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Scalable regret for learning to control
network-coupled subsystems with unknown dynamics

Sagar Sudhakara, Aditya Mahajan, Ashutosh Nayyar, and Yi Ouyang

Abstract—We consider the problem of controlling an unknown
linear quadratic Gaussian (LQG) system consisting of multiple
subsystems connected over a network. Our goal is to minimize and
quantify the regret (i.e. loss in performance) of our learning and
control strategy with respect to an oracle who knows the system
model. Upfront viewing the interconnected subsystems globally
and directly using existing LQG learning algorithms for the global
system results in a regret that increases super-linearly with the
number of subsystems. Instead, we propose a new Thompson
sampling based learning algorithm which exploits the structure
of the underlying network. We show that the expected regret
of the proposed algorithm is bounded by Õ

(
n
√
T
)
, where n is

the number of subsystems and T is the time horizon. Thus, the
regret scales linearly with the number of subsystems. We present
numerical experiments to illustrate the salient features of the
proposed algorithm.

Index Terms—Linear quadratic systems, networked control
systems, reinforcement learning, Thompson sampling.

I. INTRODUCTION

Large-scale systems comprising of multiple subsystems
connected over a network arise in a number of applications
including power systems, traffic networks, communication
networks and some economic systems [1]. A common feature of
such systems is the coupling in their subsystems’ dynamics and
costs, i.e., the state evolution and local costs of one subsystem
depend not only on its own state and control action but also
on the states and control actions of other subsystems in the
network. Analyzing various aspects of the behavior of such
systems and designing control strategies for them under a
variety of settings have been long-standing problems of interest
in the systems and control literature [2]–[6]. However, there
are still many unsolved challenges, especially on the interface
between learning and control in the context of these large-scale
systems.

In this paper, we investigate the problem of designing control
strategies for large-scale network-coupled subsystems when
some parameters of the system model are not known. Due to
the unknown parameters, the control problem is also a learning
problem. We adopt a reinforcement learning framework for
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this problem with the goal of minimizing and quantifying the
regret (i.e. loss in performance) of our learning-and-control
strategy with respect to the optimal control strategy based on
the complete knowledge of the system model.

The networked system we consider follows linear dynamics
with quadratic costs and Gaussian noise. Such linear-quadratic-
Gaussian (LQG) systems are one of the most commonly used
modeling framework in numerous control applications. Part
of the appeal of LQG models is the simple structure of the
optimal control strategy when the system model is completely
known—the optimal control action in this case is a linear or
affine function of the state—which makes the optimal strategy
easy to identify and easy to implement. If some parameters
of the model are not fully known during the design phase
or may change during operation, then it is better to design a
strategy that learns and adapts online. Historically, both adaptive
control [7] and reinforcement learning [8], [9] have been used
to design asymptotically optimal learning algorithms for such
LQG systems. In recent years, there has been considerable
interest in analyzing the transient behavior of such algorithms
which can be quantified in terms of the regret of the algorithm
as a function of time. This allows one to assess, as a function
of time, the performance of a learning algorithm compared to
an oracle who knows the system parameters upfront.

Several learning algorithms have been proposed for LQG
systems [10]–[22], and in most cases the regret is shown to be
bounded by Õ(d0.5x (dx + du)

√
T ), where dx is the dimension

of the state, du is the dimension of the controls, T is the
time horizon, and the Õ(·) notation hides logarithmic terms
in T . Given the lower bound of Ω̃(d0.5x du

√
T ) (where Ω̃(·)

notation hides logarithmic terms in T ) for regret in LQG
systems identified in a recent work [18], the regrets of the
existing algorithms have near optimal scaling in terms of
time and dimension. However, when directly applied to a
networked system with n subsystems, these algorithms would
incur Õ(n1.5d0.5x (dx + du)

√
T ) regret because the effective

dimension of the state and the controls is ndx and ndu, where
dx and du are the dimensions of each subsystem. This super-
linear dependence on n is prohibitive in large-scale networked
systems because the regret per subsystem (which is Õ(

√
n))

grows with the number of subsystems.
The learning algorithms mentioned above are for a general

LQG system and do not take into account any knowledge of
the underlying network structure. Our main contribution is to
show that by exploiting the structure of the network model, it is
possible to design learning algorithms for large-scale network-
coupled subsystems where the regret does not grow super-
linearly in the number of subsystems. In particular, we utilize



2

a spectral decomposition technique, recently proposed in [23],
to decompose the large-scale system into L decoupled systems,
where L is the rank of the coupling matrix corresponding
to the underlying network. Using the decoupled systems, we
propose a Thompson sampling based algorithm with Õ(n
d0.5x (dx + du)

√
T ) regret bound.

a) Related work: Broadly speaking, three classes of low-
regret learning algorithms have been proposed for LQG systems:
certainty equivalence (CE) based algorithms, optimism in the
face of uncertainty (OFU) based algorithms, and Thompson
sampling (TS) based algorithms. CE is a classical adaptive
control algorithm [7]. Recent papers [15]–[19] have established
near optimal high probability bounds on regret for CE-based
algorithms. OFU-based algorithms are inspired by the OFU
principle for multi-armed bandits [24]. Starting with the
work of [10], [11], most of the papers following the OFU
approach [12]–[14] also provide similar high probability regret
bounds. TS-based algorithms are inspired by TS algorithm
for multi-armed bandits [25]. Most papers following this
approach [19]–[22] establish bounds on expected Bayesian
regret of similar near-optimal orders. As argued earlier, most
of these papers show that the regret scales super-linearly with
the number of subsystems and are, therefore, of limited value
for large-scale systems.

There is an emerging literature on learning algorithms for
networked systems both for LQG models [26]–[31] and MDP
models [32]–[34]. The papers on LQG models propose dis-
tributed value- or policy-based learning algorithms and analyze
their convergence properties, but they do not characterize their
regret. Some of the papers on MDP models [33], [34] do
characterize regret bounds for OFU and TS-based learning
algorithms but these bounds are not directly applicable to the
LQG model considered in this paper.

An important special class of network-coupled systems is
mean-field coupled subsystems [35], [36]. There has been
considerable interest in reinforcement learning for mean-field
models [37]–[39], but most of the literature does not consider
regret. The basic mean-field coupled model can be viewed as
a special case of the network-coupled subsystems considered
in this paper (see Sec. VI-A). In a preliminary version of this
paper [40], we proposed a TS-based algorithm for mean-field
coupled subsystems which has a Õ((1 + 1/n)

√
T ) regret per

subsystem. The current paper extends the TS-based algorithm
to general network-coupled subsystems and establishes scalable
regret bounds for arbitrarily coupled networks.

b) Organization: The rest of the paper is organized as
follows. In Section II, we introduce the model of network-
coupled subsystems. In Section III, we summarize the spectral
decomposition idea and the resulting scalable method for syn-
thesizing optimal control strategy when the model parameters
are known. Then, in Section IV, we consider the learning
problem for unknown network-coupled subsystems and present
a TS-based learning algorithm with scalable regret bound. We
subsequently provide regret analysis in Section V and numerical
experiments in Section VI. We conclude in Section VII.

c) Notation: The notation A = [aij ] means that A is
the matrix that has aij as its (i, j)-th element. For a matrix
A, A⊺ denotes its transpose. Given matrices (or vectors) A1,

. . . , An with the same number of rows, [A1, . . . , An] denotes
the matrix formed by horizontal concatenation. For a random
vector v, var(v) denotes its covariance matrix. The notation
N (µ,Σ) denotes the multivariate Gaussian distribution with
mean vector µ and covariance matrix Σ.

For stabilizable (A,B) and positive definite matrices Q,R,
DARE(A,B,Q,R) denotes the unique positive semidefinite
solution of the discrete time algebraic Riccati equation (DARE),
which is given as

S = A
⊺
SA− (A

⊺
SB)(R+B

⊺
SB)−1(B

⊺
SA) +Q.

II. MODEL OF NETWORK-COUPLED SUBSYSTEMS

We start by describing a minor variation of a model of
network-coupled subsystems proposed in [23]. The model in
[23] was described in continuous time. We translate the model
and the results to discrete time.

A. System model

1) Graph stucture: Consider a network consisting of n
subsystems/agents connected over an undirected weighted
simple graph denoted by G(N,E,Ψ), where N = {1, . . . , n}
is the set of nodes, E ⊆ N × N is the set of edges,
and Ψ = [ψij ] ∈ Rn×n is the weighted adjacency matrix.
Let M = [mij ] ∈ Rn×n be a symmetric coupling matrix
corresponding to the underlying graph G. For instance, M may
represent the underlying adjacency matrix (i.e., M = Ψ) or
the underlying Laplacian matrix (i.e., M = diag(Ψ1n)−Ψ).

