S

2
t+1). Therefore, {S1

t }t≥1 does not satisfy property (P2b). This shows that properties
(P2a) and (P2b) are stronger than property (P2). The above example may be considered as
an instance of what is called the Noisy-TV problem (Burda et al., 2018).

Next, we show that an information state is useful because it is always possible to write a
dynamic program based on the information state. To explain this dynamic programming
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decomposition, we first write the history-based dynamic programs of Proposition 1 and 2 in
a more compact manner as follows: Let VT+1(hT+1) := 0 and for t ∈ {T, . . . , 1}, define

Qt(ht, at) := E
[
Rt + Vt+1(Ht+1)

∣∣ Ht = ht, At = at
]
, (6a)

Vt(ht) := max
at∈A

Qt(ht, at). (6b)

The function Qt(ht, at) is called the action-value function. Moreover, for a given stochastic
policy π = (π1, . . . , πT ), where πt : Ht → ∆(At), let V π

T+1(hT+1) = 0 and for t ∈ {T, . . . , 1},
define

Qπt (ht, at) := E
[
Rt + V π

t+1(Ht+1)
∣∣ Ht = ht, At = at

]
, (7a)

V π
t (ht) :=

∑
at∈A

πt(at | ht).Qπt (ht, at). (7b)

Theorem 5 Let {Zt}Tt=1 be an information state. Recursively define value functions
{V̄t : Zt → R}T+1

t=1 , as follows: V̄T+1(zT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̄t(zt, at) := E[Rt + V̄t+1(Zt+1) | Zt = zt, At = at], (8a)

V̄t(zt) := max
at∈A

Q̄t(zt, at). (8b)

Then, we have the following:

1. For any time t, history ht, and action at, we have that

Qt(ht, at) = Q̄t(σt(ht), at) and Vt(ht) = V̄t(σt(ht)). (9)

2. Let π̄ = (π̄1, . . . π̄T ), where π̄t : Zt → ∆(A), be a stochastic policy. Then, the policy
π = (π1, . . . , πT ) given by πt = π̄t ◦ σt is optimal if and only if for all t and all
realizations zt of information states Zt, Supp(π̄t(zt)) ⊆ arg maxat∈A Q̄t(zt, at).

Proof We prove the result by backward induction. By construction, (9) is true at time
T + 1. This forms the basis of induction. Assume that (9) is true at time t+ 1 and consider
the system at time t. Then,

Qt(ht, at) = E[Rt + Vt+1(Ht+1) | Ht = ht, At = at]

(a)
= E[Rt + V̄t+1(σt+1(Ht+1)) | Ht = ht, At = at]

(b)
= E[Rt + V̄t+1(Zt+1) | Zt = σt(ht), At = at]

(c)
= Q̄t(σt(ht), at),

where (a) follows from the induction hypothesis, (b) follows from the properties (P1) and
(P2) of information state, and (c) follows from the definition of Q̄. This shows that the
action-value functions are equal. By maximizing over the actions, we get that the value
functions are also equal. The optimality of the policy follows immediately from (9).
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2.4 Examples of Information State

For a general model, it is not immediately evident that a non-trivial information state exists.
The question of existence will depend on the specifics of the observation and reward functions
{ft, rt}t≥1 as well as the properties of the probability measure on the primitive random
variables {Wt}t≥1. We do not pursue the question of existence in this paper, but present
various specific models where information state exists and show that the corresponding
results for these models in the literature may be viewed as a special case of Theorem 5.

1. For any partially observed model, the history Ht is always a trivial information state.
Therefore, the dynamic program of Proposition 2 may be viewed as a special case of
Theorem 5.

2. Markov decision process (MDP): Consider a Markov decision process (MDP)
with state St ∈ S and action At ∈ A (Bellman, 1957). At each time, the state evolves
in a controlled Markovian manner with

P(St+1 = st+1 | S1:t = S1:t, A1:t = A1:t) = P(St+1 = st+1 | St = St, At = At).

The observation of the agent is Yt = St+1 and the reward output is Rt = r(St, At).
An information state for an MDP is given by the current state St (the corresponding
compression function is σt(S1:t, A1:t−1) = St). The standard dynamic program for
MDPs may be viewed as a special case of Theorem 5.

3. Even MDPs: Consider an MDP where the state space S is either R or a symmetric
subset of R of the form [−B,B], the controlled transition matrix is even, i.e., for every
a ∈ A and s, s′ ∈ S,

P(St+1 = s′ | St = s,At = a) = P(St+1 = −s′ | St = −s,At = a),

and for every a ∈ A, the per-step reward function r(s, a) is even in s. Such MDPs
are called even MDPs (Chakravorty and Mahajan, 2018) and an information state for
such MDPs is given by the absolute value state |St| (the corresponding compression
function is σt(S1:t, A1:t−1) = |St|). The dynamic program for even MDPs derived in
Chakravorty and Mahajan (2018) may be viewed as a special case of Theorem 5.

4. MDP with irrelevant components: Consider an MDP with state space S = S1×S2,
action space A, transition matrix P (s1

+, s
2
+|s1, s2, a) = P 1(s1

+|s1, a)P 2(s2
+|s1, s2, a),

and per-step reward r(s1, a), which does not depend on the second component of
the state. As explained in Feinberg (2005), such models arise in control of queues
and transformation of continuous time Markov decision processes to discrete time
MDPs using uniformization. It may also be considered as an instance of the Noisy-TV
problem (Burda et al., 2018) discussed in Section 2.3. An information state for such
MDPs is given by the first component S1

t (the corresponding compression function is
σt(S

1
1:t, S

2
1:t, A1:t) = S1

t ). The qualitative properties of optimal policies for such models
derived in Feinberg (2005) may be viewed as a special case of Theorem 5.

5. MDP with delayed state observation: Consider an MDP where the observation
Yt of the agent is the δ-step delayed state St−δ+1 of the system (Altman and Nain,
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1992). An information state for such MDPs is given by the vector (St−δ+1, Ut−δ+1:t−1).
The dynamic program for such models derived in Altman and Nain (1992) may be
viewed as a special case of Theorem 5.

6. Partially observable Markov decision processes (POMDPs): Consider a
partially observable Markov decision process (POMDP) where there is a state space
model as for an MDP but the observation Yt is some function of the state and the
disturbance, i.e., Yt = fyt (St,Wt) (Aström, 1965; Smallwood and Sondik, 1973). An
information state for the POMDP is given by the belief state Bt ∈ ∆(S) which is given
by Bt(s) = P(St = s | Ht = ht). The corresponding compression function may be
identified via the update functions {ϕt}Tt=1 of Property (P2a), which are the standard
belief update functions for non-linear filtering. The standard belief state dynamic
program for POMDPs (Aström, 1965; Smallwood and Sondik, 1973) may be viewed as
a special case of Theorem 5.

7. Linear quadratic and Gaussian (LQG) models: Consider a POMDP where the
state and action spaces are Euclidean spaces, the system dynamics P(St+1 | St, At)
and the observation fyt (St,Wt) are linear, the disturbance Wt is Gaussian, and the
per-step cost is a quadratic function of the state and action (Aström, 1970). For
such a linear-quadratic-and-Gaussian POMDP, an information state is given by the
state estimate Ŝt = E[St | Ht = ht]. The corresponding compression function may be
identified via the update functions {ϕt}Tt=1 of Property (P2a), which in this case are
Kalman filtering update equations. The standard conditional estimate based dynamic
program for LQG models (Aström, 1970) may be viewed as a special case of Theorem 5.

8. POMDPs with delayed observations: Consider a POMDP where the observation
is delayed by δ time steps (Bander and White, 1999). For such a system the belief
on δ step delayed state based on the δ-step delayed observations and control, as well
as the vector of last δ control actions is an information state. The structure of the
optimal policy and the dynamic program derived in Bander and White (1999) may be
viewed as a special case of Theorem 5.

9. Machine maintenance: Consider the following model for machine maintenance
(Eckles, 1968). A machine can be in one of n ordered states where the first state is the
best and the last state is the worst. The production cost increases with the state of
the machine. The state evolves in a Markovian manner. At each time, an agent has
the option to either run the machine or stop and inspect it for a cost. After inspection,
the agent may either repair it (at a cost that depends on the state) or replace it (at a
fixed cost). The objective is to identify a maintenance policy to minimize the cost of
production, inspection, repair, and replacement.

Let τ denote the time of last inspection and Sτ denote the state of the machine
after inspection, repair, or replacement. Then, it can be shown that (Sτ , t− τ) is an
information state for the system. This is an instance of an incrementally expanding
representation for a POMDP described in Arabneydi and Mahajan (2015).

The above examples show that there are generic information states for certain class of
models (e.g., MDPs, MDPs with delays, POMDPs, POMDPs with delays) as well as specific
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information states tuned to the model (e.g., even MDPs, MDPs with irrelevant components,
LQG models, machine repair).

2.5 Discussion and Related Work

Although we are not aware of a previous result which formally defines an information state
and shows that an information state always implies a dynamic programming decomposition
(Theorem 5), yet the notion of information state is not new and has always existed in the
stochastic control literature. Information state may be viewed as a generalization of the
traditional notion of state (Nerode, 1958), which is defined as a statistic (i.e., a function of the
observations) sufficient for input-output mapping. In contrast, we define an information state
as a statistic sufficient for performance evaluation (and, therefore, for dynamic programming).
Such a definition is hinted in Witsenhausen (1976). The notion of information state is also
related to sufficient statistics for optimal control defined in Striebel (1965) for systems with
state space models.

As far as we are aware, the informal definition of information state was first proposed
by Kwakernaak (1965) for adaptive control systems. Formal definitions for linear control
systems were given by Bohlin (1970) for discrete time systems and by Davis and Varaiya
(1972) for continuous time systems. Kumar and Varaiya (1986) define an information state
as a compression of past history which satisfies property (P2a) but do not formally show
that such an information state always leads to a dynamic programming decomposition. A
formal definition of information state appears in our previous work (Mahajan and Mannan,
2016) where the result of Theorem 5 is asserted without proof. Properties of information
states for multi-agent teams were asserted in Mahajan (2008). Adlakha et al. (2012) provide
a definition which is stronger than our definition. They require that in a POMDP with
unobserved state St ∈ S, σt(ht) should satisfy (P1) and (P2) as well be sufficient to predict
St, i.e., for any Borel subset B of S and any realization ht of Ht,

P(St ∈ B | Ht = ht) = P(St ∈ B | Ẑt = σt(ht)).

A similar definition is also used in Francois-Lavet et al. (2019). We had presented a definition
similar to Definition 3 in the preliminary version of this paper (Subramanian and Mahajan,
2019).

The notion of information state is also related to Γ-trace equivalence for MDPs and
POMDPs defined by Castro et al. (2009). For MDPs. Γ-trace equivalence takes a partition
of the state space and returns a finer partition such that for any choice of future actions any
two states in the same cell of the finer partition have the same distribution on future states
and rewards. Castro et al. (2009) show that recursive applications of Γ-trace equivalence has
a fixed point, which is equivalent to bisimulation based partition (Givan et al., 2003) of the
state space of the MDP. Similar results were shown for MDPs in Ferns et al. (2004, 2011).
Castro et al. (2009) extend the notion of trace equivalence for MDPs to belief trajectory
equivalence for POMDPs. In particular, two belief states are said to be belief trajectory
equivalent if for any choice of future actions, they generate the same distribution on future
observations and rewards. Such belief trajectory equivalence is related to predictive state
representation (PSR) (Littman et al., 2002; Singh et al., 2003; Izadi and Precup, 2003; James
et al., 2004; Rosencrantz et al., 2004; Wolfe et al., 2005) and observable operator models
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(OOM) (Jaeger, 2000; Jaeger et al., 2006), which are a compression of the past history which
is sufficient to predict the future observations (but not necessarily rewards). Information
state may be viewed as a “Markovianized” version of belief trajectory equivalence and
PSRs, which has the advantage that both (P1) and (P2) are defined in terms of “one-step”
equivalence while belief trajectory equivalence and PSR are defined in terms of “entire future
trajectory” equivalence. It should be noted that PSR and bisimulation based equivalences
are defined for infinite horizon models, while the information state is defined for both finite
and infinite horizon models (see Sec. 4).

Another related notion is the notion of causal states (or ε-machines) used in computational
mechanics (Crutchfield and Young, 1989; Shalizi and Crutchfield, 2001). and forecasting
in dynamical systems (Grassberger, 1986, 1988). These definitions are for uncontrolled
Markov chains and the emphasis is on the minimal state representation for time-invariant
infinite-horizon systems.

3. Approximate Planning in Partially Observed Systems

Our key insight is that information states provide a principled approach to approximate
planning and learning in partially observed systems. To illustrate this, reconsider the
machine maintenance example presented earlier in Sec. 2.4. Theorem 5 implies that we can
write a dynamic program for that model using the information state (Sτ , t− τ), which takes
values in a countable set. This countable state dynamic program is considerably simpler than
the standard belief state dynamic program typically used for that model. Moreover, it is
possible to approximate the countable state model by a finite-state model by truncating the
state space, which provides an approximate planning solution to the problem. Furthermore,
the information state (Sτ , t− τ) does not depend on the transition probability of the state
of the machine or the cost of inspection or repair. Thus, if these model parameters were
unknown, we can use a standard reinforcement learning algorithm to find an optimal policy
which maps (Sτ , t− τ) to current action.

Given these benefits of a good information state, it is natural to consider a data-driven
approach to identify an information state. An information state identified from data will
not be exact and it is important to understand what is the loss in performance when using
an approximate information state. Theorem 5 shows that a compression of the history
which satisfies properties (P1) and (P2) is sufficient to identify a dynamic programming
decomposition. Would a compression of history that approximately satisfied properties (P1)
and (P2) lead to an approximate dynamic program? In this section, we show that the answer
to this question is yes. First, we need to precisely define what we mean by “approximately
satisfy properties (P1) and (P2)”. For that matter, we need to fix a distance metric on
probability spaces. There are various metrics on probability space and it turns out that
the appropriate distance metric for our purposes is the integral probability metric (IPM)
(Müller, 1997).

3.1 Integral Probability Metrics (IPM)

Definition 6 Let (X,G) be a measurable space and F denote a class of uniformly bounded
measurable functions on (X,G). The integral probability metric (IPM) between two probability
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distributions µ, ν ∈ ∆(X) with respect to the function class F is defined as

dF(µ, ν) := sup
f∈F

∣∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣∣.
In the literature, IPMs are also known as probability metrics with a ζ-structure; see e.g.,

Zolotarev (1983); Rachev (1991). They are useful to establish weak convergence of probability
measures. Methods for estimating IPM from samples are discussed in Sriperumbudur et al.
(2012).

Examples of Integral Probability Metrics (IPMs)

When (X,G) is a metric space, then various commonly used distance metrics on (X,G) lead
to specific instances of IPM for a particular choice of function space F. We provide some
examples below:

1. Total variation distance: If F is chosen as {f : ‖f‖∞ ≤ 1}, then dF is the total
variation distance.1

2. Kolmogorov distance: If X = Rm and F is chosen as {1(−∞,t] : t ∈ Rm}, then dF is
the Kolmogorov distance.

3. Kantorovich metric or Wasserstein distance: Let ‖f‖Lip denote the Lipschitz
semi-norm of a function. If F is chosen as {f : ‖f‖Lip ≤ 1}, then dF is the Kantorovich
metric. When X is separable, the Kantorovich metric is the dual representation of the
Wasserstein distance via the Kantorovich-Rubinstein duality (Villani, 2008).

4. Bounded-Lipschitz metric: If F is chosen as {f : ‖f‖∞ + ‖f‖Lip ≤ 1}, then dF is
the bounded-Lipschitz (or Dudley) metric.

5. Maximum mean discrepancy (MMD): Let H be a reproducing kernel Hilbert space
(RKHS) of real valued functions on X and let F = {f ∈ H : ‖f‖H ≤ 1}, then dF is
the maximum mean discrepancy2 (Sriperumbudur et al., 2008). The energy distance

1. In particular, if µ and ν are absolutely continuous with respect to some measure λ and let p = dµ/dλ
and q = dν/dλ, then∣∣∣∣∫

X

fdµ−
∫
X

fdν

∣∣∣∣ =

∣∣∣∣∫
X

f(x)p(x)λ(dx)−
∫
X

f(x)q(x)λ(dx)

∣∣∣∣ ≤ ‖f‖∞ ∫
X

∣∣p(x)− q(x)
∣∣λ(dx).

In this paper, we are defining total variation distance as
∫
X
|p(x)− q(x)|λ(dx). Typically, it is defined as

half of that quantity. Note that it is possible to get a tighter bound than above where ‖f‖∞ is replaced
by 1

2
span(f) = 1

2
(max(f)−min(f)).

2. One of features of MMD is that the optimizing f can be identified in closed form. In particular, if k is
the kernel of the RKHS, then (see Gretton et al. (2006); Sriperumbudur et al. (2012) for details)

dF(µ, ν) =

∥∥∥∥∫
X

k(·, x)dµ(x)−
∫
X

k(·, x)dν(x)

∥∥∥∥
H

=

[∫
X

∫
X

k(x, y)µ(dx)µ(dy) +

∫
X

∫
X

k(x, y)ν(dx)ν(dy)− 2

∫
X

∫
X

k(x, y)µ(dx)ν(dy)

]1/2
.

We use an MMD as a IPM in the PORL algorithms proposed in Sec. 6, where we exploit this property.
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studied in statistics (Székely and Rizzo, 2004) is a special case of maximum mean
discrepancy; see Sejdinovic et al. (2013) for a discussion.

We say that F is a closed set if it is closed under the topology of pointwise convergence.
We say that F is a convex set if f1, f2 ∈ F implies that for any λ ∈ (0, 1), λf1 + (1−λ)f2 ∈ F.
Note that all the above function classes are convex and all except Kolmogorov distance are
closed.

We now list some useful properties of IPMs, which immediately follow from definition.

1. Given a function class F and a function f (not necessarily in F),∣∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣∣ ≤ ρF(f) · dF(µ, ν), (10)

where ρF(f) is the Minkowski functional with respect to F given by

ρF(f) := inf{ρ ∈ R>0 : ρ−1f ∈ F}. (11)

For the total variation distance,
∣∣∫

X fdµ −
∫
X fdν

∣∣ ≤ 1
2 span(f)dF(µ, ν). Thus, for

total variation, ρF(f) = 1
2 span(f). For the Kantorovich metric,

∣∣∫
X fdµ−

∫
X fdν

∣∣ ≤
‖f‖LipdF(µ, ν). Thus, for Kantorovich metric, ρF(f) = ‖f‖Lip. For the maximum mean
discrepancy,

∣∣∫
X fdµ−

∫
X fdν

∣∣ ≤ ‖f‖HdF(µ, ν). Thus, for maximum mean discrepancy,
ρF(f) = ‖f‖H.

2. Let X and Y be Banach spaces and let FX and FY denote the function class for dF
with domain X and Y, respectively. Then, for any ` : X→ Y, any real-valued function
f ∈ FY and any measures µ and ν on ∆(X), we have∣∣∣∣∫

X
f(`(x))µ(dx)−

∫
X
f(`(x))ν(dx)

∣∣∣∣ ≤ ρFX
(f ◦ `)dFX

(µ, ν).

We define the contraction factor of the function ` as

κFX,FY
(`) = sup

f∈FY

ρFX
(f ◦ `). (12)

Therefore, we can say that for any f ∈ FY,∣∣∣∣∫
X
f(`(x))µ(dx)−

∫
X
f(`(x))ν(dx)

∣∣∣∣ ≤ κFX,FY
(`)dFX

(µ, ν). (13)

For the total variation distance, 1
2 span(f ◦`) ≤ ‖f ◦`‖∞ ≤ ‖f‖∞ ≤ 1. Thus, κF(`) ≤ 1.

For the Kantorovich metric, ‖f ◦ `‖Lip ≤ ‖f‖Lip‖`‖Lip Thus, κF(`) ≤ ‖`‖Lip.

3.2 Approximate Information State (AIS) and Approximate Dynamic
Programming

Now we define a notion of AIS as a compression of the history of observations and actions
which approximately satisfies properties (P1) and (P2).
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Definition 7 Let {Ẑt}Tt=1 be a pre-specified collection of Banach spaces, F be a function class
for IPMs, and {(εt, δt)}Tt=1 be pre-specified positive real numbers. A collection {σ̂t : Ht →
Ẑt}Tt=1 of history compression functions, along with approximate update kernels {P̂t : Ẑt ×
A → ∆(Ẑt+1)}Tt=1 and reward approximation functions {r̂t : Ẑt × A → R}Tt=1, is called an
{(εt, δt)}Tt=1-AIS generator if the process {Ẑt}Tt=1, where Ẑt = σ̂t(Ht), satisfies the following
properties:

(AP1) Sufficient for approximate performance evaluation, i.e., for any time t, any
realization ht of Ht and any choice at of At, we have∣∣E[Rt | Ht = ht, At = at]− r̂t(σ̂t(ht), at)

∣∣ ≤ εt.
(AP2) Sufficient to predict itself approximately. i.e., for any time t, any realization

ht of Ht, any choice at of At, and for any Borel subset B of Ẑt+1, define µt(B) :=
P(Ẑt+1 ∈ B | Ht = ht, At = at) and νt(B) := P̂t(B | σ̂t(ht), at); then,

dF(µt, νt) ≤ δt.

