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Mean-field Teams Motivation
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e Difficulty:

— Global state not available/too expensive to share.

— Curse of dimensionality: solution concept scales exponentially or double
exponentially with number of agents.

e Objective: Low complexity RL algorithm.

e State & action of agent ic N: X! ¢ X & U! € U. e Independent initial states: P(Xo=xo) = [[[.yP(X, =x}) =

o All agents are partially exchangeable — the state evolution of a generic agent depends on o Controlled Markov evolution: P (X1 | Xo:t, Ugt) = P(Xeaq | X¢, Uy).

the states and actions of other agents only through the mean-fields of the states. ,
& y S e Mean-field effect:
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® Mean-field of X: Z; = n ZiEN Ox:- IP(Xt—i—l | X, ut) — HieN IP(X;H | X%/ Ul, Zt) — HiEN P(XLA | Xt/ u}c/ Z’t)
e [he system has mean-field sharing information-structure, i.e., the information available to

' ' Resulting d ICS:
agent 1 is given by I} = {X}, Z}. ¢ Resulting dynamics

P(Xts1 = xe41 | Xot = X0, Uort = o) = [ Lien Pxboq [ x4 U, z0).

e Performance: J(u) = *“{Zfiotht].

Main idea behind solution approach

e We assume that all agents use identical (stochastic) control law: i X x Z — A(U)

e Per-step reward: R; ~ r(X;, U;).

Existence of a planning solution for the model specified — basis for developing an RL approach for the model.

Planning solution [Arabneydi and Mahajan, 2014] Reinforcement learning solution

e Prescription: hy(x) = w(x,z¢), Vx e X. e Assumption: we have access to a simulator for P(- | x!,ul,z) and #(x}, ul,z,).

e Per-step reward: E[r(Xi, Uy)|Z1.t, Hi = Elr( Xy, W)|Zy, H = F e Using n copies of this simulator, we create a simulator for the mean-field dynamics.

o (Zi.1,R;) obtained from averaging (X 1 RY) = simulator with internal state Z;.

Unique bounded fixed point: V(z) := maxpex El¥(z, h) + vV (Zi41)|Zi = z, Hi = h]
with arg max of the right hand side : {(z).

— optimal policy: w(x,z) =(z)(x). TRPO [Schulman et al., 2015], PPO[Schulman et al., 2017] & NAFDQN [Gu et al., 2016].

Demand response example Malware spread example Mean-field approximation

System with n agents, where X = {0, 1}, U ={0,0,1}. The System consists of n agents where X = [0,1], U = {0, 1}. e Approximate a large population system with an infinite
dynamics are given by: The dynamics are given by: population system, find the optimal policy for the infinite
,0,z) =M, i _ !XE{ +(1—-XYwy,  for Uy =0, population system and use that policy in the finite popu-
,0,z) = (1—¢1) [1 8]+ M, 17 ) for Uy = 1, lation system.

,1,z) = (1—¢€) [§1] 4 oM. where w; ~ I}niform[O, 1. e We use MFT-RL for m = 100 agents and use the resultant
Per-step reward: Per-step reward: policy in the systems with n > 100 agents.

Re = — (3 Xien (Coﬂ{u';:o} + cﬂl{u;:l}) + KL(Z¢]|C)). Ri = — (% > onk+H{(Z))XE+ Au}c) .
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Conclusion

e There are many results in the Dec-POMDP /decentralized control literature where a team optimal solution can be obtained using dynamic programming.
e Our central thesis is that for such models one can easily translate the dynamic program to a reinforcement learning algorithm.

e We illustrate this point by using mean-field teams as an example. This allows us to use standard off-the-shelf RL algorithms to obtain solutions for some MARL setups.
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