2) State and dynamics: The states and control actions of
agents take values in Rdx and Rdu , respectively. For agent
i ∈ N , we use xit ∈ Rdx and uit ∈ Rdu to denote its state and
control action at time t.

The system starts at a random initial state x1 = (xi1)i∈N ,
whose components are independent across agents. For agent i,
the initial state xi1 ∼ N (0,Ξi

1), and at any time t ≥ 1, the
state evolves according to

xit+1 = Axit +Buit +DxG,it + EuG,it + wi
t, (1)

where xG,it and uG,it are the locally perceived influence of the
network on the state of agent i and are given by

xG,it =
∑
j∈N

mijxjt and uG,it =
∑
j∈N

mijujt , (2)

A, B, D, E are matrices of appropriate dimensions, and
{wi

t}t≥1, i ∈ N, are i.i.d. zero-mean Gaussian processes which
are independent of each other and the initial state. In particular,
wi

t ∈ Rdx and wi
t ∼ N (0,W ). We call xG,it and uG,it the

network-field of the states and control actions at node i at
time t.

Thus, the next state of agent i depends on its current local
state and control action, the current network-field of the states
and control actions of the system, and the current local noise.

We follow the same atypical representation of the “vectorized”
dynamics as used in [23]. Define xt and ut as the global state
and control actions of the system:

xt = [x1t , . . . ., x
n
t ] and ut = [u1t , . . . ., u

n
t ].
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We also define wt = [w1
t , . . . ., w

n
t ]. Similarly, define xGt and

uGt as the global network field of states and actions:

xGt = [xG,1t , . . . ., xG,nt ] and uGt = [uG,1t , . . . ., uG,nt ].

Note that xt, xGt , wt ∈ Rdx×n and ut, u
G
t ∈ Rdu×n are

matrices and not vectors. The global system dynamics may be
written as:

xt+1 = Axt +But +DxGt + EuGt + wt. (3)

Furthermore, we may write

xGt = xtM
⊺
= xtM and uGt = utM

⊺
= utM.

3) Per-step cost: At any time t the system incurs a per-step
cost given by

c(xt, ut) =
∑
i∈N

∑
j∈N

[hijx (x
i
t)

⊺
Q(xjt ) + hiju (u

i
t)

⊺
R(ujt )] (4)

where Q and R are matrices of appropriate dimensions and
hijx and hiju are real valued weights. Let Hx = [hijx ] and
Hu = [hiju ]. It is assumed that the weight matrices Hx and
Hu are polynomials of M , i.e.,

Hx =

Kx∑
k=0

qkM
k and Hu =

Ku∑
k=0

rkM
k (5)

where Kx and Ku denote the degrees of the polynomials and
{qk}Kx

k=0 and {rk}Ku

k=0 are real-valued coefficients.
The assumption that Hx and Hu are polynomials of M

captures the intuition that the per-step cost respects the graph
structure. In the special case when Hx = Hu = I , the per-step
cost is decoupled across agents. When Hx = Hu = I +M ,
the per-step cost captures a cross-coupling between one-hop
neighbors. Similarly, when Hu = I+M+M2, the per-step cost
captures a cross-coupling between one- and two-hop neighbors.
See [23] for more examples of special cases of the per-step
cost defined above.

B. Assumptions on the model

Since M is real and symmetric, it has real eigenvalues. Let L
denote the rank of M and λ(1), . . . ., λ(L) denote the non-zero
eigenvalues. For ease of notation, for ℓ ∈ {1, . . . , L}, define

q(ℓ) =

Kx∑
k=0

qk(λ
(ℓ))k and r(ℓ) =

Ku∑
k=0

rk(λ
(ℓ))k,

where {qk}Kx

k=0 and {rk}Ku

k=0 are the coefficients in (5). Fur-
thermore, for ℓ ∈ {1, . . . , L}, define:

A(ℓ) = A+ λ(ℓ)D and B(ℓ) = B + λ(ℓ)E.

We impose the following assumptions:
(A1) The systems (A,B) and {(A(ℓ), B(ℓ))}Lℓ=1 are stabi-

lizable.
(A2) The matrices Q and R are symmetric and positive

definite.
(A3) The parameters q0, r0, {q(ℓ)}Lℓ=1, and {r(ℓ)}Lℓ=1 are

strictly positive.
Assumption (A1) is needed to ensure that the average cost

under the optimal policy is bounded. Assumptions (A2) and
(A3) ensure that the per-step cost is strictly positive.

C. Admissible policies and performance criterion

There is a system operator who has access to the state
and action histories of all agents and who selects the agents’
control actions according to a deterministic or randomized (and
potentially history-dependent) policy ut = πt(x1:t, u1:t−1).

Let θ⊺ = [A,B,D,E] denote the parameters of the system
dynamics. The performance of any policy π = (π1, π2, . . . ) is
measured by the long-term average cost given by

J(π; θ) = lim sup
T→∞

1

T
Eπ

[ T∑
t=1

c(xt, ut)

]
. (6)

Let J(θ) denote the minimum of J(π; θ) over all policies.
We are interested in the setup where the graph coupling

matix M , the cost coupling matrices Hx and Hu, and the cost
matrices Q and R are known but the system dynamics θ are
unknown and there is a prior distribution on θ. The Bayesian
regret of a policy π operating for a horizon T is defined as

R(T ;π) := Eπ

[ T∑
t=1

c(xt, ut)− TJ(θ)
]
, (7)

where the expectation is with respect to the prior on θ,
the noise processes, the initial conditions, and the potential
randomizations done by the policy π.

III. BACKGROUND ON SPECTRAL DECOMPOSITION OF THE
SYSTEM

In this section, we summarize the main results of [23],
translated to the discrete-time model used in this paper.

The spectral decomposition described in [23] relies on the
spectral factorization of the graph coupling matrix M . Since
M is a real symmetric matrix with rank L, we can write it as

M =

L∑
ℓ=1

λ(ℓ)v(ℓ)(v(ℓ))
⊺
, (8)

where (λ(1), . . . , λ(L)) are the non-zero eigenvalues of M and
(v(1), . . . , v(L)) are the corresponding eigenvectors.

We now present the decomposition of the dynamics and the
cost based on (8) as described in [23].

A. Spectral decomposition of the dynamics and per-step cost

For ℓ ∈ {1, . . . , L}, define eigenstates and eigencontrols as

x
(ℓ)
t = xtv

(ℓ)(v(ℓ))
⊺ and u

(ℓ)
t = utv

(ℓ)(v(ℓ))
⊺
, (9)

respectively. Furthermore, define auxiliary state and auxiliary
control as

x̆t = xt −
L∑

ℓ=1

x
(ℓ)
t and ŭt = ut −

L∑
ℓ=1

u
(ℓ)
t , (10)

respectively. Similarly, define w(ℓ)
t = wtv

(ℓ)(v(ℓ))⊺ and w̆t =

wt −
∑L

ℓ=1 w
(ℓ)
t .

We now obtain the dynamics of the eigen and auxilary states.
Multiplying (3) on the right by v(ℓ)(v(ℓ))⊺ and observing that
v(ℓ) is an eigenvector of M , we get

x
(ℓ)
t+1 = (A+ λ(ℓ)D)x

(ℓ)
t + (B + λ(ℓ)E)u

(ℓ),i
t + w

(ℓ)
t . (11)
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Substituting (3) and (11) in (10), we get

x̆t+1 = Ax̆t +Bŭt + w̆t. (12)

Let x(ℓ),it and u(ℓ),it denote the i-th column of x(ℓ)t and u(ℓ)t

respectively; thus we can write

x
(ℓ)
t = [x

(ℓ),1
t , . . . ., x

(ℓ),n
t ] and u

(ℓ)
t = [u

(ℓ),1
t , . . . ., u

(ℓ),n
t ].

Similar interpretations hold for w(ℓ),i
t and w̆i

t.
Looking at a particular column of (10) and rearranging terms,

we can decompose the state and control action at each node
i ∈ N as xit = x̆it +

∑L
ℓ=1 x

(ℓ),i
t and uit = ŭit +

∑L
ℓ=1 u

(ℓ),i
t .