We use the phrase “(ε, δ)-AIS” when εt and δt do not depend on time. Note that, unlike (P1)
and (P2), it is possible to use a data-driven approach to learn an AIS generator which would
satisfy (AP1) and (AP2). For example, we could represent (σ̂t, r̂t, P̂t) using a parameteric
family of functions/distributions and use gradient based methods to minimize the weighted
square average λε2 + (1− λ)δ2, for some arbitrarily chosen weight λ ∈ [0, 1]. We build on
this idea to develop an RL algorithm in Sec. 6.

Similar to Proposition 4, we can provide an alternative characterization of an AIS where
we replace (AP2) with the following approximations of (P2a) and (P2b).

(AP2a) Evolves in a state-like manner, i.e., there exist measurable update functions
{ϕ̂t : Ẑt × Y × A}Tt=1 such that for any realization ht+1 of Ht+1, we have

σ̂t+1(ht+1) = ϕ̂(σ̂t(ht), yt, at).

(AP2b) Is sufficient for predicting future observations approximately, i.e., there
exist measurable observation prediction kernels {P̂ yt : Ẑt×A→ ∆(Y)}Tt=1 such that for
any time t, any realization ht of Ht, any choice at of At, and for any Borel subset B of
Y define, µyt (B) := P(Yt ∈ B | Ht = ht, At = at) and νyt (B) = P̂ yt (B|σ̂t(ht), at); then,

dF(µyt , ν
y
t ) ≤ δ/κF(ϕ̂t),

where κF(ϕ̂t) is defined as supht∈Ht,at∈At
κF(ϕ̂t(σ̂t(ht), ·, at)). Note that for the total

variation distance κF(ϕ̂t) = 1; for the Kantorovich distance κF(ϕ̂t) is equal to the
Lipschitz uniform bound on the Lipschitz constant of ϕ̂t with respect to yt.

Proposition 8 (AP2a) and (AP2b) imply (AP2) holds with transition kernels {P̂ yt }Tt=1

defined as follows: for any Borel subset B of Ẑ,

P̂t(B | σ̂t(ht), at) =

∫
Y
1B(ϕ̂t(σ̂t(ht), yt, at))P̂

y
t (dyt|σ̂t(ht), at).

Therefore, we can alternatively define an {(εt, δt)}Tt=1-AIS generator as a tuple {(σ̂t, r̂t, ϕ̂t, P̂ yt )}Tt=1

which satisfies (AP1), (AP2a), and (AP2b).
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Proof Note that by the law of total probability, µt and νt defined in (AP2) are

µt(B) =

∫
Y
1B(ϕ̂t(σ̂t(ht), yt, at))µ

y
t (dyt),

νt(B) =

∫
Y
1B(ϕ̂t(σ̂t(ht), yt, at))ν

y
t (dyt).

Thus, for any function f : Ẑt+1 → R,∫
Ẑt+1

fdµt =

∫
Yt

f(ϕ̂t(σ̂t(ht), yt, at))µ
y
t (dyt),∫

Ẑt+1

fdνt =

∫
Yt

f(ϕ̂t(σ̂t(ht), yt, at))ν
y
t (dyt).

The result then follows from (13).

Our main result is to establish that any AIS gives rise to an approximate dynamic
program.

Theorem 9 Suppose {σ̂t, P̂t, r̂t}Tt=1 is an {(εt, δt)}Tt=1-AIS generator. Recursively define
approximate action-value functions {Q̂t : Ẑt×A→ R}Tt=1 and value functions {V̂t : Ẑt → R}Tt=1

as follows: V̂T+1(ẑT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̂t(ẑt, at) := r̂t(ẑt, at) +

∫
Ẑt+1

V̂t+1(ẑt+1)P̂t(dẑt+1 | ẑt, at), (14a)

V̂t(ẑt) := max
at∈A

Q̂t(ẑt, at). (14b)

Then, we have the following:

1. Value function approximation: For any time t, realization ht of Ht, and choice
at of At, we have

|Qt(ht, at)− Q̂t(σ̂t(ht), at)| ≤ αt and |Vt(ht)− V̂t(σ̂t(ht))| ≤ αt, (15)

where αt satisfies the following recursion: αT+1 = 0 and for t ∈ {T, . . . , 1},

αt = εt + ρF(V̂t+1)δt + αt+1.

Therefore,

αt = εt +

T∑
τ=t+1

[
ρF(V̂τ )δτ−1 + ετ

]
.

2. Approximately optimal policy: Let π̂ = (π̂1, . . . , π̂T ), where π̂t : Ẑt → ∆(A), be a
stochastic policy that satisfies

Supp(π̂(ẑt)) ⊆ arg max
at∈A

Q̂t(ẑt, at). (16)

Define policy π = (π1, . . . , πT ), where πt : Ht → ∆(A) by πt := π̂t ◦ σ̂t. Then, for any
time t, realization ht of Ht, and choice at of At, we have

|Qt(ht, at)−Qπt (ht, at)| ≤ 2αt and |Vt(ht)− V π
t (ht)| ≤ 2αt. (17)
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Proof We prove both parts by backward induction. We start with value function approxi-
mation. Eq. (15) holds at T + 1 by definition. This forms the basis of induction. Assume
that (15) holds at time t+ 1 and consider the system at time t. We have that∣∣Qt(ht, at)− Q̂t(σ̂t(ht), at)∣∣

(a)

≤
∣∣E[Rt | Ht = ht, At = at]− r̂t(σ̂t(ht), at)

∣∣
+ E

[∣∣Vt+1(Ht+1)− V̂t+1(σ̂t+1(Ht+1))
∣∣ ∣∣ Ht = ht, At = at

]
+

∣∣∣∣E[V̂t+1(σ̂t+1(Ht+1)) | Ht = ht, At = at]−
∫
Ẑt+1

V̂t+1(ẑt+1)P̂t(dẑt+1 | σ̂t(ht), at)
∣∣∣∣

(b)

≤ εt + αt+1 + ρF(V̂t+1)δt = αt

where (a) follows from triangle inequality and (b) follows from (AP1), the induction hy-
pothesis, (AP2) and (10). This proves the first part of (15). The second part follows
from ∣∣Vt(ht)− V̂t(σ̂t(ht))∣∣ (a)

≤ max
at∈A

∣∣Qt(ht, at)− Q̂t(σ̂t(ht), at)∣∣ ≤ αt,
where (a) follows from the inequality max f(x) ≤ max |f(x)− g(x)|+ max g(x).

To prove the policy approximation, we first prove an intermediate result. For policy π̂
recursively define {Q̂π̂t : Ẑ× A→ R}Tt=1 and {V̂ π̂

t : Ẑ→ R}T+1
t=1 as follows: V̂ π̂

T+1(ẑT+1) := 0
and for t ∈ {T, . . . , 1}:

Q̂π̂t (ẑt, at) := r̂t(ẑt, at) +

∫
Ẑt+1

V̂ π̂
t (ẑt+1)P̂t(dẑt+1 | ẑt, at) (18a)

V̂ π̂
t (ẑt) :=

∑
at∈A

π̂t(at | ẑt).Q̂π̂t (ẑt, at). (18b)

Note that (16) implies that

Q̂π̂t (ẑt, at) = Q̂t(ẑt, at) and V̂ π̂
t (ẑt) = V̂t(ẑt). (19)

Now, we prove that

|Qπt (ht, at)− Q̂π̂t (σ̂t(ht), at)| ≤ αt and |V π
t (ht)− V̂ π̂

t (σ̂t(ht))| ≤ αt. (20)

We prove the result by backward induction. By construction, Eq. (20) holds at time T + 1.
This forms the basis of induction. Assume that (20) holds at time t+ 1 and consider the
system at time t. We have∣∣Qπt (ht, at)− Q̂π̂t (σ̂t(ht), at)

∣∣
(a)

≤
∣∣E[Rt | Ht = ht, At = at]− r̂t(σ̂t(ht), at)

∣∣
+ E

[∣∣V π
t+1(Ht+1)− V̂ π̂

t+1(σ̂t+1(Ht+1))
∣∣ ∣∣ Ht = ht, At = at

]
+

∣∣∣∣E[V̂ π̂
t+1(σ̂t+1(Ht+1)) | Ht = ht, At = at]−

∫
Ẑt+1

V̂ π̂
t+1(ẑt+1)P̂t(dẑt+1 | σ̂t(ht), at)

∣∣∣∣
(b)

≤ εt + αt+1 + ρF(V̂t+1)δt = αt
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where (a) follows from triangle inequality and (b) follows from (AP1), the induction hypoth-
esis, (AP2) and (10). This proves the first part of (20). The second part follows from the
triangle inequality:∣∣V π

t (ht)− V̂ π̂
t (σ̂t(ht))

∣∣ ≤∑
at∈A

π̂t(at|σ̂t(ht))
∣∣Qπ(ht, at)− Q̂π̂t (σ̂t(ht), at)

∣∣ ≤ αt.
Now, to prove the policy approximation, we note that∣∣Qt(ht, at)−Qπt (ht, at)

∣∣ ≤ ∣∣Qt(ht, at)−Q̂π̂t (σ̂t(ht), at)
∣∣+∣∣Qπt (ht, at)−Q̂π̂t (σ̂t(ht), at)

∣∣ ≤ αt+αt,
where the first inequality follows from the triangle inequality, the first part of the second
inequality follows from (15) and (19) and the second part follows from (20). This proves the
first part of (17). The second part of (17) follows from the same argument.

An immediate implication of Theorems 5 and 9 is the following.

Corollary 10 Let {σt}Tt=1 be an information state generator and {(σ̂t, P̂t, r̂t)}Tt=1 be an AIS
generator. Then, for any time t, realization ht of history Ht, and choice at of action At, we
have ∣∣Q̄t(σt(ht), at)− Q̂t(σ̂t(ht), at)∣∣ ≤ αt and

∣∣V̄t(σt(ht))− V̂t(σ̂t(ht))∣∣ ≤ αt,
where Q̄t and V̄t are defined as in Theorem 5.

Remark 11 It is possible to derive a tighter bound in Theorem 9 and show that

αt = εt + ∆∗t (V̂t+1) + αt+1

where

∆∗t (V̂t+1) = sup
ht,at

∣∣∣∣E[V̂t+1(σ̂t+1(Ht+1)) | Ht = ht, At = at]−
∫
Ẑt+1

V̂t+1(ẑt+1)P̂t(dẑt+1 | σ̂t(ht), at)
∣∣∣∣

The bound presented in Theorem 9 can be then thought of as an upper bound on ∆∗t (V̂t+1) ≤
ρF(V̂t+1)δ using (10).

Remark 12 In part 1 of Theorem 9, it is possible to derive an alternative bound

|Qt(ht, at)− Q̂t(σ̂t(ht), at)| ≤ α′t and |Vt(ht)− V̂t(σ̂t(ht))| ≤ α′t

where α′t satisfies the recursion: α′T+1 = 0 and for t ∈ {T, . . . , 1},

α′t = εt + ρF(Vt+1)δt + α′t+1.

This is because while using the triangle inequality in step (a) in the proof of Theorem 9,
we could have alternatively added and subtracted the term E[V π

t+1(Ht+1) | Ht = ht, At = at]

instead of E[V̂ π̂
t+1(σ̂t+1(Ht+1)) | Ht = ht, At = at]. Using this bound, we can also derive an

alternative bound for part 2 of the Theorem and show that

|Qt(ht, at)−Qπt (ht, at)| ≤ αt + α′t and |Vt(ht)− V π
t (ht)| ≤ αt + α′t.
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3.3 Examples of Approximate Information States

We now present various examples of information state and show that many existing results
in the literature may be viewed as a special case of Theorem 9. Some of these examples are
for infinite horizon discounted reward version of Theorem 9 (with discount factor γ ∈ (0, 1)),
which we prove later in Theorem 27.

1. Model approximation in MDPs: Consider an MDP with state space S, action space
A, transition kernel Pt : S×A→ ∆(S), and per-step reward rt : S×A→ R. Consider an
approximate model defined on the same state and action spaces with transition kernel
P̂t : S × A → ∆(S) and per-step reward r̂t : S × A → R. Define σ̂t(S1:t, A1:t−1) = St.
Then {(σ̂t, P̂t, r̂t)}Tt=1 is an AIS with

εt := sup
s∈S,a∈A

∣∣rt(s, a)− r̂t(s, a)
∣∣ and δt = sup

s∈S,a∈A
dF
(
Pt(·|s, a), P̂t(·|s, a)

)
.

A result similar in spirit to Theorem 9 for this setup for general dF is given in
Theorem 4.2 of Müller (1997). When dF is the Kantorovich metric, a bound for model
approximation for infinite horizon setup is provided in Theorem 2 of Asadi et al. (2018).
This is similar to our result generalization of Theorem 9 to infinite horizon, which is
given in Theorem 27; a bound on ρF(V̂ ) in this case can be obtained using results of
Hinderer (2005); Rachelson and Lagoudakis (2010).

2. State abstraction in MDPs: Consider an MDP with state space S, action space
A, transition kernel Pt : S× A→ ∆(S), and per-step reward rt : S× A→ R. Consider
an abstract model defined over a state space Ŝ (which is “smaller” than S) and the
same action space with transition kernel P̂t : Ŝ × A → ∆(Ŝ) and per-step reward
r̂t : Ŝ× A→ R. Suppose there is an abstraction function q : S→ Ŝ and, in state S ∈ S,
we choose an action based on q(S). For such a model, define σ̂t(S1:t, A1:t−1) = q(St).
Then {(σ̂t, P̂t, r̂t)}Tt=1 is an AIS with

εt := sup
s∈S,a∈A

∣∣rt(s, a)− r̂t(q(s), a)
∣∣ and δt := sup

s∈S,a∈A
dF
(
µt(·|s, a), P̂t(·|q(s), a)

)
,

where for any Borel subset B of Ŝ, µt(B|s, a) := Pt(q
−1(B)|s, a).

There is a rich literature on state abstraction starting with Bertsekas (1975) and Whitt
(1978), but the error bounds in those papers are of a different nature. There are some
recent papers which derive error bounds similar to Theorem 9 for the infinite horizon
setup with state abstraction. We generalize Theorem 9 to infinite horizon later in
Theorem 27.

When dF is the Kantorovich metric, a bound on ρF(V̂ ) = ‖V̂ ‖Lip can be obtained
using results of Hinderer (2005); Rachelson and Lagoudakis (2010). Substituting this
bound in Theorem 27 gives us the following bound on the policy approximation error
by using AIS. ∣∣V (s)− V π(s)

∣∣ ≤ 2ε

(1− γ)
+

2γδ‖V̂ ‖Lip

(1− γ)
.

Similar bound has been obtained in Theorem 5 of Gelada et al. (2019). A detailed
comparison with this model is presented in Appendix B.
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When dF is the total variation distance, a bound on dF(V̂ ) is given by span(r)/(1− γ).
Substituting this in Theorem 27, we get that

|V (s)− V π(s)| ≤ 2ε

(1− γ)
+
γδ span(r)

(1− γ)2
.

A O(1/(1− γ)3) bound on the policy approximation error in this setup was obtained
in Lemma 2 and Theorem 2 of Abel et al. (2016). Directly using the AIS bound
of Theorems 9 and 27 gives a factor of 1/(1− γ) improvement in the error
bound of Abel et al. (2016). See Appendix A for a detailed comparison.

3. Belief approximation in POMDPs: Consider a POMDP with state space S,
action space A, observation space Y, and a per-step reward function rt : S× A→ R.
Let bt(·|Ht) ∈ ∆(S) denote the belief of the current state given the history, i.e.,
bt(s|Ht) = P(St = s | Ht). Suppose there are history compression functions {φt : Ht →
Φt}Tt=1 (where Φt is some arbitrary space) along with belief approximation functions
{b̂t : Φt → ∆(S)}Tt=1, such that for any time t and any realization ht of Ht, we have

‖b̂t(· | φt(ht))− bt(· | ht)‖1 ≤ ε.

Such a {(φt, b̂t)}Tt=1 was called an ε-sufficient statistic in Francois-Lavet et al. (2019).
An example of ε-sufficient statistic is belief quantization, where the belief is quantized
to the nearest point in the type lattice (here m = |S|)

Qn :=
{

(p1, . . . , pm) ∈ ∆(S) : npi ∈ Z≥0

}
.

An efficient algorithm to find the nearest point in Qn for any given belief bt ∈ ∆(S)
is presented in Reznik (2011). Under such a quantization, the maximum `1 distance
between a belief vector and its quantized value is given by 2bm/2cdm/2e/mn ≈ m/2n
(see Proposition 2 of Reznik (2011)). Thus, by taking n > m/2ε, we get an ε-sufficient
statistic.

Francois-Lavet et al. (2019) showed that the bias of using the optimal policy based
on b̂t(ht) in the original model is 2ε‖r‖∞/(1− γ)3. This result uses the same proof
argument as Abel et al. (2016) discussed in the previous bullet point, which is not
tight. By metricizing the belief space using total variation distance and using the
bounded-Lipschitz metric on the space of probability measures on beliefs, we can show
that an ε-sufficient statistic induces a (ε span(r), 3ε)-AIS. When dF is the bounded-
Lipschitz metric, a bound on ρF(V̂ ) is given by 2‖r‖∞/(1− γ). Substituting this in
Theorem 27, we get that

|V (s)− V π(s)| ≤ 2ε‖r‖∞
(1− γ)

+
6γε‖r‖∞
(1− γ)2

.

Thus, directly using the AIS bound of Theorems 9 and 27 gives a factor of
1/(1 − γ) improvement in the error bound of Francois-Lavet et al. (2019).
See Appendix C for details.

In a slightly different vein, belief quantization in POMDPs with finite or Borel
valued unobserved state was investigated in Saldi et al. (2018), who showed that
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under appropriate technical conditions the value function and optimal policies for
the quantized model converge to the value function and optimal policy of the true
model. However Saldi et al. (2018) did not provide approximation error for a fixed
quantization level.

3.4 Approximate Policy Evaluation

In some settings, we are interested in comparing the performance of an arbitrary policy in
an approximate model with its performance in the real model. The bounds of Theorem 9
can be adapted to such a setting as well.

Theorem 13 Suppose {σ̂t, P̂t, r̂t}Tt=1 is an {(εt, δt)}Tt=1-AIS generator. Let π̂# = (π̂#
1 , . . . , π̂

#
T ),

where π̂#
t : Ẑt → ∆(A), be an arbitrary stochastic policy. Recursively define approximate

policy action-value functions {Q̂π̂#

t : Ẑt×A→ R}Tt=1 and value functions {V̂ π̂#

t : Ẑt → R}Tt=1

as follows: V̂ π̂#

T+1(ẑT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̂π̂
#

t (ẑt, at) := r̂t(ẑt, at) +

∫
Ẑt+1

V̂ π̂#

t (ẑt+1)P̂t(dẑt+1 | ẑt, at) (21a)

V̂ π̂#

t (ẑt) :=
∑
at∈A

π̂#
t (at | ẑt).Q̂π̂

#

t (ẑt, at). (21b)

Define policy π# = (π#
1 , . . . , π

#
T ), where π#

t : Ht → ∆(A) by π#
t := π̂#

t ◦ σ̂t. Then, for any
time t, realization ht of Ht, and choice at of At, we have:

|Qπ#

t (ht, at)− Q̂π̂
#

t (σ̂t(ht), at)| ≤ α#
t and |V π#

t (ht)− V̂ π̂#

t (σ̂t(ht))| ≤ α#
t , (22)

where α#
t satisfies the following recursion: α#

T+1 = 0 and for t ∈ {T, . . . , 1},

α#
t = εt + ρF(V̂ π̂#

t+1)δt + α#
t+1.

Therefore,

α#
t = εt +

T∑
τ=t+1

[
ρF(V̂ π̂#

τ )δτ−1 + ετ
]
.

Proof The proof proceeds by backward induction along the same lines as the proof of
Theorem 9. By construction, Eq. (22) holds at time T + 1. This forms the basis of induction.
Assume that (22) holds at time t+ 1 and consider the system at time t. We have∣∣Qπ#

t (ht, at)− Q̂π̂
#

t (σ̂t(ht), at)
∣∣

(a)

≤
∣∣E[Rt | Ht = ht, At = at]− r̂t(σ̂t(ht), at)

∣∣
+ E

[∣∣V π#

t+1(Ht+1)− V̂ π̂#

t+1(σ̂t+1(Ht+1))
∣∣ ∣∣ Ht = ht, At = at

]
+

∣∣∣∣E[V̂ π̂#

t+1(σ̂t+1(Ht+1)) | Ht = ht, At = at]−
∫
Ẑt+1

V̂ π̂#

t+1(ẑt+1)P̂t(dẑt+1 | σ̂t(ht), at)
∣∣∣∣

(b)

≤ εt + α#
t+1 + ρF(V̂ π̂#

t+1)δt = α#
t
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where (a) follows from triangle inequality and (b) follows from (AP1), the induction hypoth-
esis, (AP2) and (10). This proves the first part of (22). The second part follows from the
the fact that π#(at|ht) = π̂#(at|σ̂t(ht)) and the triangle inequality:∣∣V π#

t (ht)− V̂ π̂#

t (σ̂t(ht))
∣∣ ≤∑

at∈A
π̂#
t (at|σ̂t(ht))

∣∣Qπ#
(ht, at)− Q̂π̂

#

t (σ̂t(ht), at)
∣∣ ≤ α#

t .

