A POLICY GRADIENT ALGORITHM TO COMPUTE BOUNDEDLY RATIONAL STATIONARY MEAN FIELD EQUILIBRIA Jayakumar Subramanian & Aditya Mahajan ECE & CIM, McGill University and GERAD

Mean field games: Large number of small, anonymous agents with negligible individual impact

Solution concept

• Mean field equilibrium and its refinements are standard solution concepts in mean field games.

Our contribution

• Definition of an equilibrium for stationary mean field games based on bounded rationality.

• This equilibrium is a generalization of Nash equilibrium and mean field equilibrium.

Fig. 1: Smart Grid - Demand Response

Fig. 2: Financial Markets

• Development of a policy gradient based algorithm to predict this equilibrium.

Mean field game model

• Agent set: $N \coloneqq \{1, \ldots, n\}$ agents;

• State and action spaces for each agent: \mathcal{X} , \mathcal{A} (finite and identical for all agents);

• Dynamical state evolution for each agent $i \in N$:

 $\mathbb{P}[X_{t+1}^{i} = x^{i} \mid X_{1:t}, A_{1:t}] = \mathbb{P}[X_{t+1}^{i} = x^{i} \mid X_{t}^{i}, A_{t}^{i}] \rightleftharpoons \mathbb{P}(x^{i} \mid X_{t}^{i}, A_{t}^{i});$

• Empirical mean field (or population average): $\xi_t \in \Delta(\mathcal{X})$, given by:

$$\xi_t(x) = \frac{1}{n} \sum_{i \in \mathbb{N}} \mathbb{1}\{X_t^i = x\}, \quad \forall x \in \mathcal{X}.$$

• Per-step payoff to agent i: $u(X_t^i, A_t^i, \xi_t)$

Stationary mean field equilibrium (SMFE)

SMFE is a pair of a belief $\pi \in \Delta(\mathcal{X})$ and a policy $\mu : \mathcal{X} \to \Delta(\mathcal{A})$, which satisfies the following two properties:

Key assumptions

1. An agent uses only its current state to pick actions: $\mu_t^i : \mathcal{X} \to \Delta(\mathcal{A})$ and $A_t^i \sim \mu_t^i(X_t^i)$. 2. μ_t^i does not depend on time.

3. All agents play identical policies. Thus $\mu = {\mu, \mu, \dots, \mu}$.

4. Each agent assumes that the population average is stationary. Thus agent i's assessment of its payoff is:

$$\mathcal{V}_{\mu,\pi}^{i}(x) = \mathbb{E}_{A_{t}^{i} \sim \mu(X_{t}^{i})} \Big[\sum_{t=0}^{\infty} \gamma^{t} u(X_{t}^{i}, A_{t}^{i}, \pi) \ \Big| \ X_{0}^{i} = x \Big].$$

5. We consider parametrized policies μ_{θ} , where $\theta \in \Theta$ (a closed, convex space).

Gradient based SMFE (\nabla-SMFE)

 ∇ -SMFE is a pair of belief $\pi \in \Delta(\mathfrak{X})$ and a parametrized policy $\mu_{\theta} : \mathfrak{X} \to \Delta(\mathcal{A})$, where $\theta \in \Theta$, which satisfies the following two properties:

1. Sequential Rationality: For any other policy $\tilde{\mu} : \mathcal{X} \to \Delta(\mathcal{A})$, $V_{\mu,\pi}(x) \ge V_{\tilde{\mu},\pi}(x), \quad \forall x \in \mathfrak{X}.$

2. **Consistency**: The belief π is stationary under policy μ , i.e., $\pi = \text{StatDist}(\pi, \mu)$.

Policy gradient based algorithm: Main proposition

• If $\theta_{k+1} = [\theta_k + \alpha_k G_{\theta_k}]_{\Theta}$ converges to a limit θ^* along any sample path, then $(\theta^*, \pi_{\theta^*})$ is a ∇ -SMFE. • Likelihood ratio based gradient estimate:

$$G_{\theta_{k}} = \mathbb{E}_{X \sim \xi_{0}}[\nabla_{\theta} V_{\theta, \pi}(X)], \text{ where } \nabla_{\theta} V_{\theta, \pi}(x) = \mathbb{E}_{A_{t} \sim \mu_{\theta}(X_{t})} \left[\sum_{\sigma=0}^{\infty} \Lambda_{\theta}^{\sigma} V_{\theta, \pi}(X_{\sigma}) \mid X_{0} = x \right].$$

• Simultaneous perturbation based gradient estimate: $G_{\theta_k} = \eta (J_{\theta+\beta\eta,\pi} - J_{\theta-\beta\eta,\pi})/2\beta$

1. Gradient based sequential rationality: Let $V_{\theta,\pi}$ be agents' payoff assessment. Then, $\nabla_{\theta} V_{\theta,\pi} = 0$.

2. **Consistency**: The belief π is stationary under policy μ_{θ} , i.e., $\pi = \text{StatDist}(\pi, \mu_{\theta})$.

Policy improvement

: θ_0 : Initial parameter; K : # iterations; ξ_0 : initial input mean field dist; B : burn-in period; n_p : # particles **for** *iterations* k = 1 : K **do** $\pi_{k} = \texttt{StatDist}(\xi_{0}, \mu_{\theta_{k}}, B, n_{p})$ $G_{\theta_k} = \text{PolicyGradient}(\theta_k, \xi_0, \pi_k)$ $\theta_{k+1} \leftarrow [\theta_k + \alpha_k G_{\theta_k}]_{\Theta}$ return θ_{K+1}

Stationary distribution

: ξ_0 : Initial dist; input θ : parameter; B : burn-in period; n_p : # particles

Example: Malware spread in networks

• Dynamics ({
$$\eta_t$$
}_{t \ge 0}: i.i.d. process):

$$X_{t+1}^i = \begin{cases} X_t^i + (1 - X_t^i)\eta_t, & \text{for } A_t^i = 0\\ 0, & \text{for } A_t^i = 1 \end{cases}$$

for
$$i = 1 : n_p$$
 do
 $\begin{bmatrix} x_0^i \sim \xi_0 \\ \text{for } t = 0 : B \text{ do} \\ & a_t^i \sim \mu_{\theta}; x_{t+1}^i \sim P(\cdot | x_t^i, a_t^i); \end{bmatrix}$
for $x \in \mathcal{X}$ do
 $\begin{bmatrix} \pi(x) = \frac{1}{n_p} \sum_{i=1}^{n_p} \mathbb{1}\{x_{B+1}^i = x\}$
return π

• The per-step payoff is: $u(x, a, \xi) = -(k + \overline{\xi})x - \lambda a;$ $\overline{\xi}$ is the mean of ξ and k, λ are given constants. • We consider threshold policies with $\Theta = [0, 1]$: $\mu_{\theta}(x) = \begin{cases} 0, & \text{if } x < \theta, \\ 1, & \text{if } x \geqslant \theta. \end{cases}$

Conclusions

• In this work an RL algorithm is used for planning. This implies that the iterates in our algorithm are not representative of the learning dynamics of individual agents.

- For this to be an RL algorithm, each agent would have to make an assumption on all other agents' behaviour in the learning phase.
- -This coordination in learning is not easily justified in a competitive game with strategic agents, where the agents can try and influence their opponents during learning.

• Although we presented only policy based algorithms, bounded rationality can also be modelled using a critic only variant with function approximation.