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Mean-field Teams Motivation

• Systems with large number of exchangeable agents:

– Smart grids

– Cellular networks

– Computer networks

– Economic organizations

•Difficulty:

– Global state not available/too expensive to share.

– Curse of dimensionality: solution concept scales exponentially or double
exponentially with number of agents.

•Objective: Low complexity RL algorithm.

Model

•State & action of agent i ∈ N: Xit ∈ X & Uit ∈ U.

•All agents are partially exchangeable =⇒ the state evolution of a generic agent depends on
the states and actions of other agents only through the mean-fields of the states.

•Mean-field of X: Zt =
1
n

∑
i∈N δXi.

•The system has mean-field sharing information-structure, i.e., the information available to
agent i is given by Iit = {Xit,Zt}.
•We assume that all agents use identical (stochastic) control law: µt : X×Z→ ∆(U)

•Per-step reward: Rt ∼ r(Xt,Ut).

• Independent initial states: P(X0 = x0) =
∏

i∈NP(X
i
0 = x

i
0) =:

∏
i∈N P0(x

i
0).

•Controlled Markov evolution: P(Xt+1 | X0:t,U0:t) = P(Xt+1 | Xt,Ut).

•Mean-field effect:
P(Xt+1 | Xt,Ut) =

∏
i∈NP(X

i
t+1 | X

i
t,Uit,Zt) =:

∏
i∈N P(x

i
t+1 | x

i
t,uit, zt).

•Resulting dynamics:
P(Xt+1 = xt+1 | X0:t = x0:t,U0:t = u0:t) =

∏
i∈N P(x

i
t+1 | x

i
t,uit, zt).

•Performance: J(µ) = Eµ
[∑∞

t=0 γ
tRt

]
.

Main idea behind solution approach

Existence of a planning solution for the model specified =⇒ basis for developing an RL approach for the model.

Planning solution [Arabneydi and Mahajan, 2014]

•Prescription: ht(x) = µt(x, zt), ∀x ∈ X.

•Per-step reward: E[r(Xt,Ut)|Z1:t,H1:t] = E[r(Xt,Ut)|Zt,Ht] =: r̃(Zt,Ht).

Theorem

Unique bounded fixed point: V(z) := maxh∈H E[r̃(z,h) + γV(Zt+1)|Zt = z,Ht = h]
with arg max of the right hand side : ψ(z).
=⇒ optimal policy: µ(x, z) = ψ(z)(x).

Reinforcement learning solution

•Assumption: we have access to a simulator for P(· | xit,uit, zt) and r̂(xit,uit, zt).
•Using n copies of this simulator, we create a simulator for the mean-field dynamics.

• (Zt+1,Rt) obtained from averaging (Xit+1,Rit) =⇒ simulator with internal state Zt.

Use of standard RL algorithms in this Zt state simulator

TRPO [Schulman et al., 2015], PPO[Schulman et al., 2017] & NAFDQN [Gu et al., 2016].

Demand response example

System with n agents, where X = {0, 1}, U = {∅, 0, 1}. The
dynamics are given by:

P(· | ·, ∅, z) =M,
P(· | ·, 0, z) = (1 − ε1) [ 1 0

1 0 ] + ε1M,
P(· | ·, 1, z) = (1 − ε2) [ 0 1

0 1 ] + ε2M.

Per-step reward:

Rt = −(1
n

∑
i∈N

(
c01{Uit=0}+c11{Uit=1}

)
+KL(Zt‖ζ)).

Performance
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Malware spread example

System consists of n agents where X = [0, 1], U = {0, 1}.
The dynamics are given by:

Xit+1 =

{
Xit+ (1 −Xit)ωt, for Ut = 0,
0 for Ut = 1,

where ωt ∼ Uniform[0, 1].
Per-step reward:

Rt = −
(

1
n

∑
i∈N(k+ 〈Zt〉)Xit+ λUit

)
.

Performance
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Mean-field approximation

•Approximate a large population system with an infinite
population system, find the optimal policy for the infinite
population system and use that policy in the finite popu-
lation system.

•We use MFT-RL form = 100 agents and use the resultant
policy in the systems with n > 100 agents.

MFT-RL for m = 100 agents in larger systems
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Conclusion

•There are many results in the Dec-POMDP/decentralized control literature where a team optimal solution can be obtained using dynamic programming.

•Our central thesis is that for such models one can easily translate the dynamic program to a reinforcement learning algorithm.

•We illustrate this point by using mean-field teams as an example. This allows us to use standard off-the-shelf RL algorithms to obtain solutions for some MARL setups.