3.5 Stochastic AIS

We have so far assumed that the history compression functions σ̂t : Ht → Ẑt are deterministic
functions. When learning a discrete-valued AIS from data, it is helpful to consider stochastic
mappings of history, so that quality of the mapping may be improved via stochastic gradient
descent. In general, the definition of deterministic AIS also covers the case of stochastic AIS
because a stochastic function from Ht to Ẑt may be viewed as a deterministic function from
Ht to ∆(Ẑt). However, a more explicit characterization is also possible, which we present
next.

Definition 14 Let {Ẑt}Tt=1 be a pre-specified collection of Banach spaces, F be a function
class for IPMs, and {(εt, δt)}Tt=1 be pre-specified positive real numbers. A collection {σ̂st : Ht →
∆(Ẑt)}Tt=1 of stochastic history compression functions, along with approximate update kernels
{P̂t : Ẑt × A → ∆(Ẑt+1)}Tt=1 and reward approximation functions {r̂t : Ẑt × A → R}Tt=1, is
called an {(εt, δt)}Tt=1-stochastic AIS generator if the process {Ẑt}Tt=1, where Ẑt = σ̂t(Ht),
satisfies the following properties:

(AP1) Sufficient for approximate performance evaluation, i.e., for any time t, any
realization ht of Ht and any choice at of At, we have∣∣E[Rt | Ht = ht, At = at]− EẐt∼σ̂s

t (ht)
[r̂t(Ẑt, at)]

∣∣ ≤ εt.
(AP2) Sufficient to predict itself approximately. i.e., for any time t, any realization

ht of Ht, any choice at of At, and for any Borel subset B of Ẑt+1, define µt(B) :=
P(Ẑt+1 ∈ B | Ht = ht, At = at) and νt(B) := EẐt∼σ̂s

t (ht)
[P̂t(B|Ẑt, at)]; then,

dF(µt, νt) ≤ δt.

Similar to Theorem 9, we then have the following result.

Theorem 15 Given a stochastic AIS generator {σ̂st , P̂t, r̂t}Tt=1, define value functions {V̂t : Ẑt →
R}Tt=1 and action-value functions {Q̂t : Ẑt×A→ R}Tt=1 as in Theorem 9. Then, we have the
following:

1. Value function approximation: For any time t, realization ht of Ht, and choice
at of At we have

|Qt(ht, at)− EẐt∼σ̂s
t (ht)

[Q̂t(Ẑt, at)]| ≤ αt and |Vt(ht)− EẐt∼σ̂s
t (ht)

[V̂t(Ẑt)]| ≤ αt,
(23)

where αt is defined as in Theorem 9.
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2. Approximately optimal policy: Let π̂ = (π̂1, . . . , π̂T ), where π̂t : Ẑt → ∆(A), be a
stochastic policy that satisfies

Supp(π̂(ẑt)) ⊆ arg max
at∈A

Q̂t(ẑt, at). (24)

Define policy π = (π1, . . . , πT ), where πt : Ht → ∆(A) by πt(ht) = EẐt∼σ̂s
t (ht)

[π̂t(Ẑt)].

Then, for any time t, realization ht of Ht, and choice at of At, we have

|Qt(ht, at)−Qπt (ht, at)| ≤ 2αt and |Vt(ht)− V π
t (ht)| ≤ 2αt. (25)

Proof The proof is almost the same as the proof of Theorem 9. The main difference is that
for the value and action-value functions of the stochastic approximation state, we take an
additional expectation over the realization of the stochastic AIS. We only show the details
of the proof of the first part of the result (value approximation). The second part (policy
approximation) follows along similar lines.

Eq. (23) holds at T +1 by definition. This forms the basis of induction. Assume that (23)
holds at time t+ 1 and consider the system at time t. We have that∣∣Qt(ht, at)− EẐt∼σ̂s

t (ht)
[Q̂t(Ẑt, at)]

∣∣
(a)

≤
∣∣E[Rt | Ht = ht, At = at]− EẐt∼σ̂s

t (ht)
[r̂t(Ẑt, at)]

∣∣
+ E

[∣∣Vt+1(Ht+1)− EẐt+1∼σ̂s
t+1(ht+1)[V̂t+1(Ẑt+1)]

∣∣ ∣∣ Ht = ht, At = at
]

+

∣∣∣∣E[V̂t+1(σ̂t+1(Ht+1)) | Ht = ht, At = at]− EẐt∼σ̂s
t (ht)

[∫
Ẑt

V̂t+1(ẑt+1)P̂t(dẑt+1 | Ẑt, at)
]∣∣∣∣

(b)

≤ εt + αt+1 + ρF(V̂t+1)δt = αt

where (a) follows from triangle inequality and (b) follows from (AP1), the induction hy-
pothesis, (AP2) and (10). This proves the first part of (23). The second part follows
from ∣∣Vt(ht)− V̂t(σ̂st (ht))∣∣ (a)

≤ max
at∈A

∣∣Qt(ht, at)− Q̂t(σ̂st (ht), at)∣∣ ≤ αt,
where (a) follows from the inequality max f(x) ≤ max |f(x)− g(x)|+ max g(x). This com-
pletes the proof of value approximation. The proof of policy approximation is similar to
that of Theorem 9 adapted in the same manner as above.

3.6 AIS with Action Compression

So far we have assumed that the action space for the AIS is the same as the action space for
the original model. In some instances, for example, for continuous or large action spaces, it
may be desirable to quantize or compress the actions as well. In this section, we generalize
the notion of AIS to account for action compression.

23



Subramanian, Sinha, Seraj, and Mahajan

Definition 16 As in the definition of AIS, suppose {Ẑt}Tt=1 are pre-specified collection of
Banach spaces, F be a function class for IPMs, and {(εt, δt)}Tt=1 be pre-specified positive
real numbers. In addition, suppose we have a subset Â ⊂ A of quantized actions. Then, a
collection {σ̂t : Ht → Ẑt}Tt=1 of history compression functions, along with action quantization
function ψ : A → Â, approximate update kernels {P̂t : Ẑt × Â → ∆(Ẑt+1)}Tt=1 and reward
approximation functions {r̂t : Ẑt× Â→ R}Tt=1, is called an {(εt, δt)}Tt=1-action-quantized AIS
generator if the process {Ẑt}Tt=1, where Ẑt = σ̂t(Ht), satisfies the following properties:

(AQ1) Sufficient for approximate performance evaluation, i.e., for any time t, any
realization ht of Ht and any choice at of At, we have∣∣E[Rt | Ht = ht, At = at]− r̂t(σ̂t(ht), ψ(at))

∣∣ ≤ εt.
(AQ2) Sufficient to predict itself approximately. i.e., for any time t, any realization

ht of Ht, any choice at of At, and for any Borel subset B of Ẑt+1, define µt(B) :=
P(Ẑt+1 ∈ B | Ht = ht, At = at) and νt(B) := P̂t(B | σ̂t(ht), ψ(at)); then,

dF(µt, νt) ≤ δt.

Similar to Theorem 9, we show that an action-quantized AIS can be used to determine
an approximately optimal policy.

Theorem 17 Suppose {σ̂t, ψ, P̂t, r̂t}Tt=1 is an action-quantized AIS generator. Recursively
define approximate action-value functions {Q̂t : Ẑt×Â→ R}Tt=1 and value functions {V̂t : Ẑt →
R}Tt=1 as follows: V̂T+1(ẑT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̂t(ẑt, ât) := r̂t(ẑt, ât) +

∫
Ẑt

V̂t+1(ẑt+1)P̂t(dẑt+1 | ẑt, ât), (26a)

V̂t(ẑt) := max
ât∈Â

Q̂t(ẑt, ât). (26b)

Then, we have the following:

1. Value function approximation: For any time t, realization ht of Ht, and choice
at of At, we have

|Qt(ht, at)− Q̂t(σ̂t(ht), ψ(at))| ≤ αt and |Vt(ht)− V̂t(σ̂t(ht))| ≤ αt, (27)

where αt is defined as in Theorem 9.

2. Approximately optimal policy: Let π̂ = (π̂1, . . . , π̂T ), where π̂t : Ẑt → ∆(Â), be a
stochastic policy that satisfies

Supp(π̂t(ẑt)) ⊆ arg max
ât∈Â

Q̂t(ẑt, ât). (28)

Define policy π = (π1, . . . , πT ), where πt : Ht → ∆(A) by πt := π̂t ◦ σ̂t. Then, for any
time t, realization ht of Ht, and choice at of At, we have

|Qt(ht, at)−Qπt (ht, ψ(at))| ≤ 2αt and |Vt(ht)− V π
t (ht)| ≤ 2αt. (29)
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Proof The proof is similar to the proof of Theorem 9. We only show the details of the first
part (value approximation). The second part (policy approximation) follows along similar
lines.

As before, we prove the result by backward induction. Eq. (27) holds at T + 1 by
definition. This forms the basis of induction. Assume that (27) holds at time t + 1 and
consider the system at time t. We have that∣∣Qt(ht, at)− Q̂t(σ̂t(ht), ψ(at))

∣∣
(a)

≤
∣∣E[Rt | Ht = ht, At = at]− r̂t(σ̂t(ht), ψ(at))

∣∣
+ E

[∣∣Vt+1(Ht+1)− V̂t+1(σ̂t+1(Ht+1))
∣∣ ∣∣ Ht = ht, At = at

]
+

∣∣∣∣E[V̂t+1(σ̂t+1(Ht+1)) | Ht = ht, At = at]−
∫
Ẑt

V̂t+1(ẑt+1)P̂t(dẑt+1 | σ̂t(ht), ât)
∣∣∣∣

(b)

≤ εt + αt+1 + ρF(V̂t+1)δt = αt

where (a) follows from triangle inequality and (b) follows from (AQ1), the induction hy-
pothesis, (AQ2) and (10). This proves the first part of (27). The second part follows
from ∣∣Vt(ht)− V̂t(σ̂t(ht))∣∣ (a)

≤ max
at∈A

∣∣Qt(ht, at)− Q̂t(σ̂t(ht), ψ(at))
∣∣ ≤ αt,

where (a) follows from the inequality max f(x) ≤ max |f(x)−g(x)|+max g(x). We have also
used the fact that if ψ is an onto function, then maxâ∈Â Q̂t(ẑt, ât) = maxa∈A Q̂t(ẑt, ψ(at)).
This completes the proof of value approximation. The proof of policy approximation is
similar to that of Theorem 9 adapted in the same manner as above.

Action quantization in POMDPs with finite or Borel valued unobserved state was
investigated in Saldi et al. (2018), who showed that under appropriate technical conditions
the value function and optimal policies for the quantized model converge to the value
function and optimal policy of the true model. However Saldi et al. (2018) did not provide
approximation error for a fixed quantization level.

Simplification for perfectly observed case: The approximation bounds for action
compression derived in Theorem 17 can be simplified when the system is perfectly observed.
In particular, consider an MDP with state space S, action space A, transition probability
P : S×A→ ∆(S), per-step reward function r : S×A→ R, and discount factor γ. For MDPs,
we can simplify the definition of action quantized AIS-generator as follows.

Definition 18 Given an MDP as defined above, let F be a function class for IPMs, and
(ε, δ) be pre-specified positive real numbers. In addition, suppose we have a subset Â ⊂ A of
quantized actions. Then, an action quantization function ψ : A→ Â, where Â ⊂ A, is called
an (ε, δ)-action-quantizer if the following properties are satisfied:

(AQM1) Sufficient for approximate performance evaluation, i.e., for any s ∈ S
and a ∈ A, we have ∣∣r(s, a)− r(s, ψ(a))

∣∣ ≤ ε.
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(AQM2) Sufficient to predict the next state approximately. i.e., for any s ∈ S
and a ∈ A,

dF(P (·|s, a), P (·|s, ψ(a)) ≤ δ.

Then, the approximation in Theorem 17 simplifies for an MDP as follows.

Corollary 19 Suppose ψ is an (ε, δ)-action-quantizer. Recursively define approximate
action-value functions {Q̂t : S × Â → R} and value functions {V̂t : St → R} as follows:
V̂T+1(sT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̂t(st, ât) := r(st, ât) +

∫
S
V̂t+1(st+1)P (dst+1 | st, ât), (30a)

V̂t(st) := max
ât∈Â

Q̂t(st, ât). (30b)

Then, we have the following:

1. Value function approximation: For any time t, s ∈ S and a ∈ A, we have

|Qt(s, a)− Q̂t(s, ψ(a))| ≤ αt and |Vt(s)− V̂t(s)| ≤ αt, (31)

where αt is defined as in Theorem 9.

2. Approximately optimal policy: Let π̂ = (π̂1, . . . , π̂T ), where π̂t : S → ∆(Â), be a
stochastic policy that satisfies

Supp(π̂t(st)) ⊆ arg max
ât∈Â

Q̂t(st, ât). (32)

Since V π̂
t (st) = V̂t(st) and Qπ̂t (s, ât) = Q̂t(s, ât), we have

|Qt(st, at)−Qπ̂(st, ψ(at))| ≤ αt and |Vt(st)− V π̂(st)| ≤ αt. (33)

Proof The proof follows in a straightforward manner from the proof of Theorem 17.

Note that in contrast to Theorem 17, the final approximation bounds (33) in Corollary 19
do not have an additional factor of 2. This is because the approximate policy π̂ can be
directly executed in the original MDP because Â ⊂ A.

Approximation bounds similar to Corollary 19 are used to derive bounds for lifelong
learning in Chandak et al. (2020). We show that similar bounds may be obtained using
Corollary 19 in Appendix D.

3.7 AIS with Observation Compression

In applications with high-dimensional observations such as video input, it is desirable to
pre-process the video frames into a low-dimensional representation before passing them on
to a planning or learning algorithm. In this section, we generalize the notion of AIS to
account for such observation compression.
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Definition 20 As in the definition of AIS, suppose {Ẑt}Tt=1 are a pre-specified collection
of Banach spaces, F be a function class for IPMs, and {(εt, δt)}Tt=1 be pre-specified positive
real numbers. In addition, suppose we have a set Ŷ of compressed observations and a
compression function q : Y → Ŷ. Let Ĥt denote the history (Ŷ1:t−1, A1:t−1) of compressed
observations and actions and Ĥt denote the space of realizations of such compressed histories.
Then, a collection {σ̂t : Ĥt → Ẑt}Tt=1 of history compression functions, along with observation
compression function q : Y → Ŷ, approximate update kernels {P̂t : Ẑt×A→ ∆(Ẑt+1)}Tt=1 and
reward approximation functions {r̂t : Ẑt × A→ R}Tt=1, is called an {(εt, δt)}Tt=1-observation-
compressed AIS generator if the process {Ẑt}Tt=1, where Ẑt = σ̂t(Ĥt), satisfies properties
(AP1) and (AP2).

System
Stochastic input Wt

Controlled input At

Obs.
Comp.

Modified input-output system

Compressed Obs. Yt

Reward Rt

Figure 3: A stochastic input-output system with observation compression

In essence, we can view observation compression as a new input-output system whose
outputs are (Ŷt, Rt) instead of (Yt, Rt) as shown in Fig. 3. A construction similar to
observation-compressed AIS is proposed in Ha and Schmidhuber (2018), where it is shown that
such a construction performs well empirically, but there was no analysis of the approximation
guarantees of such a construction.

An immediate implication of the above definition is the following:

Corollary 21 Let {σ̂t, q, P̂t, r̂t}t≥1 be an {(εt, δt)}Tt=1-observation-compression AIS. Then,
the bounds of Theorem 9 hold.

3.8 Discussion and Related Work

AIS may be viewed as a generalization of state discretization (Bertsekas, 1975) or state
aggregation (Whitt, 1978) in MDPs. As illustrated by the examples in Sec. 3.3, many of the
recent results on approximation bounds for state aggregation and latent state embedding in
MDPs are specific instances of AIS and, in some instances, using the approximation bounds
of Theorem 9 or its generalization to infinite horizon (Theorem 27) provide tighter bounds
than those in the literature. A detailed comparison with these results is presented in the
Appendices. We had presented a simpler definition of AIS and the approximation bounds in
the preliminary version of this paper (Subramanian and Mahajan, 2019).

As mentioned in Sec. 2.5 while discussing the related literature on information states,
there are two other methods for identifying “states” for POMDPs: bisimulation-based
methods and predictive state representations (PSRs). Approximation techniques for both
these methods have been proposed in the literature.
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State aggregation techniques based on bisimulation metrics have been proposed in Ferns
et al. (2004, 2011) for MDPs and Castro et al. (2009) for POMDPs. The key insight of these
papers is to define a semi-metric called bisimulation metric on the state space of an MDP
or the belief space of a POMDP as the unique fixed point of an operator on the space of
semi-metrics on the state space of the MDP or the belief space of the POMDP. It is then
shown that the value function is Lipschitz with respect to this metric. Then, they propose
state aggregation based on the bisimulation metric. Although the basic building blocks of
bisimulation metrics are the same as those of an AIS, the approximation philosophies are
different. The bisimulation-metric based approximations are a form of state aggregation,
while AIS need not be a state aggregation.

Various methods for learning low dimensional approximations of PSRs have been proposed
in the literature, including approaches which use spectral learning algorithms (Rosencrantz
et al., 2004; Boots et al., 2011; Hamilton et al., 2014; Kulesza et al., 2015b,a; Jiang et al.,
2016), and stochastic gradient descent (Jiang et al., 2016). Error bounds for using an
approximate PSR were derived in Wolfe et al. (2008); Hamilton et al. (2014). These
approximation methods for PSRs rely on the specific structure of PSRs and are conceptually
different from the approximation methods used in AIS.

4. Infinite-horizon Discounted Reward Setup

So far, we have restricted attention to the finite horizon setup. In this section, we show
how to generalize the notions of information state and approximate information state to the
infinite horizon discounted reward setup.

4.1 System Model and Problem Formulation

We consider the same model as described in Sec. 2.1 but assume that the system runs for an
infinite horizon. The performance of any (history dependent and possibly stochastic) policy
π := (π1, π2, . . . ), where πt : Ht → ∆(A), is given by

J(π) := lim inf
T→∞

Eπ
[ T∑
t=1

γt−1Rt

]
,

where γ ∈ (0, 1) is the discount factor. As before, we assume that the agent knows the
system dynamics {ft}t≥1, the reward functions {rt}t≥1, and the probability measure P on
the primitive random variables {Wt}t≥1. The objective of the agent is to choose a policy π
that maximizes the expected discounted total reward J(π).

Note that we use lim inf rather than lim in the above definition because in general
the limit might not exist. We later assume that the rewards are uniformly bounded (see
Assumption 1) which, together with the finiteness of the action space, implies that the limit is
well defined. When the action space is uncountable, we need to impose appropriate technical
conditions on the model to ensure that an appropriate measurable selection condition holds
(Hernández-Lerma and Lasserre, 2012).
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4.2 A Dynamic Programming Decomposition

In the finite-horizon setup, we started with a dynamic program to evaluate the performance
{V π

t }Tt=1 for any history dependent policy π. We then identified an upper-bound {Vt}Tt=1

on {V π
t }Tt=1 and showed that this upper bound is tight and achieved by any optimal policy.

The subsequent analysis of the information state and the approximate information state
based dynamic programs was based on comparison with {Vt}Tt=1.

One conceptual difficulty with the infinite horizon setup is that we cannot write a general
dynamic program to evaluate the performance {V π

t }t≥1 of an arbitrary history dependent
policy π and therefore identify a tight upper-bound {Vt}t≥1. In traditional MDP models,
this conceptual difficulty is resolved by restricting attention to Markov strategies and then
establishing that the performance of a Markov strategy can be evaluated by solving a fixed
point equation. For partially observed MDPs, a similar resolution works because one can
view the belief state as an information state. However, for general partially observed models
as considered in this paper, there is no general methodology to identify a time-homogeneous
information state. So, we follow a different approach and identify a dynamic program which
bounds the performance of a general history dependent policy. We impose the following
mild assumption on the model.

Assumption 1 The reward process {Rt}t≥1 is uniformly bounded and takes values inside a
finite interval [Rmin, Rmax].

Given any (history dependent) policy π, we define the reward-to-go function for any
time t and any realization ht of Ht as

V π
t (ht) := Eπ

[ ∞∑
s=t

γs−tRs

∣∣∣∣ Ht = ht

]
. (34)

Define the corresponding action value function as:

Qπt (ht, at) := Eπ[Rt + γV π
t+1(Ht+1) | Ht = ht, At = at]. (35)

As stated above, we cannot identify a dynamic program to recursively compute {V π
t }t≥1.

Nonetheless, we show that under Assumption 1 we can identify arbitrarily precise upper
and lower bounds for {V π

t }t≥1 which can be recursively computed.