Eq. (11) implies that the dynamics of eigenstate x(ℓ),it depend
only on u(ℓ),it and w(ℓ),i

t , and are given by

x
(ℓ),i
t+1 = (A+λ(ℓ)D)x

(ℓ),i
t +(B+λ(ℓ)E)u

(ℓ),i
t +w

(ℓ),i
t , (13)

Similarly, Eq. (12) implies that the dynamics of the auxiliary
state x̆it depend only on ŭit and w̆i

t, and are given by

x̆it+1 = Ax̆it +Bŭit + w̆i
t. (14)

Furthermore, [23, Proposition 2] implies that per-step cost
decomposes as follows:

c(xt, ut) =
∑
i∈N

[
q0c̆(x̆

i
t, ŭ

i
t)+

L∑
ℓ=1

q(ℓ)c(ℓ)(x
(ℓ),i
t , u

(ℓ),i
t )

]
(15)

where1

c̆(x̆it, ŭ
i
t) = (x̆it)

⊺
Qx̆it +

r0
q0

(ŭit)
⊺
Rŭit,

c(ℓ)(x
(ℓ),i
t , u

(ℓ),i
t ) = (x

(ℓ),i
t )

⊺
Qx

(ℓ),i
t +

r(ℓ)

q(ℓ)
(u

(ℓ),i
t )

⊺
Ru

(ℓ),i
t .

Following [23, Lemma 2], we can show that for any i ∈ N ,

var(w
(ℓ),i
t ) = (v(ℓ),i)2W and var(w̆i

t) = (v̆i)2W, (16)

where (v̆i)2 = 1 −
∑L

ℓ=1(v
(ℓ),i)2. These covariances do not

depend on time because the noise processes are i.i.d.

B. Planning solution for network-coupled subsystems

We now present the main result of [23], which provides a
scalable method to synthesize the optimal control policy when
the system dynamics are known.

Based on the decomposition presented in the previous section,
we can view the overall system as the collection of the following
subsystems:

• Eigen-system (ℓ, i), ℓ ∈ {1, . . . , L} and i ∈ N with state
x
(ℓ),i
t , controls u(ℓ),it , dynamics (13), and per-step cost
q(ℓ)c(ℓ)(x(ℓ),i, u(ℓ),i).

• Auxiliary system i, i ∈ N , with state x̆it, controls ŭit,
dynamics (14), and per-step cost q0c̆(x̆it, ŭ

i
t).

Let (θ(ℓ))⊺ = [A(ℓ), B(ℓ)] := [(A + λ(ℓ)D), (B + λ(ℓ)E)],
ℓ ∈ {1, . . . , L}, and θ̆⊺ = [A,B] denote the parameters of
the dynamics of the eigen and auxiliary systems, respectively.

1Recall that (A3) ensures that q0 and {q(ℓ)}Lℓ=1 are strictly positive.

Then, for any policy π = (π1, π2, . . . ), the performance of
the eigensystem (ℓ, i), ℓ ∈ {1, . . . , L} and i ∈ N , is given by
q(ℓ)J (ℓ),i(π; θ(ℓ)), where

J (ℓ),i(π; θ(ℓ)) = lim sup
T→∞

1

T
Eπ

[ T∑
t=1

c(x
(ℓ),i
t , u

(ℓ),i
t )

]
.

Similarly, the performance of the auxiliary system i, i ∈ N , is
given by q0J̆ i(π; θ̆), where

J̆ i(π; θ̆) = lim sup
T→∞

1

T
Eπ

[ T∑
t=1

c(x̆it, ŭ
i
t)

]
.

Eq. (15) implies that the overall performance of policy π can
be decomposed as

J(π; θ) =
∑
i∈N

q0J̆
i(π; θ̆) +

∑
i∈N

L∑
ℓ=1

q(ℓ)J (ℓ),i(π; θ(ℓ)). (17)

The key intuition behind the result of [23] is as follows.
By the certainty equivalence principle for LQ systems, we
know that (when the system dynamics are known) the optimal
control policy of a stochastic LQ system is the same as the
optimal control policy of the corresponding deterministic LQ
system where the noises {wi

t}t≥1 are assumed to be zero. Note
that when noises {wi

t}t≥1 are zero, then the noises {w(ℓ),i
t }t≥1

and {w̆i
t}t≥1 of the eigen- and auxiliary-systems are also zero.

This, in turn, implies that the dynamics of all the eigen- and
auxiliary systems are decoupled. These decoupled dynamics
along with the cost decoupling in (17) imply that we can
choose the controls {u(ℓ),it }t≥1 for the eigensystem ((ℓ), i),
ℓ ∈ {1, . . . , L} and i ∈ N , to minimize2 J (ℓ),i(π; θ(ℓ)) and
choose the controls {ŭit}t≥1 for the auxiliary system i, i ∈
N , to minimize2 J̆ i(π; θ̆). These optimization problems are
standard optimal control problems. Therefore, similar to [23,
Thoerem 3], we obtain the following result.

Theorem 1 Let S̆ and {S(ℓ)}Lℓ=1 be the solution of the
following discrete time algebraic Riccati equations (DARE):

S̆(θ̆) = DARE(A,B,Q, r0q0R), (18a)

and for ℓ ∈ {1, . . . , L},

S(ℓ)(θ(ℓ)) = DARE(A(ℓ), B(ℓ), Q, r
(ℓ)

q(ℓ)
R). (18b)

Define the gains:

Ğ(θ̆) = −
(
(B)

⊺
S̆(θ̆)B + r0

q0
R
)−1

(B)
⊺
S̆(θ̆)A,

(19a)

and for ℓ ∈ {1, . . . , L},

G(ℓ)(θ(ℓ)) = −
(
(B(ℓ))

⊺
S(ℓ)(θ(ℓ))B(ℓ)+

r(ℓ)

q(ℓ)
R
)−1

(B(ℓ))
⊺
S(ℓ)(θ(ℓ))A(ℓ). (19b)

Then, under assumptions (A1)–(A3), the policy

uit = Ğ(θ̆)x̆it +

L∑
ℓ=1

G(ℓ)(θ(ℓ))x
(ℓ),i
t (20)

2The cost of the eigensystem ((ℓ), i) is q(ℓ)J(ℓ),i(π; θ(ℓ)). From (A3), we
know that q(ℓ) is positive. Therefore, minimizing q(ℓ)J(ℓ),i(π; θ(ℓ)) is the
same as minimizing J(ℓ),i(π; θ(ℓ)).
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minimizes the long-term average cost in (6) over all admissible
policies. Furthermore, the optimal performance is given by

J(θ) =
∑
i∈N

q0J̆
i(θ̆) +

∑
i∈N

L∑
ℓ=1

q(ℓ)J (ℓ),i(θ(ℓ)), (21)

where J̆ i(θ̆) = (v̆i)2 Tr(WS̆) and for ℓ ∈ {1, . . . , L},

J (ℓ),i(θ(ℓ)) = (v(ℓ),i)2 Tr(WS(ℓ)). (22)

IV. LEARNING FOR NETWORK-COUPLED SUBSYSTEMS

For the ease of notation, we define z(ℓ),it = vec(x
(ℓ),i
t , u

(ℓ),i
t )

and z̆it = vec(x̆it, ŭ
i
t). Then, we can write the dynamics (13),

(14) of the eigen and the auxiliary systems as

x
(ℓ),i
t+1 = (θ(ℓ))

⊺
z
(ℓ),i
t + w

(ℓ),i
t , ∀i ∈ N, ∀ℓ ∈ {1, . . . , L},

(23a)

x̆it+1 = (θ̆)
⊺
z̆it + w̆i

t, ∀i ∈ N. (23b)

A. Simplifying assumptions

We impose the following assumptions to simplify the
description of the algorithm and the regret analysis.

(A4) The noise covariance W is a scaled identity matrix
given by σ2

wI .
(A5) For each i ∈ N , v̆i ̸= 0.
Assumption (A4) is commonly made in most of the literature

on regret analysis of LQG systems. An implication of (A4) is
that var(w̆i

t) = (σ̆i)2I and var(w
(ℓ),i
t ) = (σ(ℓ),i)2I , where

(σ̆i)2 = (v̆i)2σ2
w and (σ(ℓ),i)2 = (v(ℓ),i)2σ2

w. (24)

Assumption (A5) is made to rule out the case where the
dynamics of some of the auxiliary systems are deterministic.

B. Prior and posterior beliefs:

We assume that the unknown parameters θ̆ and {θ(ℓ)}Lℓ=1 lie
in compact subsets Θ̆ and {Θ(ℓ)}Lℓ=1 of R(dx+du)×dx . Let
θ̆k denote the k-th column of θ̆. Thus θ̆ = [θ̆1, . . . , θ̆dx ].
Similarly, let θ(ℓ),k denote the k-th column of θ(ℓ). Thus,
θ(ℓ) = [θ(ℓ),1, . . . , θ(ℓ),dx ]. We use p

∣∣
Θ

to denote the restriction
of probability distribution p on the set Θ.

