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Mean field games: Large number of small, anonymous agents with negligible
individual impact

Fig. 1: Smart Grid - Demand Response Fig. 2: Financial Markets

Solution concept

•Mean field equilibrium and its refinements
are standard solution concepts in mean field
games.

Our contribution

•Definition of an equilibrium for stationary
mean field games based on
bounded rationality.
•This equilibrium is a generalization of Nash

equilibrium and mean field equilibrium.
•Development of a policy gradient based

algorithm to predict this equilibrium.

Mean field game model

•Agent set: N := {1, . . . ,n} agents;
• State and action spaces for each agent: X,A (finite and identical for all agents);
•Dynamical state evolution for each agent i ∈ N:

P[Xit+1 = x
i |X1:t,A1:t] = P[Xit+1 = x

i | Xit,A
i
t] =: P(x

i | Xit,A
i
t);

•Empirical mean field (or population average): ξt ∈ ∆(X), given by:

ξt(x) =
1
n

∑
i∈N

1{Xit = x}, ∀x ∈ X.

•Per-step payoff to agent i: u(Xit,Ait, ξt)

Key assumptions

1. An agent uses only its current state to pick actions: µit : X→ ∆(A) and Ait ∼ µit(Xit).
2.µit does not depend on time.
3. All agents play identical policies. Thus µ = {µ,µ, . . . ,µ}.
4. Each agent assumes that the population average is stationary. Thus agent i’s as-

sessment of its payoff is:

V iµ,π(x) = EAit∼µ(X
i
t)

[ ∞∑
t=0

γtu(Xit,A
i
t,π)

∣∣∣ Xi0 = x].
5. We consider parametrized policies µθ, where θ ∈ Θ (a closed, convex space).

Stationary mean field equilibrium (SMFE)

SMFE is a pair of a belief π ∈ ∆(X) and a policy µ : X → ∆(A), which satisfies the
following two properties:
1. Sequential Rationality: For any other policy µ̃ : X→ ∆(A),

Vµ,π(x) > Vµ̃,π(x), ∀x ∈ X.
2. Consistency: The belief π is stationary under policy µ, i.e., π = StatDist(π,µ).

Gradient based SMFE (∇-SMFE)

∇-SMFE is a pair of belief π ∈ ∆(X) and a parametrized policy µθ : X→ ∆(A), where
θ ∈ Θ, which satisfies the following two properties:
1. Gradient based sequential rationality: Let Vθ,π be agents’ payoff assessment.

Then, ∇θVθ,π = 0.
2. Consistency: The belief π is stationary under policy µθ, i.e., π = StatDist(π,µθ).

Policy gradient based algorithm: Main proposition

• If θk+1 = [θk+αkGθk]Θ converges to a limit θ∗ along any sample path, then (θ∗,πθ∗) is a ∇-SMFE.

•Likelihood ratio based gradient estimate:

Gθk = EX∼ξ0[∇θVθ,π(X)], where ∇θVθ,π(x) = EAt∼µθ(Xt)

[ ∞∑
σ=0
ΛσθVθ,π(Xσ)

∣∣∣ X0 = x
]
.

• Simultaneous perturbation based gradient estimate:
Gθk = η(Jθ+βη,π− Jθ−βη,π)/2β

Policy improvement

input : θ0 : Initial parameter; K : # iterations; ξ0 : initial
mean field dist; B : burn-in period; np : # particles

for iterations k = 1 : K do
πk = StatDist(ξ0,µθk,B,np)
Gθk = PolicyGradient(θk, ξ0,πk)
θk+1 ← [θk+αkGθk]Θ

return θK+1

Stationary distribution

input : ξ0 : Initial dist;
θ : parameter;
B : burn-in period;
np : # particles

for i = 1 : np do
xi0 ∼ ξ0

for t = 0 : B do
ait ∼ µθ; xit+1 ∼ P(·|xit,ait);

for x ∈ X do
π(x) = 1

np

∑np
i=1 1{x

i
B+1 = x}

return π

Example: Malware spread in networks

•Dynamics ({ηt}t>0: i.i.d. process):

Xit+1 =

{
Xit+ (1 −Xit)ηt, for Ait = 0,
0, for Ait = 1,

.

•The per-step payoff is:

u(x,a, ξ) = −(k+ ξ̄)x− λa;

ξ̄ is the mean of ξ and k, λ are given constants.
•We consider threshold policies with Θ = [0, 1]:

µθ(x) =

{
0, if x < θ,
1, if x > θ.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Samples ⇥107

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
hr

es
ho

ld
s

SMFE (Exact)

r-SMFE

Fig. 3: Thresholds evolution
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Fig. 4: Performance evolution

Conclusions

• In this work an RL algorithm is used for planning. This implies that the iterates in our algorithm are not representative of the learning dynamics of individual agents.
– For this to be an RL algorithm, each agent would have to make an assumption on all other agents’ behaviour in the learning phase.
– This coordination in learning is not easily justified in a competitive game with strategic agents, where the agents can try and influence their opponents during learning.
•Although we presented only policy based algorithms, bounded rationality can also be modelled using a critic only variant with function approximation.