Proposition 22 Arbitrarily pick a horizon T and define {Jπt,T : Ht → R}Tt=1 as follows:
JπT,T (hT ) = 0 and for t ∈ {T − 2, . . . , 1},

Jπt,T (ht) := Eπ[Rt + γJπt+1,T (Ht+1) | Ht = ht]. (36)

Then, for any time t ∈ {1, . . . , T} and realization ht of Ht, we have

Jπt,T (ht) +
γT−t

1− γ
Rmin ≤ V π

t (ht) ≤ Jπt,T (ht) +
γT−t

1− γ
Rmax. (37)

Proof The proof follows from backward induction. Note that for t = T , Rt ∈ [Rmin, Rmax]
implies that

Rmin

1− γ
≤ V π

T (hT ) ≤ Rmax

1− γ
.
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This forms the basis of induction. Now asusme that (37) holds for time t+ 1 and consider
the model for time t:

V π
t (ht) = Eπ

[ ∞∑
s=t

γs−tRs

∣∣∣∣ Ht = ht

]
(a)
= Eπ

[
Rt + γEπ

[ ∞∑
s=t+1

γs−(t+1)Rs

∣∣∣∣ Ht+1

] ∣∣∣∣ Ht = ht

]
(b)

≤ Eπ
[
Rt + γEπ

[
Jπt+1,T (Ht+1) +

γT−(t+1)

1− γ
Rmax

∣∣∣∣ Ht+1

] ∣∣∣∣ Ht = ht

]
(c)
= Jπt,T (ht) +

γT−t

1− γ
Rmax,

where (a) follows from the smoothing property of conditional expectation, (b) follows from
the induction hypothesis, and (c) follows from the definition of Jπt,T (·). This establishes one
side of (37). The other side can be established in a similar manner. Therefore, the result
holds by the principle of induction.

Note that Proposition 22 gives a recursive method to approximately evaluate the perfor-
mance of any history dependent policy π. We can modify the recursion in (36) to obtain
policy independent upper bound on performance of an arbitrary policy. For that matter,
define value functions {Vt : Ht → R}t≥1as follows:

Vt(ht) = sup
π
V π
t (ht), (38)

where the supremum is over all history dependent policies. Furthermore, define action-value
functions {Qt : Ht × A→ R}t≥1 as follows:

Qt(ht, at) = E[Rt + γVt+1(Ht+1) | Ht = ht, At = at]. (39)

Then, we have the following.

Proposition 23 Arbitrarily pick a horizon T and define {Jt,T : Ht → R} as follows:
JT,T (hT ) = 0 and for t ∈ {T − 2, . . . , 1},

Jt,T (ht) := max
at∈A

E[Rt + γJt+1(Ht+1) | Ht = ht, At = at]. (40)

Then, for any time t ∈ {1, . . . , T} and realization ht of Ht,

V π
t (ht) ≤ Jt,T (ht) +

γT−t

1− γ
Rmax. (41)

Therefore,

Jt,T (ht) +
γT−t

1− γ
Rmin ≤ Vt(ht) ≤ Jt,T (ht) +

γT−t

1− γ
Rmax. (42)
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Note that Jt,T (ht) is the optimal value function for a finite horizon system with the discounted
reward criterion that runs for horizon T − 1.
Proof By following almost the same argument as Proposition 2, we can establish that for
any history dependent policy π, Jπt,T (ht) ≤ Jt,T (ht), which immediately implies (41).

Maximizing the left hand side of (41) gives us the upper bound in (42). For the lower
bound in (42), observe that

Vt(ht) = sup
π

Eπ
[ ∞∑
s=t

γs−tRs

∣∣∣∣ Ht = ht

]
(a)

≥ sup
π

Eπ
[T−1∑
s=t

γs−tRs +
∞∑
s=T

γs−tRmin

∣∣∣∣ Ht = ht

]

= sup
π

Eπ
[T−1∑
s=t

γs−tRs

∣∣∣∣ Ht = ht

]
+
γT−t

1− γ
Rmin

(b)
= Jt,T (ht) +

γT−t

1− γ
Rmin.

where (a) follows from the fact that Rs ≥ Rmin and (b) follows from the definition of Jt,T (ht).
This complete the proof of (42).

4.3 Time-homogeneous Information State and Simplified Dynamic Program

Definition 24 Given a Banach space Z, an information state generator {σt : Ht → Z} is
said to be time-homogeneous if, in addition to (P1) and (P2), it satisfies the following:

(S) The expectation E[Rt|Zt = σt(Ht), At = at] and the transition kernel P(Zt+1 ∈ B|Zt =
σt(Ht), At = at) are time-homogeneous.

Note that all except the first example of information state presented in Sec. 2.4 are time-
homogeneous. However, in general, a time-homogeneous information state may not exist for
all partially observed models and it is important to understand conditions under which such
an information state exists. However, we do not pursue that direction in this paper.

For any time-homogeneous information state, define the Bellman operator B : [Z→ R]→
[Z→ R] as follows: for any uniformly bounded function V̄ : Z→ R

[BV̄ ](z) = max
a∈A

E[Rt + γV̄ (Zt+1) | Zt = z,At = a], (43)

where γ ∈ (0, 1) is the discount factor. Because of (S), the expectation on the right hand
side does not depend on time. Due to discounting, the operator B is a contraction and
therefore, under Assumption 1, the fixed point equation

V̄ = BV̄ (44)

has a unique bounded solution (due to the Banach fixed point theorem). Let V̄ ∗ be the
fixed point and π∗ be any policy such that π∗(z) achieves the arg max in the right hand side
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of (43) for [BV̄ ∗](z). It is easy to see that V̄ ∗ is the performance of the time homogeneous
policy (π∗, π∗, . . . ). However, it is not obvious that V̄ ∗ equals to the optimal performance
V1 defined in (38), because the proof of Theorem 5 relies on backward induction and is not
applicable to infinite horizon models. So, we present an alternative proof below which uses
the performance bounds of Proposition 23.

Theorem 25 Let {Zt}t≥1 be a time-homogeneous information state process with generator
{σt : Ht → Z}t≥1. Suppose Assumption 1 holds and let V̄ ∗ be the unique bounded fixed point
of (43). Then, for any time t and realization ht of Ht, we have

Vt(ht) = V̄ ∗(σt(ht)).

Furthermore, let π∗ : Z → ∆(A) be a time-homogeneous (stochastic) policy such that
Supp(π∗(z)) is a subset of the arg max of the right hand side of (43). Then, the time-
homogeneous policy π∗ := (π∗, π∗, . . . ) is optimal.

Proof Consider the following sequence of value functions: V̄ (0)(z) = 0 and for n ≥ 0, define
V̄ (n+1) = BV̄ (n). Now fix a horizon T and consider the finite-horizon discounted reward
problem of horizon T − 1. As argued earlier, Jt,T (ht) is the optimal value-function for this
finite horizon discounted problem. Moreover, note that {Zt}Tt=1 is an information state for
this finite horizon discounted problem. Therefore, from using the result of Theorem 5, we
get that for any time t ∈ {1, . . . , T}, and realization ht of Ht,

Jt,T (ht) = V̄ (T−t)(σt(ht)).

Substituting (42) from Proposition 23 in the above, we get

V̄ (T−t)(σt(ht)) +
γT−t

1− γ
Rmin ≤ Vt(ht) ≤ V̄ (T−t)(σt(ht)) +

γT−t

1− γ
Rmax.

The result follows from taking limit T → ∞ and observing that V̄ (T−t)(z) converges to
V̄ ∗(z).

4.4 Time-homogeneous AIS and Approximate Dynamic Programming

Definition 26 Given a Banach space Ẑ, a function class F for IPMs, and positive real
numbers (ε, δ), we say that a collection {σ̂t : Ht → Ẑ}t≥1 along with a time-homogeneous
update kernel P̂ : Ẑ × A → ∆(Ẑ) and a time-homogeneous reward approximation function
r̂ : Ẑ × A → R is a (ε, δ) time homogeneous AIS generator if the process {Ẑt}t≥1, where
Ẑt = σ̂t(Ht), satisfies (AP1) and (AP2) where r̂t, P̂t, εt and δt in the definition of (AP1)
and (AP2) are replaced by their time-homogeneous counterparts.

For any time-homogeneous AIS, define the approximate Bellman operator B̂ : [Ẑ→ R]→
[Ẑ→ R] as follows: for any uniformly bounded function V̂ : Ẑ→ R,

[B̂V̂ ](ẑ) = max
a∈A

{
r̂(ẑ, a) + γ

∫
Ẑ
V̂ (ẑ′)P̂ (dẑ′|ẑ, a)

}
. (45)
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Note that the expectation on the right hand side does not depend on time. Due to discounting,
the operator B̂ is a contraction, and therefore, under Assumption 1, the fixed point equation

V̂ = B̂V̂ (46)

has a unique bounded solution (due to the Banach fixed point theorem). Let V̂ ∗ be the
fixed point and π̂∗ be any policy such that π̂∗(ẑ) achieves the arg max in the right hand side
of (45) for [B̂V̂ ∗](ẑ). It is not immediately clear if V̂ ∗ is close to the performance of policy
π = (π1, π2, . . . ), where πt = π∗ ◦ σ̂t, or if V̂ ∗ is close to the optimal performance. The proof
of Theorem 9 relies on backward induction and is not immediately applicable to the infinite
horizon setup. Nonetheless, we establish results similar to Theorem 9 by following the proof
idea of Theorem 25.

Theorem 27 Suppose ({σ̂t}t≥1, P̂ , r̂) is a time-homogeneous (ε, δ)-AIS generator. Consider
the fixed point equation (46), which we rewrite as follows:

Q̂(ẑ, a) := r̂(ẑ, a) + γ

∫
Ẑ
V̂ (ẑ′)P̂ (dẑ′|ẑ, a), (47a)

V̂ (ẑ) := max
a∈A

Q̂(ẑ, a). (47b)

Let V̂ ∗ denote the fixed point of (47) and Q̂∗ denote the corresponding action-value function.
Then, we have the following:

1. Value function approximation: For any time t, realization ht of Ht, and choice
at of At, we have

|Qt(ht, at)− Q̂∗(σ̂t(ht), at)| ≤ α and |Vt(ht)− V̂ ∗(σ̂t(ht))| ≤ α, (48)

where

α =
ε+ γρF(V̂ ∗)δ

1− γ

2. Approximately optimal policy: Let π̂∗ : Ẑ → ∆(A) be a stochastic policy that
satisfies

Supp(π̂∗(ẑ)) ⊆ arg max
a∈A

Q̂∗(ẑ, a). (49)

Define policy π = (π1, π2, . . . ), where πt : Ht → ∆(A) is defined by πt := π̂∗ ◦ σ̂t. Then,
for any time t, realization ht of Ht, and choice at of At, we have

|Qt(ht, at)−Qπt (ht, at)| ≤ 2α and |Vt(ht)− V π
t (ht)| ≤ 2α. (50)

Proof The proof follows by combining ideas from Theorem 9 and 25. We provide a detailed
proof of the value approximation. The proof argument for policy approximation is similar.

Consider the following sequence of value functions: V̂ (0)(ẑ) = 0 and for n ≥ 0, define
V̂ (n+1) = B̂V̂ (n). Now fix a horizon T and consider the finite-horizon discounted reward
problem of horizon T − 1. As argued earlier, Jt,T (ht) is the optimal value-function for this

finite horizon discounted problem. Moreover, note that {Ẑt}Tt=1 is an (ε, δ)-AIS for this finite
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horizon discounted problem. Therefore, from using the result of Theorem 9, we get that for
any time t ∈ {1, . . . , T}, and realization ht of Ht,

|Jt,T (ht)− V̂ (T−t)(σ̂t(ht))| ≤ αt,

where

αt = ε+

T−1∑
τ=t+1

γτ−t
[
ρF(V̂ (T−τ))δ + ε

]
.

Substituting (42) from Proposition 23 in the above, we get that

V̂ (T−t)(σ̂t(ht))− αt +
γT−t

1− γ
Rmin ≤ Vt(ht) ≤ V̂ (T−t)(σ̂t(ht)) + αt +

γT−t

1− γ
Rmax.

Since B̂ is a contraction, from the Banach fixed point theorem we know that limT→∞ V̂
(T−t) =

V̂ ∗. Therefore, by continuity of ρF(·), we have limT→∞ ρF(V̂ T−t) = ρF(V̂ ∗). Consequently,
limT→∞ αt = α. Therefore, taking the limit T →∞ in the above equation, we get

V̂ ∗(σ̂t(ht))− α ≤ Vt(ht) ≤ V̂ ∗(σ̂t(ht)) + α,

which establishes the bound on the value function in (48). The bound on the action-value
function in (48) follows from a similar argument.

Theorem 27 shows how the result of Theorem 9 generalizes to infinite horizon. We can
similarly extend the results for approximate policy evaluation (as in Sec. 3.4), the stochastic
AIS case (as in Sec. 3.5), the action compression case (as in Sec. 3.6), and the observation
compression case (as in Sec. 3.7).

5. An AIS-based Approximate Dynamic Programming for Dec-POMDPs

The theory of approximation for partially observed systems presented in the previous section
is fairly general and is applicable to other models of decision making as well. As an example,
in this section we show how to use the same ideas to obtain approximation results for
decentralized (i.e., multi-agent) partially observed models.

There is a rich history of research on these models in multiple research disciplines.
Decentralized multi-agent systems have been studied in Economics and Organizational
Behavior since the mid 1950s (Marschak, 1954; Radner, 1962; Marschak and Radner, 1972)
under the heading of team theory. Such models have been studied in systems and control
since the mid 1960s under the heading of decentralized stochastic control (Witsenhausen,
1968, 1971; Sandell et al., 1978). Such models have also been studied in Artificial Intelligence
since the 2000s (Bernstein et al., 2005; Szer et al., 2005; Seuken and Zilberstein, 2007; Carlin
and Zilberstein, 2008) under the heading of Dec-POMDPs. In the interest of space, we do not
provide a detailed overview of this rich area; instead we refer the reader to the comprehensive
survey articles of Mahajan et al. (2012); Liu et al. (2016) for a detailed overview from the
perspective of Systems and Control and Artificial Intelligence, respectively.

We briefly state the facts about this literature which are pertinent to the discussion
below. The general Dec-POMDP problem is NEXP complete (Bernstein et al., 2002),
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so it is not possible to derive an efficient algorithm to compute the optimal solution.
Nonetheless, considerable progress has been made in identifying special cases where a
dynamic programming decomposition is possible (Walrand and Varaiya, 1983; Aicardi et al.,
1987; Ooi et al., 1997; Mahajan and Teneketzis, 2009a,b; Mahajan et al., 2008; Nayyar, 2011;
Nayyar et al., 2013; Mahajan, 2013; Arabneydi and Mahajan, 2014; Oliehoek and Amato,
2015; Dibangoye et al., 2016; Boularias and Chaib-Draa, 2008; Kumar and Zilberstein,
2009). A high level approach which encapsulates many of these special cases is the common
information approach of Nayyar et al. (2013) which shows that the Dec-POMDP problem
with a specific but relatively general information structure can be converted into a single
agent, partially observed problem from the point of view of a virtual agent which knows the
information commonly known to all agents and chooses prescriptions (or partially evaluated
policies) which map the local information at each agent to their respective actions. We
summarize these results in the next subsection and then show how we can identify an AIS
for such models.

5.1 Model of a Dec-POMDP

A Dec-POMDP is a tuple 〈K,S, (Yk)k∈K, (Akt )k∈K, P1, P, P
y, r〉 where

• K = {1, . . . ,K} is the set of agents.

• S is the state space. Yk, Ak, k ∈ K, are the observation and action spaces of agent k.
Let Y =

∏
k∈K Yk and A =

∏
k∈K Ak. We use St ∈ S, Yt := (Y k

t )k∈K ∈ Y, and
At := (Akt )k∈K ∈ A, to denote the system state, observations, and actions at time t.

• P1 ∈ ∆(S) is the initial distribution of the initial state S1.

• P : S× A→ ∆(S) denotes the transition probability of the system, i.e.,

P(St+1 = st+1 | S1:t = s1:t, A1:t = a1:t) = P(St+1 = st+1 | St = st, At = at)

= P (st+1|st, at).

• P y : S× A→ ∆(Y) denotes the observation probability of the system, i..e,

P(Yt = yt | S1:t = s1:t, A1:t−1 = a1:t−1) = P(Yt = yt | St = st, At−1 = at−1)

= P y(yt|st, at−1).

• r : S× A× S→ R denotes the per-step reward function. The team receives a reward
Rt = r(St, At, St+1) at time t.

A critical feature of a Dec-POMDP is the information structure which captures the
knowledge of who knows what about the system and when. We use Ikt to denote the
information known to agent k at time t. In general, Ikt is a subset of the total information
(Y1:t, A1:t−1, R1:t−1) known to all agents in the system. We use Ikt to denote the space of the
information available to agent k at time t. Note that, in general, the information available
to agent k increases with time. So, Ikt are sets that are increasing with time. Some examples
of information structures are:
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• Delayed sharing: Ikt = {Y1:t−d, A1:t−d, Y
k
t−d+1:t, A

k
t−d+1:t−1}. This models systems

where agents broadcast their information and communication has delay of d. Planning
for models where d = 1 has been considered in Sandell and Athans (1974); Yoshikawa
(1975) and for general d has been considered in Nayyar et al. (2011).

• Periodic sharing: Ikt = {Y1:t−τ , A1:t−τ , Y
k
t−τ+1:t, A

k
t−τ+1:t−1}, where τ = p

⌊
t
p

⌋
. This

models systems where agents periodically broadcast their information every p steps.
Planning for this model has been considered in Ooi et al. (1997).

• Control sharing: Ikt = {Y k
1:t, A1:t−1}. This models systems where control actions

are observed by everyone (which is the case for certain communication and economic
applications). Planning for variations of this model has been considered in Bismut
(1972); Sandell and Athans (1974); Mahajan (2013).

• Mean-field sharing: Ikt = {Sk1:t, A
k
1:t−1,M1:t}, where the state St is (S1

t , . . . , S
K
t ),

the observation of agent k is Skt , and Mt =
(∑

k∈K δSk
t

)
/K denotes the empirical

distribution of the states. This models systems where mean-field is observed by all
agents (which is the case for smart grid and other large-scale systems). Planning for
variations of this model has been considered in Arabneydi and Mahajan (2014).

The policy of agent k is a collection πk = (πk1 , π
k
2 , . . . ), where πkt : Ikt → ∆(Ai). We use

π = (πk)k∈K to denote the policy for all agents. The performance of a policy π is given by

J(π) = Eπ
[ T∑
t=1

Rt

]
. (51)

The objective is to find a (possibly time-varying) policy π that maximizes the performance
J(π) defined in (51).

5.2 Common Information based Planning for Dec-POMDPs

As mentioned earlier, in general, finding the optimal plan for multi-agent teams is NEXP-
complete (Bernstein et al., 2002). However, it is shown in Nayyar et al. (2013) that when the
information structure is of a particular form (known as partial history sharing), it is possible
to reduce the multi-agent planning problem to a single agent planning problem from the
point of view of a virtual agent called the coordinator. We summarize this approach below.

Definition 28 (Common and local information) Define

Ct =
⋂
s≥t

⋂
k∈K

Iks and Lkt = Ikt \ Ct, k ∈ K.

Ct denotes the common information, i.e., the information that is common to all agents all
the time in the future and Lkt denotes the local information at agent k. By construction,
Ikt = {Ct, Lkt }. Let Ct and Lkt denote the space of realizations of Ct and Lkt and let
Lt = (Lkt )k∈K and Lt =

∏
k∈K Lkt . By construction, Ct ⊆ Ct+1. Let Cnew

t+1 = Ct+1 \ Ct
denote the new common information at time t. Then, Ct may be written as Cnew

1:t .
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Definition 29 The information structure is called partial history sharing if for any Borel
subset B of Lkt+1 and any realization ct of Ct, `

k
t of Lkt , akt of Akt and ykt+1 of Y k

t+1, we have

P(Lkt+1 ∈ B | Ct = ct, L
k
t = `kt , A

k
t = akt , Y

k
t+1 = ykt+1)

= P(Lkt+1 ∈ B | Lkt = `kt , A
k
t = akt , Y

k
t+1 = ykt+1).

The main intuition behind this definition is as follows. For any system, the information
available to the agents can always be split into common and local information such that
Ikt = {Ct, Lkt }. A partial history sharing information structure satisfies the property that at
any time t and for any agent k, the updated value Lkt+1 of the local information is a function
of only the current local information Lkt , the current local action Akt and the next local
observation Y k

t+1. Consequently, the common information Ct is not needed to keep track of
the update of the local information. This ensures that compressing the common information
into an information state or an approximate information state does not impact the update
of the local information.

Definition 30 (Prescriptions) Given a policy π = (πk)k∈K and a realized trajectory
(c1, c2, . . . ) of the common information, the prescription ξ̂kt is the partial application of ct to
πkt , i.e., ξ̂kt = πkt (ct, ·), k ∈ K.

Note that ξ̂kt is a function from Lkt to ∆(Akt ). Let ξ̂t denote (ξ̂kt )k∈K and let X denote the
space of all such prescriptions for time t.

The reason for constructing prescriptions is as follows. Prescriptions encode the informa-
tion about the policies of all agents needed to evaluate the conditional expected per-step
reward given the common information, i.e., E[Rt|Ct, (πk)k∈K] can be written as a function
of Ct and (ξ̂kt )k∈K, say r̂t(Ct, (ξ̂

k
t )k∈K). This allows us to construct a virtual single-agent

optimization problem where a decision maker (which we call the virtual coordinator) observes
the common information Ct and chooses the prescriptions (ξ̂kt )k∈K to maximize the sum of
rewards r̂t(Ct, (ξ̂

k
t )k∈K). The details of this virtual coordinated system are presented next.