We assume that θ̆ and {θ(ℓ)}Lℓ=1 are random variables that
are independent of the initial states and the noise processes.
Furthermore, we assume that the priors p̆1 and {p(ℓ)1 }Lℓ=1 on θ̆
and {θ(ℓ)}Lℓ=1, respectively, satisfy the following:

(A6) p̆1 is given as: p̆1(θ̆) =

[∏dx

k=1 ξ̆
k
1 (θ̆

k)

]∣∣∣∣
Θ̆

where

for k ∈ {1, . . . , dx}, ξ̆k1 = N (µ̆k
1 , Σ̆1) with mean

µ̆k
1 ∈ Rdx+du and positive-definite covariance Σ̆1 ∈
R(dx+du)×(dx+du).

(A7) For each ℓ ∈ {1, . . . , L}, p
(ℓ)
1 is given as:

p
(ℓ)
1 (θ(ℓ)) =

[∏dx

k=1 ξ
(ℓ),k
1 (θ(ℓ),k)

]∣∣∣∣
Θ(ℓ)

where for

k ∈ {1, . . . , dx}, ξ(ℓ),k1 = N (µ
(ℓ),k
1 ,Σ

(ℓ)
1 ) with mean

µ
(ℓ),k
1 ∈ R(dx+du) and positive-definite covariance

Σ
(ℓ)
1 ∈ R(dx+du)×(dx+du).

These assumptions are similar to the assumptions on the
prior in the recent literature on Thompson sampling for LQ
systems [20], [21].

Our learning algorithm (and TS-based algorithms in gen-
eral) keeps track of a posterior distribution on the unknown
parameters based on observed data. Motivated by the nature of
the planning solution (see Theorem 1), we maintain separate
posterior distributions on θ̆ and {θ(ℓ)}Lℓ=1. For each ℓ, we
select a subsystem i

(ℓ)
∗ such that the i

(ℓ)
∗ -th component of

the eigen-vector v(ℓ) is non-zero (i.e. v(ℓ),i
(ℓ)
∗ ̸= 0) . At

time t, we maintain a posterior distribution p
(ℓ)
t on θ(ℓ)

based on the corresponding eigen state and action history
of the i(ℓ)∗ -th subsystem. In other words, for any Borel subset
B of R(dx+du)×dx , p(ℓ)t (B) gives the following conditional
probability

p
(ℓ)
t (B) = P(θ(ℓ) ∈ B | x(ℓ),i

(ℓ)
∗

1:t , u
(ℓ),i(ℓ)∗
1:t−1 ). (25)

We maintain a separate posterior distribution p̆t on θ̆ as
follows. At each time t > 1, we select an subsystem jt−1 =
argmaxi∈N z̆i

⊺

t−1Σ̆t−1z̆
i
t−1/(σ̆

i
t)

2, where Σ̆t−1 is a covariance
matrix defined recursively in Lemma 1 below. Then, for any
Borel subset B of R(dx+du)×dx ,

p̆t(B) = P(θ̆ ∈ B | {x̆jss , ŭjss , x̆
js
s+1}1≤s<t}), (26)

See [40] for a discussion on the rule to select jt−1.

Lemma 1 The posterior distributions p(ℓ)t , ℓ ∈ {1, 2, . . . , L},
and p̆t are given as follows:

1) p
(ℓ)
1 is given by Assumption (A7) and for any t ≥ 1,

p
(ℓ)
t+1(θ

(ℓ)) =

[ dx∏
k=1

ξ
(ℓ),k
t+1 (θ(ℓ),k)

]∣∣∣∣
Θ(ℓ)

,

where for k ∈ {1, . . . , dx}, ξ(ℓ),kt+1 = N (µ
(ℓ),k
t+1 ,Σ

(ℓ)
t+1),

and

µ
(ℓ)
t+1 = µ

(ℓ)
t +

Σ
(ℓ)
t z

(ℓ),i(ℓ)∗
t

(
x
(ℓ),i(ℓ)∗
t+1 − (µ

(ℓ)
t )⊺z

(ℓ),i(ℓ)∗
t

)⊺
(σ(ℓ),i

(ℓ)
∗ )2 + (z

(ℓ),i
(ℓ)
∗

t )⊺Σ
(ℓ)
t z

(ℓ),i
(ℓ)
∗

t

,

(27a)

(Σ
(ℓ)
t+1)

−1 = (Σ
(ℓ)
t )−1 +

1

(σ(ℓ),i
(ℓ)
∗ )2

z
(ℓ),i(ℓ)∗
t (z

(ℓ),i(ℓ)∗
t )

⊺
,

(27b)

where, for each t, µℓ
t denotes the matrix

[µ
(ℓ),1
t , . . . , µ

(ℓ),dx

t ].
2) p̆1 is given by Assumption (A6) and for any t ≥ 1,

p̆t+1(θ̆) =

[ dx∏
k=1

ξ̆kt+1(θ̆
k)

]∣∣∣∣
Θ̆

,

where for k ∈ {1, . . . , dx}, ξ̆kt+1 = N (µ̆k
t+1, Σ̆t+1), and

µ̆t+1 = µ̆t +
Σ̆tz̆

jt
t

(
x̆jtt+1 − (µ̆t)

⊺z̆jtt
)⊺

(σ̆jt)2 + (z̆jtt )⊺Σ̆tz̆
jt
t

, (28a)

(Σ̆t+1)
−1 = (Σ̆t)

−1 +
1

(σ̆jt)2
z̆jtt (z̆jtt )

⊺
. (28b)
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where, for each t, µ̆t denotes the matrix [µ̆1
t , . . . , µ̆

dx
t ].

PROOF Note that the dynamics of x(ℓ),i
(ℓ)
∗

t and x̆it in (23) are
linear and the noises w(ℓ),i(ℓ)∗

t and w̆i
t are Gaussian. Therefore,

the result follows from standard results in Gaussian linear
regression [41, Theorem 3]. ■

C. The Thompson sampling algorithm:

We propose a Thompson sampling based algorithm called
Net-TSDE which is inspired by the TSDE (Thompson sam-
pling with dynamic episodes) algorithm proposed in [20], [21]
and the structure of the optimal planning solution described in
Sec. III-B. The Thompson sampling part of our algorithm is
modeled after the modification of TSDE presented in [42].

The Net-TSDE algorithm consists of a coordinator C and
|L|+ 1 actors: an auxiliary actor Ă and an eigen actor Aℓ for
each ℓ ∈ {1, 2, . . . , L}. These actors are described below and
the whole algorithm is presented in Algorithm 1.

• At each time, the coordinator C observes the current
global state xt, computes the eigenstates {x(ℓ)t }Lℓ=1 and
the auxiliary states x̆t, and sends the eigenstate x(ℓ)t to
the eigen actor A(ℓ), ℓ ∈ {1, . . . , L}, and sends the
auxiliary state x̆t to the auxiliary actor Ă. The eigen
actor A(ℓ), ℓ ∈ {1, . . . , L}, computes the eigencontrol
u
(ℓ)
t and the auxiliary actor Ă computes the auxiliary

control ŭt (as per the details presented below) and both
send their computed controls back to the coordinator C.
The coordinator then computes and executes the control
action uit =

∑L
ℓ=1 u

(ℓ),i
t + ŭit for each subsystem i ∈ N .

• The eigen actor A(ℓ), ℓ ∈ {1, . . . , L}, maintains the
posterior p(ℓ)t on θ(ℓ) according to (27). The actor works
in episodes of dynamic length. Let t(ℓ)k and T (ℓ)

k denote
the starting time and the length of episode k, respectively.
Each episode is of a minimum length T

(ℓ)
min + 1, where

T
(ℓ)
min is chosen as described in [42]. Episode k ends if

the determinant of covariance Σ
(ℓ)
t falls below half of its

value at time t(ℓ)k (i.e., det(Σ(ℓ)
t ) < 1

2 detΣt
(ℓ)
k

) or if the
length of the episode is one more than the length of the
previous episode (i.e., t− t(ℓ)k > T

(ℓ)
k−1). Thus,

t
(ℓ)
k+1 = min

t > t
(ℓ)
k + T

(ℓ)
min

∣∣∣∣∣∣ t− t
(ℓ)
k > T

(ℓ)
k−1 or

detΣ
(ℓ)
t < 1

2 detΣt
(ℓ)
k


At the beginning of episode k, the eigen actor A(ℓ)

samples a parameter θ
(ℓ)
k according to the posterior

distribution p(ℓ)
t
(ℓ)
k

. During episode k, the eigen actor A(ℓ)

generates the eigen controls using the sampled parameter
θ
(ℓ)
k , i.e., u(ℓ)t = G(ℓ)(θ

(ℓ)
k )x

(ℓ)
t .

• The auxiliary actor Ă is similar to the eigen actor. Actor
Ă maintains the posterior p̆t on θ̆ according to (28).
The actor works in episodes of dynamic length. The
episodes of the auxiliary actor Ă and the eigen actors
A(ℓ), ℓ ∈ {1, 2, . . . , L}, are separate from each other.3

Let t̆k and T̆k denote the starting time and the length of

3The episode count k is used as a local variable for each actor.

Algorithm 1 Net-TSDE

1: initialize eigen actor: Θ(ℓ), (µℓ
1,Σ

ℓ
1), t

ℓ
0 = −Tmin, T ℓ

−1 =
Tmin, k = 0, θℓk = 0

2: initialize auxiliary actor: Θ̆, (µ̆1, Σ̆1), t̆0 = −Tmin,
T̆−1 = Tmin, k = 0, θ̆k = 0.

3: for t = 1, 2, . . . do
4: observe xt
5: compute {x(ℓ)t }Lℓ=1 and x̆t using (9) and (10).
6: for ℓ = 1, 2, . . . , L do
7: u

(ℓ)
t ← EIGEN-ACTOR(x

(ℓ)
t )

8: ŭt ← AUXILIARY-ACTOR(x̆t)
9: for i ∈ N do

10: Subsystem i applies control uit = u
(ℓ),i
t + ŭit

1: function EIGEN-ACTOR(x(ℓ)t )
2: global var t
3: Update p(ℓ)t according to (27)
4: if (t− t(ℓ)k > Tmin) and
5: ((t− t(ℓ)k > T

(ℓ)
k−1) or (detΣ(ℓ)

t < 1
2 detΣt

(ℓ)
k

))
6: then
7: T

(ℓ)
k ← t− t(ℓ)k , k ← k + 1, t(ℓ)k ← t

8: sample θ(ℓ)k ∼ p
(ℓ)
t

9: return G(ℓ)(θ
(ℓ)
k )x

(ℓ)
t

1: function AUXILIARY-ACTOR(x̆t)
2: global var t
3: Update p̆t according to (28)
4: if (t− t̆k > Tmin) and
5: ((t− t̆k > T̆k−1) or (det Σ̆t <

1
2 det Σ̆t

(ℓ)
k

))
6: then
7: T̆k ← t− t̆k, k ← k + 1, t̆k ← t
8: sample θ̆k ∼ p̆t
9: return Ğ(θ̆k)x̆t

episode k, respectively. Each episode is of a minimum
length T̆min+1, where T̆min is chosen as described in [42].
The termination condition for each episode is similar to
that of the eigen actor A(ℓ). In particular,

t̆k+1 = min

{
t > t̆k + T̆min

∣∣∣∣∣ t− t̆k > T̆k−1 or

det Σ̆t <
1
2 det Σ̆t̆k

}

At the beginning of episode k, the auxillary actor Ă
samples a parameter θ̆k from the posterior distribution
p̆t̆k . During episode k, the auxiliary actor Ă generates
the auxiliary controls using the the sampled parameter θ̆k,
i.e., ŭt = Ğ(θ̆k)x̆t.

Note that the algorithm does not depend on the horizon T .

D. Regret bounds:

We impose the following assumption to ensure that the
closed loop dynamics of the eigenstates and the auxiliary states
of each subsystem are stable.

(A8) There exists a positive number δ ∈ (0, 1) such that
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• for any ℓ ∈ {1, 2, . . . , L} and θ(ℓ), ϕ(ℓ) ∈ Θ(ℓ)

where (θ(ℓ))⊺ = [A
(ℓ)

θ(ℓ) , B
(ℓ)

θ(ℓ) ], we have

ρ(A
(ℓ)

θ(ℓ) +Bℓ
θ(ℓ)G

(ℓ)(ϕ(ℓ))) ≤ δ.

• for any θ̆, ϕ̆ ∈ Θ̆, where (θ̆)⊺ = [Aθ̆, Bθ̆], we
have

ρ(Aθ̆ +Bθ̆Ğ(ϕ̆)) ≤ δ.

This assumption is similar to an assumption made in [42]
for TS for LQG systems. According to [43, Lemma 1] (also
see [18, Theorem 11]), (A8) is satisfied if

Θ(ℓ) = {θ(ℓ) ∈ R(dx+du)×dx : ∥θ(ℓ) − θℓ◦∥ ≤ ε(ℓ)},
Θ̆ = {θ̆ ∈ R(dx+du)×dx : ∥θ̆ − θ̆◦∥ ≤ ε̆},

where θ(ℓ) and θ̆ are stabilizable and ε(ℓ) and ε̆ are sufficiently
small. In other words, the assumption holds when the true
system is in a small neighborhood of a known nominal system.
Such a the small neighborhood can be learned with high
probability by running appropriate stabilizing procedures for
finite time [18], [43].

The following result provides an upper bound on the regret
of the proposed algorithm.

Theorem 2 Under (A1)–(A8), the regret of Net-TSDE is
upper bounded as follows:

R(T ;Net-TSDE) ≤ Õ
(
αGσ2

wd
0.5
x (dx + du)

√
T
)
,

where αG =
∑L

ℓ=1 q
(ℓ) + q0(n− L).

See Section V for proof.

Remark 1 The term αG in the regret bound partially captures
the impact of the network on the regret. The coefficients r0
and {r(ℓ)}Lℓ=1 depend on the network and also affect the regret
but their dependence is hidden inside the Õ(·) notation. It is
possible to explicitly characterize this dependence but doing
so does not provide any additional insights. We discuss the
impact of the network coupling on the regret in Section VI
via some examples.

Remark 2 The regret per subsystem is given by
R(T ;Net-TSDE)/n, which is proportional to

αG/n = O
(L
n

)
+O

(n− 1

n

)
= O

(
1 +

L

n

)
.

Thus, the regret per-subsystem scales as O(1 + L/n). In
contrast, for the standard TSDE algorithm [20], [21], [42],
the regret per subsystem is proportional to αG(TSDE)/n =
O(n0.5). This clearly illustrates the benefit of the proposed
learning algorithm.

V. REGRET ANALYSIS

For the ease of notation, we simply use R(T ) instead of
R(T ;Net-TSDE) in this section. Based on (15) and Theo-
rem 1, the regret may be decomposed as

R(T ) =
∑
i∈N

q0R̆
i(T ) +

∑
i∈N

L∑
ℓ=1

q(ℓ)R(ℓ),i(T ) (29)

where

R̆i(T ) := E
[ T∑
t=1

c̆(x̆it, ŭ
i
t)− T J̆ i(θ̆)

]
,

and, for ℓ ∈ {1, . . . , L},

R(ℓ),i(T ) := E
[ T∑
t=1

c(ℓ)(x
(ℓ),i
t , u

(ℓ),i
t )− TJ (ℓ),i(θ(ℓ))

]
.

Based on the discussion at the beginning of Sec. III-B,
q0R̆

i(T ), i ∈ N , is the regret associated with auxiliary system i
and q(ℓ)R(ℓ),i(T ), ℓ ∈ {1, . . . , L} and i ∈ N , is the regret
associated with eigensystem (ℓ, i). We now bound R̆i(T ) and
R(ℓ),i(T ) separately.

A. Bound on R(ℓ),i(T )

Fix ℓ ∈ {1, . . . , L}. For the component i(ℓ)∗ , the Net-TSDE
algorithm is exactly same as the variation of the TSDE
algorithm of [21] presented in [42]. Therefore, from [42,
Theorem 1], it follows that

R(ℓ),i(ℓ)∗ (T ) ≤ Õ
(
(σ(ℓ),i(ℓ)∗ )2d0.5x (dx + du)

√
T )
)
. (30)

We now show that the regret of other eigensystems (ℓ, i) with
i ̸= i

(ℓ)
∗ also satisfies a similar bound.

Lemma 2 The regret of eigensystem (ℓ, i), ℓ ∈ {1, . . . , L}
and i ∈ N , is bounded as follows:

R(ℓ),i(T ) ≤ Õ
(
(σ(ℓ),i)2d0.5x (dx + du)

√
T
)
. (31)

PROOF Fix ℓ ∈ {1, . . . , L}. Recall from (9) that x(ℓ)t =
xtv

(ℓ)(v(ℓ))⊺. Therefore, for any i ∈ N ,

x
(ℓ),i
t = xtv

(ℓ)v(ℓ),i = v(ℓ),ixtv
(ℓ),

where the last equality follows because v(ℓ),i is a scalar. Since
we are using the same gain G(ℓ)(θ

(ℓ)
k ) for all agents i ∈ N ,

we have

u
(ℓ),i
t = G(ℓ)(θ

(ℓ)
k )x

(ℓ),i
t = v(ℓ),iG(ℓ)(θ

(ℓ)
k )xtv

(ℓ).

Thus, we can write (recall that i(ℓ)∗ is chosen such that v(ℓ),i
(ℓ)
∗ ̸=

0), for all i ∈ N ,

x
(ℓ),i
t =

( v(ℓ),i

v(ℓ),i
(ℓ)
∗

)
x
(ℓ),i(ℓ)∗
t and u(ℓ),it =

( v(ℓ),i

v(ℓ),i
(ℓ)
∗

)
u
(ℓ),i(ℓ)∗
t .