The key idea of Nayyar et al. (2013) is to construct a virtual single agent planning
problem which they call a coordinated system. The environment of the virtual coordinated
system consists of two components: the first component is the same as the environment
of the original multi-agent system which evolves according to dynamics P ; the second
component consists of K passive agents, whose operation we will describe later. There is
a virtual coordinator who observes the common information Ct and chooses prescriptions
Ξ̂t = (Ξ̂kt )k∈K, where Ξ̂kt : Lk → ∆(Ak) using a coordination rule ψt, i.e., Ξ̂t ∼ ψt(Ct). In
general, the coordination rule can be stochastic. Let ξ̂t denote the realization of Ξ̂t. Each
agent in the virtual coordinated system is a passive agent and agent k uses the prescription
Ξ̂kt to sample an action Akt ∼ Ξ̂kt (L

k
t ).

A key insight of Nayyar et al. (2013) is that the virtual coordinated system is equivalent
to the original multi-agent system in the following sense.

Theorem 31 (Nayyar et al. (2013)) Consider a Dec-POMDP with a partial history
sharing information structure. Then, for any policy π = (πk)k∈K, where πk = (πk1 , . . . , π

k
T )

for the Dec-POMDP, define a coordination policy ψ = (ψ1, . . . , ψT ) for the virtual coordinated
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system given by ψt(ct) =
(
πkt (ct, ·)

)
k∈K. Then, the performance of the virtual coordinated

system with policy ψ is the same as the performance of the Dec-POMDP with policy π.
Conversely, for any coordination policy ψ = (ψ1, . . . , ψT ) for the virtual coordinated

system, define a policy π = (πk)k∈K with πk = (πk1 , . . . , π
k
T ) for the Dec-POMDP given by

πkt (ct, `
k
t ) = ψkt (ct)(`

k
t ). Then, the performance of the Dec-POMDP with policy π is the same

as that of the virtual coordinated system with policy ψ.

Theorem 31 implies that the problem of finding optimal decentralized policies in a
Dec-POMDP is equivalent to a centralized (single-agent) problem of finding the optimal
coordination policy for the virtual coordinated system. The virtual coordinated system is
a POMDP with unobserved state (St, L

1
t , . . . , L

K
t ), observation Cnew

t , and actions Ξ̂t. The
corresponding history of observations is (Cnew

1:t , Ξ̂1:t−1) and therefore we can write a history
dependent dynamic program similar to the one presented in Proposition 2. Nayyar et al.
(2013) presented a simplified dynamic program which used the belief state as an information
state; however, it is clear from the above discussion that any other choice of information
state will also lead to a dynamic programming decomposition.

5.3 Common Information based AIS and Approximate Dynamic Programming

Since the coordinated system is a POMDP, we can simply adapt the definition of AIS
Dec-POMDPs and obtain an approximate dynamic program with approximation guarantees.
Let Xt denote the space of realization of Ξ̂t. Then, we have the following.

Definition 32 Let {Ẑt}Tt=1 be a pre-specified collection of Banach spaces, F be a func-
tion class for IPMs, and {(εt, δt)}Tt=1 be pre-specified positive real numbers. A collection
{σ̂t : (Ct, Ξ̂1:t−1) 7→ Ẑt}Tt=1 of history compression functions, along with approximate up-
date kernels {P̂t : Ẑt × Xt → ∆(Ẑt+1)}Tt=1 and reward approximation functions {r̂t : Ẑt ×
Xt → R}Tt=1, is called an {(εt, δt)}Tt=1-AIS generator if the process {Ẑt}Tt=1, where Ẑt =
σ̂t(Ct, Ξ̂1:t−1), satisfies the following properties:

(DP1) Sufficient for approximate performance evaluation, i.e., for any time t, any
realization ct of Ct and any choice ξ̂1:t of Ξ̂1:t, we have∣∣E[Rt | Ct = ct, Ξ̂1:t = ξ̂1:t]− r̂t(σ̂t(ct, ξ̂1:t−1), ξ̂t)

∣∣ ≤ εt.
(DP2) Sufficient to predict itself approximately. i.e., for any time t, any realization

ct of Ct, any choice ξ̂1:t of Ξ̂1:t, and for any Borel subset B of Ẑt+1, define µt(B) :=
P(Ẑt+1 ∈ B | Ct = ct, Ξ̂1:t = ξ̂1:t) and νt(B) := P̂t(B | σ̂t(ct, ξ̂1:t−1), ξ̂t); then,

dF(µt, νt) ≤ δt.

Similar to Proposition 4, we can provide an alternative characterization of an AIS where
we replace (DP2) with approximations of (P2a) and (P2b) and we can prove a proposition
similar to Proposition 8 for the virtual coordinated system.

We can now establish a result similar to Theorem 9 that any AIS gives rise to an
approximate dynamic program. In this discussion, ht denotes (ct, ξ̂1:t−1) and Ht denotes the
space of realization of ht.
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Theorem 33 Suppose {σ̂t, P̂t, r̂t}Tt=1 is an {(εt, δt)}Tt=1-AIS generator. Recursively define
approximate action-value functions {Q̂t : Ẑt × Xt → R}Tt=1 and value functions {V̂t : Ẑt →
R}Tt=1 as follows: V̂T+1(ẑT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̂t(ẑt, ξ̂t) := r̂t(ẑt, ξ̂t) +

∫
Ẑt+1

V̂t+1(ẑt+1)P̂t(dẑt+1 | ẑt, ξ̂t), (52a)

V̂t(ẑt) := max
ξ̂t∈Xt

Q̂t(ẑt, ξ̂t). (52b)

Then, we have the following:

1. Value function approximation: For any time t, realization ht of Ht, and choice
ξ̂t of Ξ̂t, we have

|Qt(ht, ξ̂t)− Q̂t(σ̂t(ht), ξ̂t)| ≤ αt and |Vt(ht)− V̂t(σ̂t(ht))| ≤ αt, (53)

where

αt = εt +
T∑

τ=t+1

[
ρF(V̂τ )δτ−1 + ετ

]
.

2. Approximately optimal policy: Let ψ̂ = (ψ̂1, . . . , ψ̂T ), where ψ̂t : Ẑt → ∆(Xt), be
a coordination rule that satisfies

Supp(ψ̂(ẑt)) ⊆ arg max
ξ̂t∈Xt

Q̂t(ẑt, ξ̂t). (54)

Define coordination rule ψ = (ψ1, . . . , ψT ), where ψt := ψ̂t ◦ σ̂t. Then, for any time t,
realization ht of Ht, and choice ξ̂t of Ξ̂t, we have

|Qt(ht, ξ̂t)−Qψt (ht, ξ̂t)| ≤ 2αt and |Vt(ht)− V ψ
t (ht)| ≤ 2αt. (55)

Proof The proof is similar to the proof of Theorem 9.

We can extend the approximation results for the virtual coordinated system to the
approximate policy evaluation case (as in Sec. 3.4), infinite horizon case (as in Sec. 4), the
stochastic AIS case (as in Sec. 3.5), the action compression case (as in Sec. 3.6), and the
observation compression case (as in Sec. 3.7) in a straightforward manner.

6. Reinforcement Learning for Partially Observed Systems using AIS

In this section, we present a policy gradient based reinforcement learning (RL) algorithm for
infinite horizon partially observed systems. The algorithm learns a time-homogeneous AIS
generator (σ̂t, r̂, P̂ ) which satisfies (AP1) and (AP2) or a time-homogeneous AIS generator
(σ̂t, r̂, ϕ̂, P̂

y) which satisfies (AP1), (AP2a), and (AP2b). In general, the choice between using
(AP2) or using (AP2a) and (AP2b) is problem dependent. (AP2) might be more appropriate
for problems with high-dimensional observation spaces, while (AP2a) and (AP2b) might be
more appropriate for problems with sparse rewards.
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The key idea is to represent each component of the AIS generator using a parametric
family of functions/distributions and use a multi time-scale stochastic gradient descent
algorithm (Borkar, 1997) which learns AIS generator at a faster time-scale than the policy
and/or the action-value function. Then, for the ease of exposition, we first assume that
the policy is fixed and describe how to learn the AIS generator using stochastic gradient
descent. To specify an AIS, we must pick an IPM F as well. Although, in principle, we can
choose any IPM, in practice, we want to choose an IPM such that the distance dF(µt, νt) in
(AP2) or (AP2b) can be computed efficiently. We discuss the choice of IPMs in Sec. 6.1 and
then discuss the stochastic gradient descent algorithm to learn the AIS-generator for a fixed
policy in Sec. 6.2. Then we describe how to simultaneously learn the AIS generator and the
policy using a multi-time scale algorithm, first for an actor only framework and then for an
actor-critic framework in Sec. 6.3.

6.1 The Choice of an IPM

As we will explain in the next section in detail, our general modus operandi is to assume
that the stochastic kernel P̂ or P̂ y that we are trying to learn belongs to a parametric family
and then update the parameters of the distribution to either minimize dF(µ, ν) defined in
(AP2) or minimize dF(µy, νy) defined in (AP2b). Just to keep the discussion concrete, we
focus on (AP2). Similar arguments apply to (AP2b) as well. First note that for a particular
choice of parameters, we know the distribution ν in closed form, but we do not know the
distribution µ in closed form and only have samples from that distribution. One way to
estimate the IPM between a distribution and samples from another distribution is to use
duality and minimize

∣∣∫
Ẑ fdµ−

∫
Ẑ fdν

∣∣ over the choice of function f such that f ∈ F. When
dF is equal to the total variation distance or the Wasserstein distance, this optimization
problem may be solved using a linear program (Sriperumbudur et al., 2012). However,
solving a linear program at each step of the stochastic gradient descent algorithm can become
a computational bottleneck. We propose two alternatives here. The first is to use the total
variation distance or the Wasserstein distance but instead of directly working with them, we
use a KL divergence based upper bound as a surrogate loss. The other alternative is to work
with RKHS-based MMD (maximum mean discrepancy) distance, which can be computed
from samples without solving an optimization problem (Sriperumbudur et al., 2012). It
turns out that for the AIS-setup, a specific form of MMD known as distance-based MMD is
particularly convenient as we explain below.

6.1.1 KL-divergence based upper bound for total variation or Wasserstein
distance

Recall that the KL-divergence between two densities µ and ν on ∆(X) is defined as

DKL(µ‖ν) =

∫
X

logµ(x)µ(dx)−
∫
X

log ν(x)µ(dx).

The total variation distance can be upper bounded by the KL-divergence using Pinsker’s
inequality (Csiszar and Körner, 2011) (see footnote 1 for the difference in constant factor
from the standard Pinsker’s inequality):

dTV(µ, ν) ≤
√

2DKL(µ‖ν). (56)
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As we will explain in the next section, we consider the setup where we know the
distribution ν but only obtain samples from the distribution µ. Since there are two losses—the
reward prediction loss ε and the AIS/observation prediction loss δ, we work with minimizing
the weighted square average λε2 + (1−λ)δ2, where λ ∈ [0, 1] is a hyper-parameter. Pinsker’s
inequality (56) suggests that instead of dTV(µ, ν)2, we can use the surrogate loss function∫

X
log ν(x)µ(dx)

where we have dropped the term that does not depend on ν. Note that the above expression
is the same as the cross-entropy between µ and ν which can be efficiently computed from
samples. In particular, if we get T i.i.d. samples X1, . . . , XT from µ, then

1

T

T∑
t=1

log ν(Xt) (57)

is an unbiased estimator of
∫
X log ν(x)µ(dx).

Finally, if X is a bounded space with diameter D, then

dWass(µ, ν) ≤ DdTV(µ, ν).

So, using cross-entropy as a surrogate loss also works for Wasserstein distance.

6.1.2 Distance-based MMD.

The key idea behind using a distance-based MMD is the following results.

Proposition 34 (Theorem 22 of Sejdinovic et al. (2013)) Let X ⊆ Rm and dX,p : X×
X→ R≥0 be a metric given by dX,p(x, x

′) = ‖x− x′‖p2, for p ∈ (0, 2]. Let kp : X× X→ R be
any kernel given

kp(x, x
′) = 1

2

[
dX,p(x, x0) + dX,p(x

′, x0)− dX,p(x, x′)
]
,

where x0 ∈ X is arbitrary, and let Hp be a RKHS with kernel kp and Fp = {f ∈ Hp : ‖f‖Hp ≤
1}. Then, for any distributions µ, ν ∈ ∆(X), the IPM dFp(µ, ν) can be expressed as follows:

dFp(µ, ν) =
√
E[dX,p(X,W )]− 1

2E[dX,p(X,X ′)]− 1
2E[dX,p(W,W ′)], (58)

where X,X ′ ∼ µ, W,W ′ ∼ ν and (X,X ′,W,W ′) are all independent.

We call dp defined above as a distance-based MMD. For p = 1 (for which dX corresponds to
the L2 distance), the expression inside the square root in (58) is called the Energy distance
in the statistics literature (Székely and Rizzo, 2004). In Sejdinovic et al. (2013), the above
result is stated for a general semimetric of a negative type. Our statement of the above
result is specialized to the semimetric dX,p. See Proposition 3 and Example 15 of Sejdinovic
et al. (2013) for details.
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As explained in the previous section, we work with minimizing the weighted square
average λε2 + (1− λ)δ2, where λ is a hyper-parameter. Proposition 34 suggests that instead
of dFp(µ, ν)2, we can use a surrogate loss function∫

X

∫
X
‖x− w‖p2 µ(dx)ν(dw)− 1

2

∫
X

∫
X
‖w − w′‖p2 ν(dw)ν(dw′) (59)

for p ∈ (0, 2], where we have dropped the term that does not depend on ν. It is possible
to compute the surrogate loss efficiently from samples as described in Sriperumbudur et al.
(2012). In particular, if we get T i.i.d. samples X1, . . . , XT from µ, then

1

T

T∑
t=1

∫
X
‖Xt − w‖p2 ν(dw)− 1

2

∫
X

∫
X
‖w − w′‖p2 ν(dw)ν(dw′) (60)

is an unbiased estimator of (59).
In our numerical experiments, we use the surrogate loss (60) for p = 2, which simplifies

as follows.

Proposition 35 Consider the setup of Proposition 34 for p = 2. Suppose νξ is a known
parameterized distribution with mean Mξ and X is a sample from µ. Then, the gradient of

(Mξ − 2X)ᵀMξ (61)

with respect to ξ is an unbiased estimator of ∇ξdF2(µ, νξ)
2.

Proof For p = 2, we have that

dF2(µ, νξ)
2 = E[‖X −W‖22]− 1

2E[‖X −X ′‖22]− 1
2E[‖W −W ′‖22],

where X,X ′ ∼ µ and W,W ′ ∼ νξ. Simplifying the right hand side, we get that

dF2(µ, νξ)
2 = ‖E[X]‖22 − 2E[X]ᵀE[W ] + ‖E[W ]‖22.

Note that the term ‖E[X]‖22 does not depend on the distribution νξ. Thus, the expression (61)
captures all the terms which depend on ξ.

The implication of Proposition 35 is if we use MMD with the RKHS H2 defined in
Proposition 34, then we can can use the expression in (61) as a surrogate loss function for
dF2(µ, νξ)

2.
Now we show how to compute the surrogate loss (61) for two types of parameterized

distributions νξ.

1. Surrogate loss for predicting discrete variables: When predicting a discrete-
valued random variable, say a discrete-valued AIS Ẑt+1 in (AP2) or a discrete-valued
observation Yt in (AP2b), we view the discrete random variable as a continuous-valued
random vector by representing it as a one-hot encoded vector. In particular, if the
discrete random variable, which we denote by V , takes m values, then its one-hot
encoded representation, which we denote by X, takes values in the corner points
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of the simplex on Rm. Now, suppose νξ is any parameterized distribution on the
discrete set {1, . . . ,m} (e.g., the softmax distribution). Then, in the one-hot encoded
representation, the mean Mξ is given by

Mξ =
m∑
i=1

νξ(i)ei =

 νξ(1)
...

νξ(m)

 ,
where ei denotes the m-dimensional unit vector with 1 in the i-th location. Thus,
when we one-hot encode discrete AIS or discrete observations, the “mean” Mξ is same
as the probability mass function (PMF) νξ. Thus, effectively, dF2(µ, ν)2 is equivalent
to ‖µ− ν‖22 and (61) is an unbiased estimator where we have removed the terms that
do not depend on ν.

2. Surrogate loss for predicting continuous variables: When predicting a
continuous-valued random variable, say a continuous-valued AIS Ẑt+1 in (AP2) or a
continuous-valued observation Yt in (AP2b), we can immediately use the surrogate
loss (61) as long as the parameterized distribution νξ is such that its mean Mξ is given
in closed form. Note that the surrogate loss (61) only depends on the mean of the
distribution and not one any other moment. So, any two distributions ν and ν ′ that
have the same mean, the surrogate loss between any distribution µ and ν is same as
the surrogate loss between µ and ν ′. Thus, using the surrogate loss (61) for predicting
continuous variables only makes sense when we expect the true distribution to be close
to a deterministic function.

6.2 Learning an AIS for a Fixed Policy

The definition of AIS suggests that there are two ways to construct an information state
from data: we either learn a time-homogeneous AIS-generator (σ̂, r̂, P̂ ) that satisfies (AP1)
and (AP2) or we learn a time-homogeneous AIS-generator (σ̂, r̂, ϕ̂, P̂ y) that satisfies (AP1),
(AP2a), and (AP2b). In either case, there are three types of components of AIS-generators:
(i) regular functions such as r̂ and ϕ̂; (ii) history compression functions {σ̂t}t≥1; and
(iii) stochastic kernels P̂ and P̂ y. To learn these components from data, we must choose
parametric class of functions for all of these. In this section, we do not make any assumption
about how these components are chosen. In particular, r̂ and ϕ̂ could be represented by any
class of function approximators (such as a multi-layer preceptron); σ̂ could be represented by
any class of time-series approximators (such as a RNN or its refinements such as LSTM or
GRU); and P̂ and P̂ y could be represented by any class of stochastic kernel approximators
(such as softmax distribution or mixture of Gaussians). We use ξt to denote the corresponding
parameters.

There are two losses in the definition of an AIS: the reward loss |Rt − r̂(ẑt, at)| and
the prediction loss dF(µt, νt) or dF(µyt , ν

y
t ). We combine these into a single criterion and

minimize the combined loss function

1

T

T∑
t=1

[
λ|Rt − r̂(Ẑt, At)|2 + (1− λ)dF(µt, νt)

2
]
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where T is the length of the episode or the rollout horizon and λ ∈ [0, 1] may be viewed as a
hyper-parameter.

As described in Section 6.1, there are two possibilities to efficiently compute dF(µt, νt)
2:

use total-variation distance or Wasserstein distance as the IPM and use surrogate loss (57);
or use distance-based MMD as the IPM and use the surrogate loss (61).

In particular, to choose an AIS that satisfies (AP1) and (AP2), we either minimize the
surrogate loss

1

T

T∑
t=1

[
λ|Rt − r̂(Ẑt, At)|2 + (1− λ) log(νt(Ẑt+1))

]
(62)

or we minimize the surrogate loss (specialized for p = 2)

1

T

T∑
t=1

[
λ|Rt − r̂(Ẑt, At)|2 + (1− λ)(Mt − 2Ẑt+1)ᵀMt

]
(63)

where Mt is the mean of the distribution νt.
Similarly, in order to choose an AIS that satisfies (AP1), (AP2a) and (AP2b), we

minimize the surrogate loss

1

T

T∑
t=1

[
λ|Rt − r̂(Ẑt, At)|2 + (1− λ) log(νyt (Yt))

]
(64)

or we minimize the surrogate loss (specialized for p = 2)

1

T

T∑
t=1

[
λ|Rt − r̂(Ẑt, At)|2 + (1− λ)(My

t − 2Yt)
ᵀMy

t

]
(65)

where My
t is the mean of the distribution νyt .

We use ξ̄ to denote the parameters of the AIS-generator, i.e., the parameters of (σ̂, P̂ , r̂)
when using (AP1) and (AP2) or the parameters of (σ̂, ϕ̂, P̂ y, r̂) when using (AP1), (AP2a),
(AP2b). We then use L(ξ̄) to the denote the corresponding loss (62), (63), (64), or (65).
Then, we can learn the parameters ξ̄ using stochastic gradient descent:

ξ̄k+1 = ξ̄k − ak∇ξ̄L(ξ̄k), (66)

where the learning rates {ak}k≥0 satisfy the standard conditions
∑
ak =∞ and

∑
a2
k <∞.

6.3 AIS-based PORL

Given the stochastic gradient descent algorithm to learn an AIS-generator for a fixed policy,
we can simultaneously learn a policy and AIS-generator by following a multi time-scale
stochastic gradient descent (Borkar, 1997), where we learn the AIS-generator at a faster
learning rate than the policy.