Thus, for any i ∈ N ,

c(ℓ)(x
(ℓ),i
t , u

(ℓ),i
t ) =

( v(ℓ),i

v(ℓ),i
(ℓ)
∗

)2
c(ℓ)(x

(ℓ),i(ℓ)∗
t , u

(ℓ),i(ℓ)∗
t ). (32)

Moreover, from (22), we have

J (ℓ),i(θ(ℓ)) =
( v(ℓ),i

v(ℓ),i
(ℓ)
∗

)2
J (ℓ),i(ℓ)∗ (θ(ℓ)). (33)

By combining (32) and (33), we get

R(ℓ),i(T ) =
( v(ℓ),i

v(ℓ),i
(ℓ)
∗

)2
R(ℓ),i(ℓ)∗ (T ).

Substituting the bound for R(ℓ),i(ℓ)∗ (T ) from (30) and observing
that (v(ℓ),i/v(ℓ),i

(ℓ)
∗ )2 = (σ(ℓ),i/σ(ℓ),i(ℓ)∗ )2 gives the result. ■
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B. Bound on R̆i(T )

The update of the posterior p̆t on θ̆ does not depend on the
history of states and actions of any fixed agent i. Therefore,
we cannot directly use the argument presented in [42] to bound
the regret R̆i(T ). We present a bound from first principles
below.

For the ease of notation, for any episode k, we use Ğk and
S̆k to denote Ğ(θ̆k) and S̆(θ̆k) respectively. From LQ optimal
control theory [44], we know that the average cost J̆ i(θ̆k) and
the optimal policy ŭit = Ğkx̆

i
t for the model parameter θ̆k

satisfy the following Bellman equation:

J̆ i(θ̆k) + (x̆it)
⊺
S̆kx̆

i
t = c̆(x̆it, ŭ

i
t)

+ E
[(
θ̆
⊺
k z̆

i
t + w̆i

t

)⊺
S̆k

(
θ̆
⊺
k z̆

i
t + w̆i

t

)]
.

Adding and subtracting E[(x̆it+1)
⊺S̆kx̆

i
t+1 | z̆it] and noting that

x̆it+1 = θ̆⊺z̆it + w̆i
t, we get that

c̆(x̆it, ŭ
i
t) = J̆ i(θ̆k) + (x̆it)

⊺
S̆kx̆

i
t − E[(x̆it+1)

⊺
S̆kx̆

i
t+1|z̆it]

+ (θ̆
⊺
z̆it)

⊺
S̆k((θ̆)

⊺
z̆it)− (θ̆

⊺
k z̆

i
t)

⊺
S̆k((θ̆k)

⊺
z̆it). (34)

Let K̆T denote the number of episodes of the auxiliary actor
until horizon T . For each k > K̆T , we define t̆k to be T + 1.
Then, using (34), we have that for any agent i,

R̆i(T ) = E
[ K̆T∑
k=1

T̆kJ̆
i(θ̆k)− T J̆ i(θ̆)

]
︸ ︷︷ ︸
regret due to sampling error=:R̆i

0(T )

+ E
[ K̆T∑
k=1

t̆k+1−1∑
t=t̆k

[
(x̆it)

⊺
S̆kx̆

i
t − (x̆it+1)

⊺
S̆kx̆

i
t+1

]]
︸ ︷︷ ︸

regret due to time-varying controller=:R̆i
1(T )

+ E
[ K̆T∑
k=1

t̆k+1−1∑
t=t̆k

[
(θ̆

⊺
z̆it)

⊺
S̆k((θ̆)

⊺
z̆it)

−(θ̆⊺k z̆it)
⊺
S̆k((θ̆k)

⊺
z̆it)
]]
.︸ ︷︷ ︸

regret due to model mismatch=:R̆i
2(T )

(35)

Lemma 3 The terms in (35) are bounded as follows:
1) R̆i

0(T ) ≤ Õ((σ̆i)2(dx + du)
0.5
√
T ).

2) R̆i
1(T ) ≤ Õ((σ̆i)2(dx + du)

0.5
√
T ).

3) R̆i
2(T ) ≤ Õ((σ̆i)2d0.5x (dx + du)

√
T ).

Combining these three, we get that

R̆i(T ) ≤ Õ((σ̆i)2d0.5x (dx + du)
√
T ). (36)

See Appendix for the proof.

C. Proof of Theorem 2

For ease of notation, let R∗ = Õ(d0.5x (dx + du)
√
T ). Then,

by subsituting the result of Lemmas 2 and 3 in (29), we get
that

R(T ) ≤
∑
i∈N

q0(σ̆
i)2R∗ +

∑
i∈N

L∑
ℓ=1

q(ℓ)(σ(ℓ),i)2R∗

(a)
=
∑
i∈N

q0(v̆
i)2σ2

wR
∗ +

∑
i∈N

L∑
ℓ=1

q(ℓ)(v(ℓ),i)2σ2
wR

∗

(b)
=
(
q0(n− L) +

L∑
ℓ=1

q(ℓ)
)
σ2
wR

∗, (37)

where (a) follows from (24) and (b) follows from observing
that

∑
i∈N (v(ℓ),i)2 = 1 and therefore

∑
i∈N (v̆i)2 = n − L.

Eq. (37) establishes the result of Theorem 2.

VI. SOME EXAMPLES

A. Mean-field system

Consider a complete graph G where the edge weights are
equal to 1/n. Let M be equal to the adjacency matrix of the
graph, i.e., M = 1

n1n×n. Thus, the system dynamics are given
by

xit+1 = Axit +Buit +Dx̄t + Eūt + wi
t,

where x̄t = 1
n

∑
i∈N xit and ūt = 1

n

∑
i∈N uit. Suppose Kx =

Ku = 1 and q0 = r0 = 1/n and q1 = r1 = κ/n, where κ is a
positive constant.

In this case, M has rank L = 1, the non-zero eigenvalue
of M is λ(1) = 1, the corresponding normalized eigenvector
is 1√

n
1n×1 and q(1) = r(1) = q0 + q1 = (1 + κ)/n. The

eigenstate is given by x1t = [x̄t, . . . , x̄t] and a similar structure
holds for the eigencontrol u1t . The per-step cost can be written
as (see (15))

c(xt, ut) = (1 + κ)
[
x̄
⊺
tQx̄t + ū

⊺
tRūt

]
.

+
1

n

∑
i∈N

[
(xit − x̄t)

⊺
Q(xit − x̄t) + (uit − ūt)

⊺
R(uit − ūt)

]
Thus, the system is similar to the mean-field team system
investigated in [6].

For this model, the network dependent constant αG in the
regret bound of Theorem 2 is given by αG =

(
1 + κ

n

)
=

O
(
1 + 1

n

)
. Thus, for the mean-field system, the regret of

Net-TSDE scales as O(1 + 1
n ) with the number of agents.

This is consistent with the discussion following Theorem 2.
We test these conclusions via numerical simulations of a

scalar mean-field model with dx = du = 1, σ2
w = 1, A = 1,

B = 0.3, D = 0.5, E = 0.2, Q = 1, R = 1, and κ = 0.5.
The uncertain sets are chosen as Θ(1) = {θ(1) ∈ R2 : A+D+
(B + E)G(1)(θ(1)) < δ} and Θ̆ = {θ̆ ∈ R2 : A + BĞ(θ̆) <
δ} where δ = 0.99. The prior over these uncertain sets is
chosen according to (A6)–(A7) where µ̆1 = µ

(1)
1 = [1, 1]⊺ and

Σ̆1 = Σ
(1)
1 = I . We set Tmin = 0 in Net-TSDE. The system

is simulated for a horizon of T = 5000 and the expected
regret R(T ) averaged over 500 sample trajectories is shown
in Fig. 1. As expected, the regret scales as Õ(

√
T ) with time

and O
(
1 + 1

n

)
with the number of agents.

B. A general low-rank network

We consider a network with 4n nodes given by the graph
G = G◦ ⊗ Cn, where G◦ is a 4-node graph shown in Fig. 2
and Cn is the complete graph with n nodes and each edge
weight equal to 1

n . Let M be the adjacency matrix of G which
is given as M = M◦ ⊗ 1

n1n×n, where M◦ is the adjacency
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(a) R(T )/
√
T vs T (b) R(T )/

√
T vs number of

agents.

Figure 1: Regret for mean-field system.

3 4

2 1
a

a

b

b


0 a 0 b
a 0 a 0
0 a 0 b
b 0 b 0


Figure 2: Graph G◦ with n = 4 nodes and its adjacency matrix

(a) R(T )/
√
T vs T (b) R(T )/

√
T vs number of

agents.

Figure 3: Regret for general low-rank network.

matrix of G◦ shown in Fig. 2. Moreover, suppose Kx = 2 with
q0 = 1, q1 = −2, and q2 = 1 and Ku = 0 with r0 = 1. Note
that the cost is not normalized per-agent.

In this case, the rank of M◦ is 2 with eigenvalues ±ρ,
where ρ =

√
2(a2 + b2) and the rank of 1

n1n×n is 1 with
eigenvalue 1. Thus, M =M◦⊗ 1

n1n×n has the same non-zero
eigenvalues as M◦ given by λ(1) = ρ and λ(2) = −ρ. Further,
q(ℓ) = (1 − λ(ℓ))2 and r(ℓ) = 1, for ℓ ∈ {1, 2}. We assume
that a2 + b2 ̸= 0.5, so that the model satisfies (A3).

For this model, the scaling parameter αG in the regret bound
in Theorem 2 is given by

αG = (1− ρ)2 + (1 + ρ)2 + (4n− 2) = 4n+ 2ρ2.

Recall that ρ2 = (λ(1))2 = (λ(2))2. Thus, αG has an explicit
dependence on the square of the eigenvalues and the number
of nodes.

We verify this relationship via numerical simulations. We
consider the graph above with two choices of parameters (a, b):
(i) a = b = 0.05 and (ii) a = b = 5. For both cases, we consider
a scalar system with parameters same as the mean-field system
considered in Sec. VI-A. The regret for both cases with different
choices of number of agents 4n ∈ {4, 40, 80, 100} is shown
in Fig. 3. As expected, the regret scales as Õ(

√
T ) with time

and O
(
4n+ 2ρ2) with the number of agents.

VII. CONCLUSION

We consider the problem of controlling an unknown LQG
system consisting of multiple subsystems connected over a
network. By utilizing a spectral decomposition technique, we
decompose the coupled subsystems into eigen and auxiliary sys-
tems. We propose a TS-based learning algorithm Net-TSDE
which maintains separate posterior distributions on the unknown
parameters θ(ℓ), ℓ ∈ {1, . . . , L}, and θ̆ associated with the
eigen and auxiliary systems respectively. For each eigen-system,
Net-TSDE learns the unknown parameter θ(ℓ) and controls the
system in a manner similar to the TSDE algorithm for single
agent LQG systems proposed in [20], [21], [42]. Consequently,
the regret for each eigen system can be bounded using the
results of [20], [21], [42]. However, the part of the Net-TSDE
algorithm that performs learning and control for the auxiliary
system has an agent selection step and thus requires additional
analysis to bound its regret. Combining the regret bounds for the
eigen and auxiliary systems shows that the total expected regret
of Net-TSDE is upper bounded by Õ(nd0.5x (dx + du)

√
T ).

The empirically observed scaling of regret with respect to
the time horizon T and the number of subsystems n in our
numerical experiments agrees with the theoretical upper bound.

The results presented in this paper rely on the spectral
decomposition developed in [23]. A limitation of this decom-
position is that the local dynamics (i.e., the (A,B) matrices)
are assumed to be identical for all subsystems. Interesting
generalizations overcoming this limitation include settings
where (i) there are multiple types of subsystems and the (A,B)
matrices are the same for subsystems of the same type but
different across types; and (ii) the subsystems are not identical
but approximately identical, i.e., there are nominal dynamics
(A◦, B◦) and the local dynamics (Ai, Bi) of subsystem i are
in a small neighborhood of (A◦, B◦).

The decomposition in [23] exploits the fact that the dynamics
and the cost couplings have the same spectrum (i.e., the
same orthonormal eigenvectors). It is also possible to consider
learning algorithms which exploit other features of the network
such as sparsity in the case of networked MDPs [33], [34].

REFERENCES

[1] N. Sandell, P. Varaiya, M. Athans, and M. Safonov, “Survey of
decentralized control methods for large scale systems,” IEEE Trans.
Autom. Control, vol. 23, no. 2, pp. 108–128, 1978.

[2] J. Lunze, “Dynamics of strongly coupled symmetric composite systems,”
International Journal of Control, vol. 44, no. 6, pp. 1617–1640, 1986.

[3] M. K. Sundareshan and R. M. Elbanna, “Qualitative analysis and
decentralized controller synthesis for a class of large-scale systems with
symmetrically interconnected subsystems,” Automatica, vol. 27, no. 2,
pp. 383–388, 1991.

[4] G.-H. Yang and S.-Y. Zhang, “Structural properties of large-scale systems
possessing similar structures,” Automatica, vol. 31, no. 7, pp. 1011–1017,
1995.

[5] S. C. Hamilton and M. E. Broucke, “Patterned linear systems,” Automat-
ica, vol. 48, no. 2, pp. 263–272, 2012.

[6] J. Arabneydi and A. Mahajan, “Team-optimal solution of finite number
of mean-field coupled LQG subsystems,” in Conf. Decision and Control,
(Kyoto, Japan), Dec. 2015.

[7] K. J. Astrom and B. Wittenmark, Adaptive Control. Addison-Wesley
Longman Publishing Co., Inc., 1994.

[8] S. J. Bradtke, “Reinforcement learning applied to linear quadratic
regulation,” in Neural Information Processing Systems, pp. 295–302,
1993.



10

[9] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic
control using policy iteration,” in Proceedings of American Control
Conference, vol. 3, pp. 3475–3479, 1994.

[10] M. C. Campi and P. Kumar, “Adaptive linear quadratic Gaussian control:
the cost-biased approach revisited,” SIAM Journal on Control and
Optimization, vol. 36, no. 6, pp. 1890–1907, 1998.

[11] Y. Abbasi-Yadkori and C. Szepesvári, “Regret bounds for the adaptive
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APPENDIX

A. Preliminary Results

Since S̆(·) and Ğ(·) are continuous functions on a com-
pact set Θ̆, there exist finite constants M̆J , M̆θ̆, M̆S , M̆G

such that Tr(S̆(θ̆)) ≤ M̆J , ∥θ̆∥ ≤ M̆θ̆, ∥S̆(θ̆)∥ ≤ M̆S and
∥[I, Ğ(θ̆)⊺]⊺∥ ≤ M̆G for all θ̆ ∈ Θ̆ where ∥ · ∥ is the induced
matrix norm.

Let X̆i
T = σ̆i +max1≤t≤T ∥x̆it∥. The next two bounds

follow from [42, Lemma 4] and [42, Lemma 5].

Lemma 4 For each node i ∈ N , any q ≥ 1 and any T > 1,

E
[
(X̆i

T )
q

(σ̆i)q

]
≤ O

(
log T

)
.

Lemma 5 For any q ≥ 1, we have

E
[
(X̆i

T )
q

(σ̆i)q
log

( T∑
t=1

(X̆i
T )

2

(σ̆i)2

)]

≤ E
[
(X̆i

T )
q

(σ̆i)q
log

( T∑
t=1

∑
i∈N

(X̆i
T )

2

(σ̆i)2

)]
≤ Õ(1). (38)

The next lemma gives an upper bound on the number of
episodes K̆T .

Lemma 6 The number of episodes K̆T is bounded as follows:

K̆T ≤ O


√√√√(dx + du)T log

(
T−1∑
t=1

(X̆jt
T )2

(σ̆jt)2

) .

PROOF We can follow the same argument as in the proof
of Lemma 5 in [42]. Let η̆ − 1 be the number of times the
second stopping criterion is triggered for p̆t. Using the analysis



11

in the proof of Lemma 5 in [42], we can get the following
inequalities:

K̆T ≤
√
2η̆T , (39)

det(Σ̆−1
T ) ≥ 2η̆−1 det(Σ̆−1

1 ) ≥ 2η̆−1λ̆dmin, (40)

where d = dx + du and λ̆min is the minimum eigenvalue of
Σ̆−1

1 .
Combining (40) with Tr(Σ̆−1

T )/d ≥ det(Σ̆−1
T )1/d, we get

Tr(Σ̆−1
T ) ≥ dλ̆min2

(η̆−1)/d. Thus,

η̆ ≤ 1 +
d

log 2
log

(
Tr(Σ̆−1

T )

dλ̆min

)
. (41)

Now, we bound Tr(Σ̆−1
T ). From (28b), we have

Tr(Σ̆−1
T ) = Tr(Σ̆−1

1 ) +

T−1∑
t=1

1

(σ̆jt)2
Tr(z̆jtt (z̆jtt )

⊺︸ ︷︷ ︸
=∥z̆jt

t ∥2

). (42)

Note that ∥z̆jtt ∥ = ∥[I, Ğ(θ̆)
⊺]⊺x̆jtt ∥ ≤ M̆G∥x̆jtt ∥ ≤ M̆GX̆

jt
T .