In particular, let πθ : Ẑ→ ∆(A) be a parameterized stochastic policy with parameters θ.
Let J(ξ̄, θ) denote the performance of policy πθ. From the policy gradient theorem (Sutton
et al., 2000; Baxter and Bartlett, 2001), we know that

∇θJ(ξ̄, θ) = E
[ ∞∑
t=1

( t∑
τ=1

∇θ log πθ(At | Ẑt)
)
γt−1Rt

]
(67)
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which can be estimated from a sampled trajectory with a rollout horizon of T using the
G(PO)MDP gradient (Baxter and Bartlett, 2001)

∇̂θJ(ξ̄, θ) =
T∑
t=1

( t∑
τ=1

∇θ log πθ(At | Ẑt)
)
γt−1Rt. (68)

We can iteratively update the parameters {(ξ̄k, θk)}k≥1 of both the AIS-generator and
policy as follows. We start with an initial choice (ξ̄1, θ1), update both parameters after a
rollout of T as follows

ξ̄k+1 = ξ̄k − ak∇ξ̄L(ξ̄k) and θk+1 = θk + bk∇̂θJ(ξ̄k, θk) (69)

where the learning rates {ak}k≥1 and {bk}k≥1 satisfy the standard conditions on multi time-
scale learning:

∑
k ak = ∞,

∑
k bk = ∞,

∑
k a

2
k < ∞,

∑
k b

2
k < ∞, and limk→∞ bk/ak = 0,

which ensures that AIS-generator learns at a faster rate than the policy.
A similar idea can be used for an actor-critic algorithm. Suppose we have a parameterized

policy πθ : Ẑ → ∆(A) and a parameterized critic Q̂ζ : Ẑ × A → R, where θ denotes the
parameters of the policy and ζ denotes the parameters of the critic. Let J(ξ̄, θ, ζ) denote
the performance of the policy. From the policy gradient theorem (Sutton et al., 2000; Konda
and Tsitsiklis, 2003), we know that

∇θJ(ξ̄, θ, ζ) =
1

1− γ
E
[
∇θ log πθ(At | Ẑt)Qζ(Ẑt, At)

]
(70)

which can be estimated from a sampled trajectory with a rollout horizon of T by

∇̂θJ(ξ̄, θ, ζ) =
1

(1− γ)T

T∑
t=1

∇θ log πθ(At | Ẑt)Q̂ζ(Ẑt, At). (71)

For the critic, we use the temporal difference loss

LTD(ξ̄, θ, ζ) =
1

T

T∑
t=1

smoothL1
(
Q̂ζ(Ẑt, At)−Rt − γQ̂ζ(Ẑt+1, At+1)

)
(72)

where smoothL1 is the smooth L1 distance given by

smoothL1(x) =

{
1
2x

2 if |x| < 1

|x| − 1
2 otherwise.

We can iteratively update the parameters {(ξ̄k, θk, ζk)}k≥1 of the AIS-generator, policy, and
critic as follows. We start with an initial choice (ξ̄1, θ1, ζ1), and update all the parameters
after a rollout of T steps as follows

ξ̄k+1 = ξ̄k−ak∇ξ̄L(ξ̄k), θk+1 = θk+bk∇̂θJ(ξ̄k, θk, ζk) and ζk+1 = ζk−ck∇ζLTD(ξ̄k, θk, ζk)
(73)

where the learning rates {ak}k≥1, {bk}k≥1, {ck}k≥1 satisfy the standard conditions on multi
time-scale learning:

∑
k ak = ∞,

∑
k bk = ∞,

∑
k ck = ∞,

∑
k a

2
k < ∞,

∑
k b

2
k < ∞,
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Algorithm 1 AIS-based PORL algorithm

Input: Initial AIS-Generator: (σ̂, P̂ , r̂)ξ̄0 , Initial Policy: πθ0 , Discount factor: γ,

Reward weight: λ, Number of episodes: K, AIS-LR: aKk=1, Policy-LR: bKk=1.

Output: Learned policy: πθK , Learned AIS-generator: (σ̂, P̂ , r̂)ξ̄K
1: procedure AIS-based PORL
2: for all k ∈ {1, . . . ,K} do
3: Reset environment and perform an episode using πθk−1

, (σ̂, P̂ , r̂)ξ̄k−1
.

4: A1:T , Y1:T , R1:T ← Actions, observations, and rewards for episode k.
5: Compute AIS loss using A1:T , Y1:T , R1:T , λ, (σ̂, P̂ , r̂)ξ̄k−1

using Eq. (64) or (65)
6: Compute policy loss using A1:T , Y1:T , R1:T , γ, πθk−1

, (σ̂)ξ̄k−1
using Eq. (68)

7: Update AIS parameters ξ̄k−1 and policy parameters πθk−1
using Eq. (69)

∑
k c

2
k < ∞, limk→∞ ck/ak = 0, and limk→∞ bk/ck = 0, which ensures that AIS-generator

learns at a faster rate than the critic, and the critic learns at a faster rate than the policy.
The complete algorithm is shown in Algorithm 1.

Under standard technical conditions (see Theorem 23 of Borkar (1997) or Page 35 of
Leslie (2004)), we can show that iterations (69) and (73) will converge to a stationary point
of the corresponding ODE limits. At convergence, depending on ε and δ for the quality of
AIS approximation, we can obtain approximation guarantees corresponding to Theorem 27.
For a more detailed discussion on convergence, please refer to Appendix E.

We conclude this discussion by mentioning that algorithms similar to the AIS-based PORL
have been proposed in the literature including Bakker (2002); Wierstra et al. (2007, 2010);
Hausknecht and Stone (2015); Heess et al. (2015); Zhu et al. (2017); Ha and Schmidhuber
(2018); Baisero and Amato (2018); Igl et al. (2018); Zhang et al. (2019). However, these
papers only discuss the empirical performance of the proposed algorithms but do not derive
performance bounds.

7. Experiments

We perform numerical experiments to check the effectiveness of AIS-based PORL algorithms
proposed in the previous section. The code for all AIS experiments is available in Subramanian
et al. (2020). We consider three classes of POMDP environments, which have increasing
difficulty in terms of the dimension of their state and observation spaces:

1. Low-dimensional environments (Tiger, Voicemail, and Cheese Maze)

2. Moderate-dimensional environments (Rock Sampling and Drone Surveillance)

3. High-dimensional environments (different variations of MiniGrid)

For each environment, we use the actor only framework and learn an AIS based on (AP1),
(AP2a), and (AP2b). There are four components of the corresponding AIS-generator: the
history compression function σ̂, the AIS update function ϕ̂, the reward prediction function r̂,
and the observation prediction kernel P̂ y. We model the σ̂ as an LSTM, where the memory
update unit of LSTM acts as ϕ̂. We model r̂, P̂ y, and the policy π̂ as feed-forward neural
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Figure 4: Network architecture for PORL using AIS.

networks. A block diagram of the network architecture is shown in Fig. 4 and the details of
the networks and the hyperparameters are presented in Appendix F. To avoid over-fitting,
we use the same network architecture and hyperparameters for all environments in the same
difficulty class.

We repeat each experiment for multiple random seeds and plot the median value along
with the uncertainty band from the first to the third quartile. For all environments, we
compare our performance with a baseline which uses an actor-critic algorithm where both
the actor and critic are modeled using LSTM and the policy parameters are updated
using PPO. This architecture was proposed as a baseline for the Minigrid environments in
Chevalier-Boisvert et al. (2018a). The details of the baseline architecture are presented in
Appendix F.

To evaluate the performance of the policy while training for AIS-based PORL, a separate
set of rollouts is carried out at fixed intervals of time steps and the mean of these rollouts
is considered. For the PPO baseline a number of parallel actors are used during training,
and once the episodes are completed, their returns are stored in a list. A fixed number
(based on the number of parallel actors) of past episodes are considered to evaluate the mean
performance of the current policy during training. See Appendix F for details.

For the low and moderate dimensional environments, we compare the performance
with the best performing planning solution obtained from the JuliaPOMDP repository
(Egorov et al., 2017). For the high-dimensional environments, finding a planning solution is
intractable, so we only compare with the PPO baseline mentioned previously.

7.1 Low-dimensional Environments

In these POMDP environments, the size of the unobserved state space is less than about 10
and the planning solution can be easily obtained using standard POMDP solvers.

1. Tiger: The Tiger environment is a sequential hypothesis testing task proposed in
Kaelbling et al. (1998). The environment consists of two doors, with a tiger behind
one door and a treasure behind the other. The agent can either perform a listen
action, which has a small negative reward of −1 and gives a noisy observation about
the location of the tiger, or the agent can open one of the doors. Opening the door
with the treasure gives a reward of +10 while opening the door with a tiger gives a
large negative reward of −100. After opening a door, the environment is reset.
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(a) Tiger (b) Voicemail

(c) Cheese Maze

Figure 5: Comparison of AIS-based actor only PORL algorithm with LSTM+PPO baseline
for low-dimensional environments (for 10 random seeds).

2. Voicemail: The Voicemail enviroment is also a sequential hypothesis testing task
propsed in Williams and Young (2007). This environment models a dialog system for
managing voicemails. The agent can either perform an ask action, wich has a small
negative reward of −1 and gives a noisy observation about the intent of the user, or the
agent can execute save or delete. Choosing a save/delete action which matches
the intent of the user gives a reward of +5. The agent receives a negative reward of
−20 for action delete when the user intent is save, while choosing action save when
the user intent is delete gives a smaller but still significant negative reward of −10.
Since the user prefers save more than delete, the initial belief is given by [0.65, 0.35]
for save and delete respectively. After taking a save/delete action, the agent
moves on to the next voicemail message.

3. 1 2 3 2 4

5 5 5

6 7 6

CheeseMaze: The CheeseMaze environment is a POMDP
with masked states proposed in McCallum (1993). The envi-
ronment consists of 11 states and 7 observations as shown on
the right. The objective is to reach the goal state, which is
indicated by observation 7. The agent only receives a reward
of +1, when the goal state is reached.

For all three environments, we compare the performance of AIS-based PORL with the
LSTM+PPO baseline, described earlier. We also compare with the best performing planning
solution from the JuliaPOMDP repository (Egorov et al., 2017). The results are presented in
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Fig. 5, which shows both AIS-based PORL and LSTM+PPO converge close to the planning
solutions relatively quickly.3

7.2 Moderate-dimensional Environments

(a) Rock Sampling (b) Drone Surveillance

Figure 6: Comparison of AIS-based actor only PORL algorithm with LSTM+PPO baseline
for moderate-dimensional environments (for 10 random seeds).

In these environments, the size of the unobserved state is moderately large (of the order
of 102 to 103 unobserved states) and the optimal planning solution cannot be easily obtained
using standard POMDP solvers. However, an approximate planning solution can be easily
obtained using standard approximation algorithms for POMDPs.

1. RockSample: RockSample is a scalable POMDP environ-
ment introduced in Smith and Simmons (2004) which models
the rover science exploration. The RockSample(n, k) envi-
ronment consists of a n × n grid with k rocks. The rocks
are at known positions. Some of the rocks which are labeled
as good rocks have scientific values; other rocks which are
labeled as bad rocks do not. Sampling a rock is expensive
and the agent has a noisy long-range sensor to help determine
if a rock is good before choosing to approach and sample it.
At each stage, the agent can choose from k + 5 actions: north, south, east, west,
sample, check1, . . . , checkk. The first four are deterministic single-step motion
actions. The sample action samples the rock at the current location; if the rock is
good, there is a reward of +20 and the rock becomes bad (so that no further reward
can be gained from sampling it); if the rock is bad, there is a negative reward of −10.
The right edge of the map is a terminal state and reaching it gives a reward of +10.
In our experiments, we use a RockSample(5, 3) environment.

3. The performance of all learning algorithms for CheeseMaze are better than the best planning solution.
We solved the CheeseMaze model with other solvers available in the JuliaPOMDP repository (Egorov
et al., 2017), and all these solution performed worse than the solution obtained by incremental pruning
presented here.
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2. DroneSurveillance: DroneSurveillance is a POMDP
model of deploying an autonomous aerial vehicle in a par-
tially observed, dynamic, indoor environment introduced in
Svoreňová et al. (2015). The environment is a 5 × 5 grid
with two agents: a ground agent which moves randomly and
an aerial agent, whose motion has to be controlled. The
aerial agent starts at the bottom-left cell and has to reach the
upper-right cell (the goal state) without being in the same
location as the ground agent. The ground agent cannot enter
the start or goal states. The aerial agent has a downward facing camera which can
view a 3× 3 grid centered at its current location and it can perfectly see the location
of the ground agent if it is in this view. At each stage, the aerial agent may choose
from 5 actions: north, south, east, west, hover. The first four are deterministic
single-step motion actions and the hover action keeps the aerial vehicle at its current
position. Reaching the goal gives a reward of +1 and ends the episode. If both agents
are in the same cell, there is a negative reward of −1 and the episode ends.

The visualizations above are taken from the JuliaPOMDP environments (Egorov et al.,
2017). For both environments, we compare the performance of AIS-based PORL with the
LSTM+PPO baseline described earlier. We also compare with the best performing planning
solution from the JuliaPOMDP repository (Egorov et al., 2017). The results are shown
in Fig. 6 which shows that both AIS-based PORL algorithms converge close to the best
planning solution in both environments. The performance of LSTM+PPO is similar in
DroneSurveillance but LSTM+PPO gets stuck in a local minima in RockSample.

7.3 High-dimensional Environments

We use the MiniGrid environments from the BabyAI platform (Chevalier-Boisvert et al.,
2018b), which are partially observable 2D grid environments which has tasks of increasing
complexity level. The environment has multiple entities (agent, walls, lava, boxes, doors,
and keys); objects can be picked up, dropped, and moved around by the agent; doors can be
unlocked via keys of the same color (which might be hidden inside boxes). The agents can
see a 7× 7 view in front of it but it cannot see past walls and closed doors. At each time,
it can choose from the following actions: {Move Forward, Turn Left, Turn Right,
Open Door/Box, Pick up item, Drop Item, Done}. The agent can only hold one item
at a time. The objective is to reach a goal state in the quickest amount of time (which is
captured by assigning to the goal state a reward which decays over time).

Most of the environments have a certain theme, and we cluster the environments
accordingly. The visualizations below are taken from the Gym Minigrid environments
(Chevalier-Boisvert et al., 2018b).
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1. Simple Crossing: A simple crossing environment is a 2D grid
with columns of walls with an opening (or a crossing). The agent
can traverse the wall only through the openings and needs to
find a path from the start to the goal state. There are four
such environments (MGSCS9N1, MGSCS9N2, MGSCS9N3, and
MGSCS11N5) where the label SnNm means that the size of the
environment is n× n and there are m columns of walls.

2. Lava Crossing: The lava crossing environments are similar to the
simple crossing environments, but the walls are replaced by lava.
If the agent steps on to the lava block then it dies and the episode
ends. Therefore, exploration is more difficult in lava crossing as
compared to simple crossing. There are two such environments
(MGLCS9N1 and MGLCS9N2) where the label SnNm has the
same interpretation as simple crossing.

3. Key Corridor: The key corridor environments consist of a
central corridor which has rooms on the left and right sides which
can be accessed through doors. When the door is locked it can
be opened using a key of the same color. The agent has to move
to the location of the key, pick it up, move to the location of
the correct door, open the door, drop the key, and pick up the
colored ball. There are three such environments (MGKCS3R1,
MGKCS3R2, and MGKCS3R3), where the label SnRm means that the size of the grid
is proportional to n and the number of rooms present is 2m.

4. Obstructed Maze: The obstructed maze environments
are similar to key corridor environments but the key is
inside a box and the box has to be opened to find the
key. We consider two such environments (MGOM1Dl and
MGOM1Dlh). In MGOM1Dl box is already open while
in MGOM1Dlh the box is closed. There is an additional
such environment in the BabyAI platform (MGOM1Dlhb), which is more suitable for
continual learning algorithms so we exclude it here.

The number of observations in a given Minigrid environment is discrete but is too large
to model it as a one-hot encoded discrete observation as done in the previous environments.
Instead we compress the observations as described in Section 3.7 by using an autoencoder
to convert a large discrete space to a continuous space with a tractable size. A separate
autoencoder is trained for each environment using a dataset that is created by performing
random rollouts. Once the autoencoder is trained over the fixed dataset for several epochs,
it is fixed and used to generate the observations for learning the AIS. This is very similar
to Ha and Schmidhuber (2018), where they learn the autoencoder in a similar fashion and
then fix it, following which their training procedure for the next observation distribution
prediction and policy takes place.

Note that the output of the autoencoder is a continuous variable and we are using
MMD with p = 2 as an IPM. As explained in Section 6.1, dF2(µ, ν)2 only depends on the
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(a) MGSCS9N1 (b) MGSCS9N2

(c) MGSCS9N3 (d) MGSCS11N5

(e) MGLCS9N1 (f) MGLCS9N2

(g) MGKCS3R1 (h) MGKCS3R2

Figure 7: Comparison of AIS-based actor only PORL algorithm with LSTM+PPO baseline
for high-dimensional environments (for 5 random seeds).
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(i) MGKCS3R3 (j) MGOM1Dl

(k) MGOM1Dlh

Figure 7 (continued): Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for high-dimensional environments (for 5 random seeds).

mean of µ and ν. So, to simplify the computations, we assume that ν is a Dirac delta
distribution centered at its mean. Thus, effectively, we are predicting the mean of the next
observation. In general, simply predicting the mean of the observations may not lead to
a good representation, but in the Minigrid environments, the transitions are deterministic
and the only source of stochasticity in the observations is due to the initial configuration
of the environment. So, in practice, simply predicting the mean of the next observation
works reasonably well. We emphasize that for other more general environments with truly
stochastic observations, such a choice of IPM may not work well and it may be better to
choose the MMD dFp defined in Proposition 34 for a different value of p, say p = 1 (which
corresponds to the energy distance (Székely and Rizzo, 2004)).

For all minigrid environments, we compare the performance of AIS-based PORL with
the LSTM+PPO baseline proposed in Chevalier-Boisvert et al. (2018a). The results are
shown in Fig. 7 which shows that for most environments AIS-based PORL converges to
better performance values. Note that AIS-based PORL fails to learn in the Lava Crossing
environments (MGLCS9N1 and MGLCS9N2) while LSTM+PPO fails to learn in the larger
Key Crossing environments (MGKCS3R2 and MGKCS3R3) and in the Obstructed
Maze environments (MGOM1Dl and MGOM1Dlh).

The results indicate that one IPM does not necessarily lead to better performance than
others in all cases. The performance of a particular IPM depends on whether the observation
and AIS spaces are discrete or continuous, on the size of these spaces, and the stochasticity
of the environment. The fact that we are approximating the policy using non-linear neural
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networks makes it difficult to quantify the impact of the choice of IPM on the accuracy
of learning. It will be important to understand this impact in more detail and develop
guidelines on how to choose an IPM based on the features of the environment.

8. Conclusion

In this paper, we present a theoretical framework for approximate planning and learning in
partially observed system. Our framework is based on the fundamental notion of information
state. We provide two definitions of information state. An information state is a function
of history which is sufficient to compute the expected reward and predict its next value.
Alternatively, an information state is a function of the history which can be recursively
updated and is sufficient to compute the expected reward and predict the next observation.
We show that an information state always leads to a dynamic programming decomposition
and provide several examples of simplified dynamic programming decompositions proposed
in the literature which may be viewed as specific instances of information states.

We then relax the definition of an information state to describe an approximate informa-
tion state (AIS), which is a function of the history that approximately satisfies the properties
of the information state. We show that an AIS can be used to identify an approximately
optimal policy with the approximation error specified in terms of the “one-step” approx-
imation errors in the definition of the AIS. We present generalizations of AIS to setups
with observation and action compression as well as to multi-agent systems. We show that
various approximation approaches for both fully and partially observed setups proposed in
the literature may be viewed as special cases of AIS.

One of the salient features of the AIS is that it is defined in terms of properties that can
be estimated from data, and hence the corresponding AIS generators can be learnt from
data. These can then be used as history representations in partially observed reinforcement
learning (PORL) algorithms. We build up on this idea to present policy gradient algorithms
which learn an AIS representation and an optimal policy and/or action-value function using
multi time-scale stochastic gradient descent.

We present detailed numerical experiments which compare the performance of AIS-based
PORL algorithms with a state-of-the-art PORL algorithm for three classes of partially
observed problems—small, medium and large scale problems—and find out that AIS-based
PORL outperforms the state-of-the-art baseline in most cases.

We conclude by observing that in this paper we restricted attention to the simplest classes
of algorithms but the same idea can be extended to develop AIS-based PORL algorithms
which uses value-based approaches such as Q-learning and its improved variants such as
DQN, DDQN, distributional RL, etc. Finally, we note that the AIS representation includes
a model of the system, so it can be used as a component of model-based reinforcement
learning algorithms such as Dyna (Sutton and Barto, 2018, Sec 8.2, page 161). Such an
approach will provide anytime guarantees on the approximation error which will depend on
the “one-step” approximation error of the current AIS-representation. Therefore, we believe
that AIS presents a systematic framework to reason about learning in partially observed
environments.
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Appendix A. Comparison with the Results of Abel et al. (2016) for State
Aggregation in MDPs

Abel et al. (2016) introduce four models of state aggregation and derive approximation
bounds for all four. In this section, we show that one of these models, which they call
approximate model similarity may be viewed as an AIS. We also show that the approximation
bounds of Theorem 27 for this model are stronger than those derived in Abel et al. (2016)
by a factor of O(1/(1− γ)).

Since we follow a slightly different notation than Abel et al. (2016) and for the sake of
completeness, we start by describing the notion of approximate model similarity defined in
Abel et al. (2016).

Consider an infinite horizon finite-state finite-action MDP with state space S, action space
A, transition probability matrix P : S× A→ ∆(S), per-step reward function r : S× A→ R,
and discount factor γ.

Let Ŝ be an aggregated state space and it is assumed that the following two functions
are available: a compression function q : S → Ŝ and a weight function w : S → [0, 1] such
that for all ŝ ∈ Ŝ,

∑
s∈q−1(ŝ)w(s) = 1. Given these functions, define an aggregated MDP

with state space Ŝ, action space A, transition probability function P̂ : Ŝ× A→ Ŝ given by

P̂ (ŝ′|ŝ, a) =
∑

s∈q−1(ŝ)

∑
s′∈q−1(ŝ′)

P (s′|s, a)w(s), ∀ŝ, ŝ′ ∈ Ŝ, a ∈ A,

and a per-step reward r̂ : Ŝ× A→ R given by

r̂(ŝ, a) =
∑

s∈q−1(ŝ)

r(s, a)w(s), ∀ŝ ∈ Ŝ, a ∈ A.

Definition 36 (ε-approximate model similarity (Abel et al., 2016)) The aggregated
MDP is said to be ε-approximate model similar to the original MDP if it satisfies the following
two properties:

1. For all ŝ ∈ Ŝ, s1, s2 ∈ q−1(ŝ), and a ∈ A, we have∣∣r(s1, a)− r(s2, a)
∣∣ ≤ ε.
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2. For all ŝ, ŝ′ ∈ Ŝ, s1, s2 ∈ q−1(ŝ), and a ∈ A, we have∣∣∣∣ ∑
s′∈q−1(ŝ′)

P (s′|s1, a)−
∑

s′∈q−1(ŝ′)

P (s′|s2, a)

∣∣∣∣ ≤ ε.
Proposition 37 (Lemma 2 of Abel et al. (2016)) Let π̂ : Ŝ→ A be the (deterministic)
optimal policy for the aggregated MDP. Define π : S→ A by π = π̂ ◦ q. Let V : S→ R denote
the optimal value function and let V π : S→ R denote the value function for policy π. Then,
for all s ∈ S ∣∣V (s)− V π(s)

∣∣ ≤ 2ε

(1− γ)2
+

2γε|S|‖r‖∞
(1− γ)3

.

Note that the result is presented slightly differently in Abel et al. (2016). They assume that
‖r‖∞ = 1 and simplify the above expression.

We now show an approximate model similarity is also an AIS and directly using the
result of Theorem 27 for this model gives a stronger bound than Proposition 37.

Proposition 38 Let (q, w) be such that the aggregated model is ε-approximate model similar
to the true model. Then, (q, P̂ , r̂) is an (ε, ε|Ŝ|)-AIS with respect to the total variation
distance.

Proof We first establish (AP1). For any s ∈ S and a ∈ A,

∣∣r(s, a)− r̂(q(s), a)
∣∣ (a)

≤
∣∣∣∣ ∑
s̃∈q−1(q(s))

w(s̃)r(s, a)−
∑

s̃∈q−1(q(s))

w(s̃)r(s̃, a)

∣∣∣∣
(b)

≤
∑

s̃∈q−1(q(s))

w(s̃)
∣∣r(s, a)− r(s̃, a)

∣∣
(c)

≤ ε

where (a) follows from the basic property of the weight function w and the definition of
the aggregated reward r̂; (b) follows form the triangle inequality; and (c) follows from the
definition of approximate model similarity and the basic property of the weight function w.
This establishes property (AP1).

Now, we establish (AP2). Let dF denote the total variation distance. Define probability
measures µ, ν on ∆(Ŝ) in the definition of (AP2), i.e., for any s ∈ S, ŝ′ ∈ Ŝ, and a ∈ A,

µ(ŝ′) :=
∑

s′∈q−1(ŝ′)

P (s′|s, a)

ν(ŝ′) := P̂ (ŝ′|q(s), a) =
∑

s̃∈q−1(q(s))

∑
s′∈q−1(ŝ′)

P (s′|s̃, a)w(s̃)
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Now consider (see footnote 1 on page 13)

dF(µ, ν) =
∑
ŝ′∈Ŝ

|µ(ŝ′)− ν(ŝ′)|

=
∑
ŝ′∈Ŝ

∣∣∣∣ ∑
s′∈q−1(ŝ′)

P (s′|s, a)−
∑

s̃∈q−1(q(s))

∑
s′∈q−1(ŝ′)

P (s′|s̃, a)w(s̃)

∣∣∣∣
(a)

≤
∑
ŝ′∈Ŝ

∑
s̃∈q−1(q(s))

w(s̃)

∣∣∣∣ ∑
s′∈q−1(ŝ′)

P (s′|s, a)−
∑

s′∈q−1(ŝ′)

P (s′|s̃, a)

∣∣∣∣
(b)

≤
∑
ŝ′∈Ŝ

∑
s̃∈q−1(q(s))

w(s̃)ε
(c)
=
∑
ŝ′∈Ŝ

ε = |Ŝ|ε,

where (a) follows from triangle inequality, (b) follows from definition of approximate model
similarity and (c) follows from the basic property of the weight function. This proves (AP2).

Lemma 39 For any MDP

span(V ) ≤ span(r)

1− γ
.

Therefore, when dF is the total variation distance, ρF(V ) ≤ 1
2 span(r)/(1− γ).

Proof This result follows immediately by observing that the per-step cost r(St, At) ∈
[min(r),max(r)]. Therefore, max(V ) ≤ max(r)/(1− γ) and min(V ) ≥ min(r)/(1− γ).

Proposition 40 Let π̂, π, V , and V π be defined as in Proposition 38. Then, for all s ∈ S,

∣∣V (s)− V π(s)
∣∣ ≤ 2ε

(1− γ)
+
γε|Ŝ| span(r)

(1− γ)2
.

Proof This follows immediately from Theorem 27, Proposition 38 and Lemma 39.

Note that the error bounds of Propositions 38 and 40 have similar structure but the
key difference is that the bound of Proposition 40 is tighter than a factor of 1/(1− γ) as
compared to Proposition 38. There are other minor improvements as well (|Ŝ| instead of |S|
and 1

2 span(r) instead of ‖r‖∞).

Appendix B. Comparison with the Results of Gelada et al. (2019) for
Latent Space Models for MDPs

Gelada et al. (2019) propose a latent space model for an MDP and show that minimizing the
losses in predicting the per-step reward and repredicting the distribution over next latent
space provides a bound on the quality of the representation. In this section, we show that
latent space representation defined in Gelada et al. (2019) may be viewed as an instance of
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an AIS and show that the approximation bounds of Theorem 27 are similar to those derived
in Gelada et al. (2019).

Since we follow a slightly different notation than Gelada et al. (2019) and for the sake
of completeness, we start by describing the notion of latent space representation used in
Gelada et al. (2019).

Consider an MDP with infinite horizon, finite-state and finite-action having state space
S, action space A, transition probability matrix P : S× A→ ∆(S), per-step reward function
r : S× A→ R and discount factor γ.

Let (Ŝ, d) be a Banach space and it is assumed that we are given an embedding function
φ : S→ Ŝ, along with transition dynamics P̂ : Ŝ×A→ ∆(Ŝ) and reward function r̂ : Ŝ×A→ R.

The MDP M̂ = (Ŝ,A, P̂ , r̂, γ) along with the embedding function φ is called the latent space
model of the original MDP.

Definition 41 The MDP M̂ is said to be (Lr, Lp)-Lipschitz if for any ŝ1, ŝ2 ∈ Ŝ and a ∈ A,∣∣r̂(ŝ1, a)− r̂(ŝ2, a)
∣∣ ≤ Lrd(ŝ1, ŝ2) and dF(P̂ (·|ŝ1, a), P̂ (·|ŝ2, a)) ≤ Lpd(ŝ1, ŝ2),

where dF denotes the Kantorovich distance.

Given a latent space embedding, define

ε = sup
s∈S,a∈A

∣∣r(s, a)− r̂(φ(s), a)
∣∣ and δ = sup

s∈S,a∈A
dF(µ, P̂ (·|φ(s), a)),

where µ ∈ ∆(Ŝ) given by µ(B) = P (φ−1(B)|s, a) for any Borel subset B of Ŝ.

Proposition 42 (Theorem 5 of Gelada et al. (2019)) Let π̂ : Ŝ→ A be the (determin-
istic) optimal policy of the latent space MDP. Define π : S→ A by π = π̂ ◦ φ. Let V : S→ R
denote the optimal value function and let V π : S→ R denote the value function for policy π.

If the latent space MDP M̂ is (Lr, Lp)-Lipschitz, then,∣∣V (s)− V π(s)
∣∣ ≤ 2ε

1− γ
+

2γδLr
(1− γ)(1− γLp)

.

We show that a latent space model is an AIS and directly using the result of Theorem 27
gives the same approximation bound.

Proposition 43 Let M̂ = (Ŝ,A, P̂ , r̂, γ) be a latent space model with embedding function φ.
Then, (φ, P̂ , r̂) is an (ε, δ)-AIS with respect to the Kantorovich distance.

Proof The result is an immediate consequence of the definition of ε and δ for latent space
model.

Lemma 44 For any (Lr, Lp)-Lipschitz MDP, if γLp < 1, then

‖V ‖Lip ≤
Lr

1− γLp
.

Therefore, when dF is the Kantorovich distance, ρF(V ) = ‖V ‖Lip ≤ Lr/(1− γLp).
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Proof This result follows immediately from Theorem 4.2 of Hinderer (2005).

Proposition 45 Let π̂, π, V , and V π be defined in Proposition 42. The, for all s ∈ S,∣∣V (s)− V π(s)
∣∣ ≤ 2ε

1− γ
+

2γδLr
(1− γ)(1− γLp)

.

Proof This follows immediately from Theorem 27, Proposition 42, and Lemma 44.

Note that the error bounds in Propositions 42 and 45 are exactly the same.

Appendix C. Comparison with the Results of Francois-Lavet et al. (2019)
for Belief Approximation in POMDPs

Francois-Lavet et al. (2019) analyze the trade off between asymptotic bias and overfitting
in reinforcement learning with partial observations. As part of their analysis, they express
the quality of state representation in terms of the bounds on the L1 error of the associated
belief states. We show that these approximation bounds may be viewed as an instance of
AIS-based bounds of Theorems 9 and 27. We also show that the bounds of Theorem 27 for
this model are stronger than those derived in Francois-Lavet et al. (2019) by a factor of
O(1/(1− γ)).

Since we follow a slightly different notation than Francois-Lavet et al. (2019) and for the
sake of completeness, we start by describing the notion of ε-sufficient statistics defined in
Francois-Lavet et al. (2019).

Consider an infinite-horizon finite-state finite-action POMDP with state space S, action
space A, observation space Y, transition probability matrix P : S× A→ ∆(S), observation
matrix P y : S→ ∆(Y), per-step reward r : S× A→ R, and discount factor γ.

Definition 46 (ε-sufficient statistic (Francois-Lavet et al., 2019)) Given a family of
Banach spaces {Φt}Lt=1, an ε-sufficient statistic is a collection of history compression function
{φt : Ht → Φt}Tt=1 and belief approximation functions {b̂t : Φt → ∆(S)}Tt=1 such that for any
time t and any realization ht of Ht, we have

‖b̂t(·|φt(ht))− bt(·|ht)‖1 ≤ ε.

Given an ε-sufficient statistic, Francois-Lavet et al. (2019) define an MDP with state
space ∆(S), action space A, transition probability kernel P(b̂t+1(·|φ(ht+1)) | b̂t(·|φ(ht)), at)
computed from the underlying POMDP, and per-step reward given by

r̂(b̂t(ht), at) =
∑
s∈S

r(s, at)b̂t(s|φ(ht)).

Proposition 47 (Theorem 1 of Francois-Lavet et al. (2019)) Let {(b̂t, φt)}Tt=1 be an
ε-sufficient statistic and π̂ = (π̂1, π̂2, . . . ) be an optimal policy for the MDP described above.
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Define a policy π = (π1, π2, . . . ) given by πt = π̂t ◦ φt. Let Vt : Ht → R denote the optimal
value functions and V̂ π

t : Ht → R denote the value function for policy π. Then for any initial
history h1 ∈ H1, ∣∣V1(h1)− V π

1 (h1)
∣∣ ≤ 2ε‖r‖∞

(1− γ)3
.

We now show that an ε-sufficient statistic gives rise to an AIS and directly using the
results of Theorem 27 for this model gives a stronger bound than Proposition 47.

Proposition 48 Let {(b̂t, φt)}Tt=1 be an ε-sufficient statistic. Let Ẑt = ∆(S) and define the
different components of an AIS as follows:
• history compression functions σ̂t = b̂t ◦ φt,
• AIS prediction kernels P̂t(·|ẑt, at) is given by

P̂t(B|ẑt, at) =
∑

yt+1∈Y
ψ(yt+1|ẑt, at)1B{ϕ̂(ẑt, yt+1, at)},

where
ψ(yt+1|ẑt, at) =

∑
st+1∈S

∑
st∈S

P y(yt+1|st+1)P (st+1|st, at)ẑt(st)

and

ϕ̂(ẑt, yt+1, at)(st+1) =

∑
st∈S P

y(yt+1|st+1)P (st+1|st, at)ẑt(st)
ψ(yt+1|ẑt, at)

,

where ϕ̂ is the same as the Bayes’-rule based update of the belief state,
• reward approximation functions r̂(ẑt, at) =

∑
s∈S ẑt(s)r(s, at).

Then, {(σ̂t, P̂t, r̂t)}Tt=1 is an (ε‖r‖∞, 3ε)-AIS with respect to the bounded-Lipschitz metric.

Proof We need to equip Ẑ = ∆(S) with a metric in order to define a bounded-Lipschitz
metric over ∆(Ẑ). We use the total variation as the metric and denote it by dTV. We use F to
denote {f : ∆(Ẑ)→ R : ‖f‖∞+‖f‖Lip ≤ 1} and denote the corresponding bounded-Lipschitz

metric over ∆(Ẑ) by dF.
We first establish (AP1). For any time t, realization ht of history Ht, and action at ∈ A,

we have ∣∣E[r(St, at) | Ht = ht, At = at]− r̂t(σ̂t(ht), at)
∣∣

=

∣∣∣∣∑
s∈S

r(s, at)bt(s|ht)−
∑
s∈S

r(s, at)b̂t(s|φ(ht))

∣∣∣∣
(a)

≤ ‖r‖∞dTV(bt, b̂t)

(b)

≤ ε‖r‖∞

where (a) follows from (10) and the fact that for total variation distance ρTV(r) ≤ ‖r‖∞;
and (b) follows from definition of ε-sufficient statistic.

Before establishing (AP2), we note that ϕ̂ is the Bayes’-rule based update of the true
belief; therefore,

bt+1(·|ht+1) = ϕ̂(bt(·|ht), yt+1, at).
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For ease of notation, we use bt(·) and b̂t(·) instead of bt(·|ht) and b̂t(·|φt(ht)), when the
conditioning is clear from context.

Now consider µt and νt as defined in the definition of (AP2). In particular, for any Borel
set B,

µt(B) =
∑

yt+1∈Y
ψ(yt+1|bt, at)1B{b̂t+1(·|φ(ht, yt+1, at))}

νt(B) = P̂t(B|ẑt, at).

We also define an additional measure ξt given by

ξt(B) =
∑

yt+1∈Y
ψ(yt+1|bt, at)1B{ϕ̂(bt, yt+1, at)},

Now, by the triangle inequality

dF(µt, νt) ≤ dF(µt, ξt) + dF(ξt, νt). (74)

Now consider the first term of (74):

dF(µt, ξt) = sup
f∈F

∣∣∣∣∫
Ẑ
fdµt −

∫
Ẑ
fdξt

∣∣∣∣
= sup

f∈F

∣∣∣∣ ∑
yt+1∈Y

f(b̂t+1(·|φ(ht, yt+1, at)))ψ(yt+1|bt, at)

−
∑

yt+1∈Y
f(bt+1(·|ht, yt+1, at))ψ(yt+1|bt, at)

∣∣∣∣
(a)

≤
∑

yt+1∈Y
dTV(b̂t+1(·|φ(ht+1)), bt+1(·|ht+1))ψ(yt+1|ht, at)

(b)

≤ ε (75)

where (a) follows from triangle inequality and the fact that slope of f is bounded by 1;
and (b) follows from the definition of ε-sufficient statistic (see footnote 1 on page 13). Now
consider the second term of (74) (for ease of notation, we use bt(·) instead of bt(·|ht)):

dF(ξt, νt) = sup
f∈F

∣∣∣∣∫
Ẑ
fdξt −

∫
Ẑ
fdνt

∣∣∣∣
= sup

f∈F

∣∣∣∣ ∑
yt+1∈Y

f(ϕ̂(bt, yt+1, at))ψ(yt+1|bt, at)−
∑

yt+1∈Y
f(ϕ̂(ẑt, yt+1, at))ψ(yt+1|ẑt, at)

∣∣∣∣
(c)

≤ sup
f∈F

∣∣∣∣ ∑
yt+1∈Y

f(ϕ̂(bt, yt+1, at))ψ(yt+1|bt, at)−
∑

yt+1∈Y
f(ϕ̂(ẑt, yt+1, at))ψ(yt+1|bt, at)

∣∣∣∣
+ sup

f∈F

∣∣∣∣ ∑
yt+1∈Y

f(ϕ̂(ẑt, yt+1, at))ψ(yt+1|bt, at)−
∑

yt+1∈Y
f(ϕ̂(ẑt, yt+1, at))ψ(yt+1|ẑt, at)

∣∣∣∣
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(d)

≤
∑

yt+1∈Y
dTV(ϕ̂(bt, yt+1, at), ϕ̂(ẑt, yt+1, at))ψ(yt+1|bt, at)

+ κF,TV(ϕ̂(ẑt, ·, at)) dTV(ψ(·|bt, at), ψ(·|ẑt, at)), (76)

where (c) follows from the triangle inequality; the first step of (d) follows from an argument
similar to step (a) of (75); and the second part of (d) follows from (13).

Now, we obtain bounds for both terms of (76). For yt+1 ∈ Y, define

ξyt (yt+1) := ψ(yt+1|bt, at) =
∑

st+1∈S

∑
st∈S

P y(yt+1|st+1)P (st+1|st, at)bt(st|ht),

νyt (yt+1) := ψ(yt+1|ẑt, at) =
∑

st+1∈S

∑
st∈S

P y(yt+1|st+1)P (st+1|st, at)ẑt(st),

Total variation is also an f -divergence4 therefore, it satisfies the strong data processing
inequality.5 Note that the definition of both ξyt and νyt may be viewed as outputs of a
“channel” from st to yt+1. In case of ξyt , the channel input is distributed according to bt(·|ht)
and in case of νyt , the channel input is distributed according to ẑt. Therefore, from the data
processing inequality,

dTV(ξyt , ν
y
t ) ≤ dTV(bt(·|ht), ẑt) ≤ ε (77)

where the last inequality follows from the definition of ε-sufficient statistic.

A similar argument can be used to bound dTV(ϕ̂(bt, yt+1, at), ϕ̂(ẑt, yt+1, at)). In particular,
we can think of ϕ̂(·, yt+1, at) as a channel from st to st+1. Then, by the data processing
inequality,

dTV(ϕ̂(bt, yt+1, at), ϕ̂(ẑt, yt+1, at)) ≤ dTV(bt, ẑt) ≤ ε (78)

where the last inequality follows from the definition of ε-sufficient statistic.

The final part of (76) that needs to be characterized is κF,TV(ϕ̂(ẑt, ·, at)). From (12)

κF,TV(ϕ̂(ẑt, ·, at)) = sup
f∈F

ρTV(f ◦ ϕ̂(ẑt, ·, at)) ≤ sup
f∈F
‖f ◦ ϕ̂(ẑt, ·, at)‖∞ ≤ 1.

Substituting this bound along with (77) and (78) in (76), we get dF(ξt, νt) ≤ 2ε. Substituting
this along with (75) in (74), we get that dF(µt, νt) ≤ 3ε. Hence (AP2) is satisfied.

4. Let f : R≥0 → R be a convex function such that f(1) = 0. Then the f -divergence between two measures
µ and ν defined on a measurable space X is given by

Df (µ‖ν) =

∫
X

f
(dµ
dν

)
dν.

Total variation is a f -divergence with f(x) = |x− 1| (also see footnote 1 on page 1). Sriperumbudur et al.
(2009) showed that total variation is the only non-trivial IPM which is also an f -divergence.

5. Let X and Y be measurable spaces, µ and ν be measures on X and P : X→ ∆(Y) be a stochastic kernel
from X to Y. We use µP to denote the measure µY on Y given by µY(dy) =

∫
X
P (dy|x)µ(dx). Similar

interpretation holds for νP . Then, the strong data processing inequality (Sason, 2019) states that for any
f -divergence, Df (µP‖νP ) ≤ Df (µ‖ν).
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Lemma 49 For any POMDP,

ρF(V ) = ‖V ‖∞ + ‖V ‖Lip ≤
2‖r‖∞
1− γ

.

Proof The result follows immediately from the sup norm on the value function (Lemma 39
and the bounds on the Lipschitz constant of the value function (Lemma 1 of Lee et al.
(2008)).

Proposition 50 Let π̂, π, V , and V π be as defined in Proposition 47. Then, for any initial
history h1 ∈ H1, ∣∣V (h1)− V π(h1)

∣∣ ≤ 2ε‖r‖∞
(1− γ)

+
6γε‖r‖∞
(1− γ)2

.

Proof This follows immediately from Theorem 27, Proposition 48, and Lemma 49.

Note that the error bounds of Propositions 47 and 50 have similar structure but the key
difference is that the bound of Proposition 50 is tighter by a factor of 1/(1− γ).

Appendix D. Comparison with the Results of Chandak et al. (2020) on
Lifelong Learning for Time-varying Action Spaces

Lifelong learning refers to settings where a reinforcement learning agent adapts to a time-
varying environment. There are various models for lifelong learning and Chandak et al.
(2020) recently proposed a model where the action spaces change over time. The environment
has an underlying finite state space S, finite action space A, and reward r : S → R. Note
that the reward depends only on the current state and not the current action.

It is assumed that there is an underlying finite dimensional representation space E and
for any feasible action a ∈ A, there is an underlying representation e ∈ E. This relationship is
captured via an invertible map φ, i.e., a = φ(e). There is a transition kernel P : S×E→ ∆(S)
with respect to this representation space. This induces a transition kernel P a : S×A→ ∆(S)
with respect to the action, where P a(s′|s, a) = P (s′|s, φ−1(a)). It is assumed that the
transition kernel P is ρ-Lipschitz, i.e., for all s, s′ ∈ S and ei, ej ∈ E,∥∥P (s′|s, ei)− P (s′|s, ej)

∥∥
1
≤ ρ‖ei − ej‖1.

Chandak et al. (2020) consider infinite horizon discounted setup with discount factor γ.

Initially, the RL agent is not aware of the action space and learns about the actions in
discrete stages indexed by k ∈ Z≥0. At stage k, the agent becomes aware of a subset Uk
of E, where Uk ⊇ Uk−1. Thus, the environment at stage k may be modelled as an MDP
Mk = {S,Ak, P ak , r}, where Ak = {φ(e) : e ∈ Uk} and P ak (s′|s, a) = P (s′|s, φ−1(a)).

Two main results are established in Chandak et al. (2020). The first one is the following.
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Proposition 51 (Theorem 1 of Chandak et al. (2020)) Let πk and V πk denote the
optimal policy for MDP Mk and its performance. Let V denote the value function for the
hypothetical model when the agent has access to all actions. Let

ηk = sup
ai,aj∈Ak

‖φ−1(ai)− φ−1(aj)‖1.

Then, for any s ∈ S,

V (s)− V πk(s) ≤ γρηk‖r‖∞
(1− γ)2

.

We now show that this result may be viewed as a corollary of Corollary 19. In particular,
we have the following.

Lemma 52 The action set Ak may be viewed as a “quantization” of A using a function
ψ : A → Ak, which maps any action a = φ(e) ∈ A to action a′ = φ(e′) ∈ Ak such that
e′ = arg mine′′∈Uk

‖e − e′′‖1. Then, ψ is (0, ρηk)-action-quantizer with respect to the total
variation distance.

Proof Since the per-step reward does not depend on the action, there is no approximation
error in the reward and, therefore, ε = 0. Now note that for any s ∈ S and a ∈ A, we have

dTV(P a(·|s, a), P a(·|s, ψ(a))) ≤ sup
ei,ej∈Uk

‖P (·|s, ei)− P (·|s, ej)‖1 ≤ ρηk

where the last equality follows from the ρ-Lipschitz continuity of P and the definition of ηk.
Thus, δ = ρηk.

Proposition 53 Let πk, V πk and V be as defined in Proposition 51. Then, for any s ∈ S,

V (s)− V πk(s) ≤ γρηk span(r)

2(1− γ)2

Proof The result can be established from the following observations: (i) The result of
Corollary 19 continues to hold in the infinite horizon discount reward setup with αt replaced
by (ε + γρF(V̂ ∗)δ)/(1 − γ). This can be established in a manner similar to Theorem 27.
(ii) From Lemma 39, we know that for total variation distance ρF(V̂ ∗) ≤ 1

2 span(r)/(1− γ).
The result follows from substituting the values of (ε, δ) from Lemma 52 and the value of
ρF(V̂ ∗) from (ii) in (i).

Note that if the rewards r(s) belongs in a symmetric interval, say [−Rmax, Rmax], as is
assumed in Chandak et al. (2020), the result of Proposition 53 matches that of Proposition 51.

The second result of Chandak et al. (2020) is for the setting when the mapping φ is not
known. They assume that the agent selects some finite dimensional representation Ê and, for
every k, parameterizes the policy using two components: (i) a map β : S→ ∆(Ê) and (ii) an
estimator φ̂k : Ê→ ∆(Ak). Then the action at any state St ∈ S is chosen by first sampling
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ê ∼ β(s) and then choosing the action a ∼ φ̂k(ê). The second main result in Chandak et al.
(2020) is the following.6

Proposition 54 (Theorem 2 of Chandak et al. (2020)) Let π̂k denote the best overall
policy that can be represented using the above structure, V π̂k denotes its performance, and
V denote the value function when the agent has access to the complete model. Suppose there
exists a ζ ∈ R≥0, β : S→ ∆(Ê) and φ̂k : Ê→ ∆(Ak), such that for

sup
s∈S,ak∈Ak

KL(P a(·|s, ak)‖P a(·|s, Â)) ≤ ζ2
k/2,

where Â ∼ φ̂k(Ê) and Ê ∼ β(s). Then, for any s ∈ S,

V (s)− V πk(s) ≤ γ(ρηk + ζk)‖r‖∞
(1− γ)2

.

We now show that this result may be viewed as a corollary of Corollary 19. In particular,
we have the following.

Lemma 55 The action set Ê may be viewed as a “compression” of the “quantized” action
set Ak. In particular, let ψ : A→ Ak be as defined in Lemma 52. Then, the function φ̂−1

k ◦ ψ
is a (0, ρηk + ζk)-action- quantizer with respect to the total variation distance.

Proof As argued in the proof of Lemma 52, since the reward function does not depend
on action, ε = 0. Now, recall that from Pinsker’s inequality, for any distribution µ and ν,
dTV(µ, ν) ≤

√
2DKL(µ‖ν). Thus,

sup
s∈S,ak∈Ak

dTV(P a(·|s, ak), P a(·|s, Â)) ≤ ζk

where Â ∼ φ̂k(Ê) and Ê ∼ β(s). Now, by the triangle inequality, for any s ∈ S and a ∈ A

dTV(P a(·|s, a), P a(·|s, Â)) ≤ dTV(P a(·|s, a), P a(·|s, ψ(a))) + dTV(P a(·|s, ψ(a)), P a(·|s, Â))

≤ ρηk + ζk,

Thus, δ = ρηk + ζk.

Proposition 56 Let π̂k, V π̂k and V be as defined in Proposition 51. Then, for any s ∈ S,

V (s)− V π̂k(s) ≤ γ(ρηk + ζk) span(r)

2(1− γ)2

Proof The proof is similar to the proof of Proposition 53, where we replace the values of
Lemma 52 with those of Lemma 55.

As before, if the rewards r(s) belongs in a symmetric interval, say [−Rmax, Rmax], as is
assumed in Chandak et al. (2020), the result of Proposition 56 matches that of Proposition 54.

6. This result is stated slightly different in Chandak et al. (2020) using an inverse dynamics function
ϕ : S × S → ∆(Ê), where e ∼ ϕ(s, s′) is a prediction of a latent action e which might have caused the
transition from s to s′. However, the bounds hold for the simpler form presented here as well.
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Appendix E. Convergence of the PORL Algorithm

In this section, we discuss the convergence of the PORL algorithm presented in Sec. 6.2
and 6.3. The proof of convergence relies on multi-timescale stochastic approximation (Borkar,
1997) under conditions similar to the standard conditions for convergence of policy gradient
algorithms with function approximation stated below:

Assumption 2 The following conditions are satisfied:
1. All network parameters (ξ̄k, ζk, θk) lie in convex and bounded subsets of Euclidean spaces.
2. The gradient of the loss function ∇ξ̄L(ξ̄k) of the state approximator is Lipschitz in ξ̄k,

the gradient of the TD loss ∇ζLTD(ξ̄k, θk, ζk) and the policy gradient ∇̂θkJ(ξ̄k, θk, ζk) is
Lipschitz in (ξ̄k, θk, ζk) with respect to the sup norm.

3. All the gradients—∇ξ̄L(ξ̄k) at the state approximator; ∇ζLTD(ξ̄k, θk, ζk) at the critic; and

∇̂θkJ(ξ̄k, θk, ζk) at the actor—are unbiased with bounded variance. Furthermore, the critic
and the actor function approximators are compatible as given in Sutton et al. (2000), i.e.,

∂Qζk(Ẑt, At)

∂ζ
=

1

πθk(Ẑt, At)

∂πθk(Ẑt, At)

∂θ
.

4. The learning rates are sequences of positive numbers {ak}k≥0, {bk}k≥0, {ck}k≥0 that satisfy:∑
ak =∞,

∑
bk =∞,

∑
ck =∞,

∑
a2
k <∞,

∑
b2k <∞,

∑
c2
k <∞, limk→∞ ck/ak = 0,

and limk→∞ bk/ck = 0.

Assumption 3 The following regularity conditions hold:

1. The ODE corresponding to θ in (73) is locally asymptotically stable.

2. The ODEs corresponding to ξ̄ and ζ in (73) are globally asymptotically stable. In
addition, the ODE corresponding to ζ has a fixed point which is Lipschitz continuous
in θ.

The proposed RL framework has the following convergence guarantees.

Theorem 57 Under Assumptions 2 and 3, along any sample path, almost surely we have
the following:

(a) The iteration for ξ̄ in (73) converges to a state estimator that minimizes the loss
function L(ξ̄);

(b) The iteration for ζ in (73) converges to a critic that minimizes the error with respect
to the true Q-function;

(c) The iteration for θ in (73) converges to a local maximum of the performance J(ξ̄∗, ζ∗, θ),
where ξ̄∗ and ζ∗ are the converged values of ξ̄ and ζ.

Proof The assumptions satisfy all the four conditions stated in Leslie (2004, page 35),
Borkar (1997, Theorem 23). The proof follows from combining this two-time scale algorithm
proof with the fastest third time-scale of learning the state representation. Due to the
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specific choice of learning rates, the state representation algorithm sees a stationary actor
and critic, while the actor and critic in turn see a converged state approximator ietration due
to its faster learning rate. The convergence of the state approximator follows from Borkar
(2008, Theorem 2.2) and the fact that the model satisfies conditions (A1)–(A4) of Borkar
(2008, pg 10–11). The Martingale difference condition (A3) of Borkar (2008) is satisfied due
to the unbiasedness assumption of the state approximator. The result then follows from by
combining the theorem given in Leslie (2004, page 35), Borkar (1997, Theorem 23) along with
Borkar (2008, Theorem 2.2) and using a third fastest time scale for the state apparoximator.

Appendix F. Details about the Network Architecture, Training, and
Hyperparameters

As explained in Sec. 7, the AIS-generator consists of four components: the history compression
function σ̂, the AIS update function ϕ̂, the reward prediction function r̂, and the observation
prediction kernel P̂ y. We model the first as an LSTM, where the memory update unit of
LSTM acts as ϕ̂. We model r̂, P̂ y, and the policy π̂ as feed-forward neural networks. We
describe the details for each difficulty class of environment separately. In the description
below, we use Linear(n,m) to denote a linear layer Tanh(n,m) to denote a tanh layer,
ReLU(n,m) to denote a ReLU layer, and LSTM(n,m) to denote an LSTM layer, where n
denotes the number of inputs and m denotes the number of outputs of each layer. The size
of the input of the outputs depend on the size of the observation and action spaces, which
we denote by nO and nA, respectively as well as on the dimension of AIS and for the case of
minigrid environments, the dimension of the latent space for observations, we denote by dẐ
and dO. We also use Conv2d(IC,OC, (FSx, FSy)) to denote a 2D convolutional layer with
IC, OC, (FSx, FSy) represent the number of input channels, output channels and kernel
size (along x and y) respectively. Note that the strides are the same as the kernel size in
this case. ELU represents Exponential Linear Unit and is used to model the prediction of
variance. Finally, GMM(ncomp) represents a Gaussian Mixture Model with ncomp Gaussian
components. Most of the details are common for both the AIS+KL and the AIS+MMD
cases, we make a distinction whenever they are different by indicating KL or MMD.

F.1 Details for Low-dimensional Environments:

• Environment Details:

Environment Discount No. of actions No. of obs.
γ nA nO

Voicemail 0.95 3 2
Tiger 0.95 3 2

CheeseMaze 0.7 4 7

The discount factor for CheeseMaze is chosen to match with standard value used in
that environment (McCallum, 1993).
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• AIS and Network details:

• Dimensions of AIS (dẐ) : 40
• Weight in AIS loss (λ) (KL) : 0.0001

Weight in AIS loss (λ) (MMD) : 0.001

σ̂ r̂ P̂ y π̂

Linear(nO + nA + 1, dẐ) Linear(nA + dẐ ,
1
2dẐ) Linear(nA + dẐ ,

1
2dẐ) Linear(dẐ , dẐ)⇒ ⇒ ⇒ ⇒

Tanh(dẐ , dẐ) Tanh(1
2dẐ ,

1
2dẐ) Tanh(1

2dẐ ,
1
2dẐ) Tanh(dẐ , dẐ)⇒ ⇒ ⇒ ⇒

LSTM(dẐ , dẐ) Linear(1
2dẐ , 1) Linear(1

2dẐ , nO) Linear(dẐ , nA)⇒ ⇒

Softmax Softmax

• Training details: As explained in Section 6.3, we update the parameters after a
rollout of T , which we call a training batch. The choice of parameters for the training
batch are as follows:

• Samples per training batch : 200
• Number of training batches : 105

In addition, we use the following learning rates:

• AIS learning rate : ADAM(0.003)
• Policy learning rate (KL) : ADAM(0.0006)

Policy learning rate (MMD) : ADAM(0.0008)

In the above description, we use ADAM(α) to denote the choice of α parameter of
ADAM. All other parameters have their default value.

• Evaluation details:

• No. of batches after which evaluation is done : 500
• Number of rollouts per evaluation : 50

F.2 Details for Moderate-dimensional Environments:

• Environment Details:

Environment Discount No. of actions No. of obs.
γ nA nO

Drone Surveillance 0.99 5 10
Rock Sampling 0.99 8 3

• AIS and Network details:

• Dimensions of AIS (dẐ) : 128
• Weight in AIS loss (λ) (KL) : 0.0001

Weight in AIS loss (λ) (MMD) : 0.001
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σ̂ r̂ P̂ y π̂

LSTM(nO + nA + 1, dẐ) Linear(nA + dẐ ,
1
2dẐ) Linear(nA + dẐ ,

1
2dẐ) Linear(dẐ , nA)⇒ ⇒ ⇒

ReLU(1
2dẐ ,

1
2dẐ) ReLU(1

2dẐ ,
1
2dẐ) Softmax⇒ ⇒

Linear(1
2dẐ , 1) Linear(1

2dẐ , nO)⇒
Softmax

• Training details: As explained in Section 6.3, we update the parameters after a
rollout of T , which we call a training batch. The choice of parameters for the training
batch are as follows:

• Samples per training batch : 200
• Number of training batches : 105

In addition, we use the following learning rates:

• AIS learning rate : ADAM(0.003)
• Policy learning rate : ADAM(0.0007)

In the above description, we use ADAM(α) to denote the choice of α parameter of
ADAM. All other parameters have their default value.

• Evaluation details:

• No. of batches after which evaluation is done : 500
• Number of rollouts per evaluation : 100

F.3 Details for High-dimensional Environments:

• Environment Details:

Note that here nO represents the number of possible observations that a general
minigrid environment can have. With the actual rules of the environment plugged
in, this number is smaller since some combinations of the encoded observation are
not possible. The actual input that we get from the environment is a vector of size
147 (dO) which is basically an observation grid of 7 × 7 with 3 channels containing
characteristic information about the observation.

Environment Discount No. of actions No. of obs. Obs. dimen.
γ nA nO dO

Minigrid Envs 0.99 7 (6× 11× 3)7×7 7× 7× 3

• Autoencoder (q) details:

• Latent space dimensions (dL) : 64
• Type of autoencoder used : Basic autoencoder
• Reconstruction Loss Criterion Used : Mean Square Error
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q

Linear(dO,
3
2dL)⇒

ReLU(3
2dL,

3
2dL)⇒

Linear(3
2dL, dL)

• AIS and Network details:

• Dimensions of AIS (dẐ) : 128
• Weight in AIS loss (λ) : 0.1
• Number of GMM components used (ncomp) (only for KL) : 5

σ̂ r̂ P̂ y π̂

LSTM(dL + nA + 1, dẐ) Linear(nA + dẐ ,
1
2dẐ) Linear(nA + dẐ ,

1
2dẐ) Linear(dẐ , dẐ)⇒ ⇒ ⇒

ReLU(1
2dẐ ,

1
2dẐ) ReLU(1

2dẐ ,
1
2dẐ) ReLU(dẐ , dẐ)⇒ ⇒ ⇒

Linear(1
2dẐ , 1) Linear(1

2dẐ , dL) Linear(dẐ , nA)⇒

Softmax

For KL, P̂ y is replaced by the following while other networks remain the same:

P̂ y

Linear(nA + dẐ ,
1
2dẐ)⇒

ReLU(1
2dẐ ,

1
2dẐ)⇒ ⇒ ⇒

Linear(1
2dẐ , dLncomp) ELU(Linear(1

2dẐ , dLncomp)) + 1 + 10−6 Softmax(Linear(1
2dẐ , ncomp))

⇒ ⇒ ⇒

GMM(ncomp)

Note that the third layer generates the mean vector of each component, the diagonal
vector for variance of each component and the mixture weights of each component of
the GMM model in the last layer.

• Training details: As explained in Section 6.3, we update the parameters after a
rollout of T , which we call a training batch. The choice of parameters for the training
batch are as follows:

• Samples per training batch : 200
• Number of training batches : 2× 105 (MGKCS3R3, MGOM1Dl, MGOM1Dlh)

105 (others)
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In addition, we use the following learning rates:

• AIS learning rate : ADAM(0.001)
• Policy learning rate : ADAM(0.0007)

In the above description, we use ADAM(α) to denote the choice of α parameter of
ADAM. All other parameters have their default value.

• Evaluation details:

• No. of batches after which evaluation : 5000 (MGKCS3R3, MGOM1Dl, MGOM1Dlh)
is done 1000 (others)

• Number of rollouts per evaluation : 20

F.4 Details for PPO with LSTM and Critic:

• Environment Details:

The environment details are the same as mentioned previously.

• Network details:

– Low and moderate dimensionality environments:

Feature Extractor Actor Head Critic Head

LSTM(nO, nO) Linear(nO, 64) Linear(nO, 64)⇒ ⇒

Tanh(64, 64) Tanh(64, 64)⇒ ⇒

Linear(64, nA) Linear(64, 1)⇒

Softmax

– High dimensionality environments:

• Observation tensor : 7× 7× 3
• Embedding size (dE) : 64
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Conv. Feature Extractor Actor Head Critic Head

Conv2d(3, 1
4dE , (2, 2)) Linear(dE , dE) Linear(dE , dE)⇒ ⇒ ⇒

ReLU Tanh(dE , dE) Tanh(dE , dE)⇒ ⇒ ⇒

MaxPool2d Linear(dE , nA) Linear(dE , 1)⇒ ⇒

Conv2d(1
4dE ,

1
2dE , (2, 2)) Softmax⇒

ReLU⇒

Conv2d(1
2dE , dE , (2, 2))⇒

ReLU⇒

LSTM(dE , dE)

• Training details:

• Number of parallel actors : 64
• Number of training batches : 4× 107 (MGKCS3R3, MGOM1Dl, MGOM1Dlh)

2× 107 (others)
• Epochs per training batch : 4
• Samples per training batch : 1280
• Frames per parallel actor : 40
• GAE (λGAE) : 0.99
• Trajectory recurrence length : 20

In addition, we use ADAM with the following details:

• Learning rate α : 0.0001
• ADAM parameter ε : 0.00001

• Evaluation details:

• No. of batches after which evaluation
is done : 200

• Rollouts used for evaluation : All recent episodes completed by all actors

F.5 Details about Hyperparameter Tuning

Hyperparameter tuning was carried out by searching a grid of values, but exhaustive grid
search was not carried out due to the prohibitive computational cost. Instead, coarse values
were used initially as starting points and finer tuning was done around promising values,
which was essentially an iterative process of performing experiments, observing results and
trying similar parameters to the ones generating good results. Hyperparameters observed
in each previous environment class (low, moderate, high dimensionality) were used as a
starting point for the search in the new environment class.
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Performance was quite sensitive to different learning rates used for the AIS and policy in
most environments. Performance generally improved or remained the same when a larger
AIS State Size was used (values considered were 128, 256, 512 for moderate/high-dimensional
environments and 5, 10, 20, 40 for low-dimensional environments), although in some cases, it
was more unstable during training. λ values considered were between 0 and 1 and generally
only made a difference (in terms of performance results) when the rewards were very large.
The choice of activation function between ReLU and Tanh did not seem to make a significant
difference for the considered environments.
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