Using ∥z̆jtt ∥2 ≤ M̆2
G(X̆

jt
T )2 in (42) and substituting the

resulting bound on Tr(Σ̆−1
T ) in (41) and then combining it

with the bound on η in (39), gives the result of the lemma.■

Lemma 7 The expected value of K̆T is bounded as follows:

E[K̆T ] ≤ Õ
(√

(dx + du)T
)

PROOF From Lemma 6, we get

E[K̆T ] ≤ O

(
E

[√√√√(dx + du)T log

(T−1∑
t=1

(X̆jt
T )2

(σ̆jt)2

)])

(a)

≤ O
(√√√√(dx + du)T log

(
E
[T−1∑
t=1

(X̆jt
T )2

(σ̆jt)2

]))

≤ O
(√√√√(dx + du)T log

(
E
[T−1∑
t=1

∑
i∈N

(X̆i
T )

2

(σ̆i)2

]))
(b)

≤ Õ(
√

(dx + du)T )

where (a) follows from Jensen’s inequality and (b) follows
from Lemma 4. ■

B. Proof of Lemma 3

PROOF We will prove each part separately.
1) Bounding R̆i

0(T ): From an argument similar to the proof
of Lemma 5 of [21], we get that R̆i

0(T ) ≤ (σ̆i)2M̆JE[K̆T ].
The result then follows from substituting the bound on E[K̆T ]
from Lemma 7.

2) Bounding R̆i
1(T ):

R̆i
1(T ) = E

[ K̆T∑
k=1

t̆k+1−1∑
t=t̆k

[
(x̆it)

⊺
S̆kx̆

i
t − (x̆it+1)

⊺
S̆kx̆

i
t+1

]]

= E
[ K̆T∑
k=1

[
(x̆i

t̆k
)
⊺
S̆kx̆

i
t̆k
− (x̆i

t̆k+1
)
⊺
S̆kx̆

i
t̆k+1

]]

≤ E
[ K̆T∑
k=1

(x̆i
t̆k
)
⊺
S̆kx̆

i
t̆k

]
≤ E

[ K̆T∑
k=1

∥S̆k∥∥x̆itk∥
2

]
≤ M̆SE[K̆T (X̆

i
T )

2] (43)

where the last inequality follows from ∥S̆k∥ ≤ M̆S . Using the
bound for K̆T in Lemma 6, we get

R̆i
1(T ) ≤ O

(√
(dx + du)T E

[
(X̆i

T )
2

√√√√log

(T−1∑
t=1

(X̆jt
T )2

(σ̆jt)2

)])
.

(44)
Now, consider the term

E

[
(X̆i

T )
2

√√√√log

(T−1∑
t=1

(X̆jt
T )2

(σ̆jt)2

)])

(a)

≤

√√√√E[(X̆i
T )

4] E
[
log

(T−1∑
t=1

(X̆jt
T )2

(σ̆jt)2

)]
(b)

≤

√√√√E[(X̆i
T )

4] log

(
E
[T−1∑
t=1

∑
i∈N

(X̆i
T )

2

(σ̆jt)2

])
(c)

≤ Õ((σ̆i)2), (45)

where (a) follows from Cauchy-Schwarz, (b) follows from
Jensen’s inequality and (c) follows from Lemma 4. The result
then follows from substituting (45) in (43).

3) Bounding R̆i
2(T ): As in [21], we can bound the inner

summand in R̆i
2(T ) as[

(θ̆
⊺
z̆it)

⊺
S̆k(θ̆

⊺
z̆it)− (θ̆

⊺
k z̆

i
t)

⊺
S̆k((θ̆k)

⊺
z̆it)
]

≤ O(X̆i
T ∥(θ̆ − θ̆k)

⊺
z̆it∥).

Therefore,

R̆i
2(T ) ≤ O

(
E
[
X̆i

T

K̆T∑
k=1

t̆k+1−1∑
t=t̆k

∥(θ̆ − θ̆k)
⊺
z̆it∥
])
. (46)

The term inside O(·) can be written as

E
[
X̆i

T

K̆T∑
k=1

t̆k+1−1∑
t=t̆k

∥(θ̆ − θ̆k)
⊺
z̆it∥
]

= E
[
X̆i

T

K̆T∑
k=1

t̆k+1−1∑
t=t̆k

∥(Σ̆−0.5
tk

(θ̆ − θ̆k))
⊺
Σ̆0.5

tk
z̆it∥
]

≤ E
[ K̆T∑
k=1

t̆k+1−1∑
t=t̆k

∥Σ̆−0.5
tk

(θ̆ − θ̆k)∥ × X̆i
T ∥Σ̆0.5

tk
z̆it∥
]

≤

√√√√√E
[ K̆T∑
k=1

t̆k+1−1∑
t=t̆k

∥Σ̆−0.5
tk

(θ̆ − θ̆k)∥2
]

×

√√√√√E
[ K̆T∑
k=1

t̆k+1−1∑
t=t̆k

(X̆i
T )

2∥Σ̆0.5
tk
z̆it∥2

]
(47)
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where the last inequality follows from Cauchy-Schwarz in-
equality.

Following the same argument as [42, Lemma 7], the first
part of (47) is bounded by

E
[ K̆T∑
k=1

t̆k+1−1∑
t=t̆k

∥Σ̆−0.5
tk

(θ̆ − θ̆k)∥2
]
≤ O(dx(dx + du)T ). (48)

For the second part of the bound in (47), we follow the same
argument as [42, Lemma 8]. Recall that λ̆min is the smallest
eigenvalue of Σ̆−1

1 . Therefore, by (28b), all eigenvalues of Σ̆−1
t

are no smaller than λ̆min. Or, equivalently, all eigenvalues of
Σ̆t are no larger than 1/λ̆min.

Using [11, Lemma 11], we can show that for any t ∈
{tk, . . . , tk+1 − 1},

∥Σ̆0.5
tk
z̆it∥2 = (z̆it)

⊺
Σ̆tk z̆

i
t ≤

det Σ̆−1
t

det Σ̆−1
tk

(z̆it)
⊺
Σ̆tz̆

i
t

≤ F1(X̆
i
T ) (z̆

i
t)

⊺
Σ̆tz̆

i
t (49)

where F1(X̆
i
T ) =

(
1 + (M̆2

G(X̆
i
T )

2/λ̆minσ̆
2
w)
)T̆min∨1

and the
last inequality follows from [42, Lemma 10].

Moreover, since all eigenvalues of Σ̆t are no larger than
1/λ̆min, we have (z̆it)

⊺Σ̆tz̆
i
t ≤ ∥z̆it∥2/λ̆min ≤ M̆2

G(X̆
i
T )

2/λ̆min.
Therefore,

(z̆it)
⊺
Σ̆tz̆

i
t ≤

(
(σ̆i)2 ∨ M̆

2
G(X̆

i
T )

2

λ̆min

)(
1 ∧ (z̆it)

⊺Σ̆tz̆
i
t

(σ̆i)2

)
≤
(
(σ̆i)2 +

M̆2
G(X̆

i
T )

2

λ̆min

)(
1 ∧ (z̆jtt )⊺Σ̆tz̆

jt
t

(σ̆jt)2

)
, (50)

where the last inequality follows from the definition of jt. Let
F2(X̆

i
T ) =

(
(σ̆i)2 + (λ̆min/M̆

2
G(X̆

i
T )

2)
)
. Then,

T∑
t=1

(z̆it)
⊺
Σ̆tz̆

i
t ≤ F2(X̆

i
T )

T∑
t=1

(
1 ∧ (z̆jtt )⊺Σ̆tz̆

jt
t

(σ̆jt)2

)

= F2(X̆
i
T )

T∑
t=1

(
1 ∧

∥∥∥∥Σ0.5
t z̆jtt (z̆jtt )⊺Σ0.5

t

(σ̆jt)2

∥∥∥∥)
(a)

≤ F2(X̆
i
T )

[
2d log

(
Tr(Σ̆−1

T+1)

d

)
− log detΣ−1

1

]
(b)

≤ F2(X̆
i
T )

[
2d log

(
1

d

(
Tr(Σ̆−1

1 ) + M̆G

T∑
t=1

(X̆jt
T )2

(σ̆jt)2

))
− log detΣ−1

1

]
(51)

where d = dx + du and (a) follows from (28b) and the
intermediate step in the proof of [45, Lemma 6]. and (b)
follows from (42) and the subsequent discussion.

Using (49) and (51), we can bound the second term of (47)
as follows

E
[ T∑

t=1

(X̆i
T )

2∥Σ̆0.5
tk
z̆it∥2

]
≤ O

(
dE
[
F1(X̆

i
t)F2(X̆

i
T )(X̆

i
T )

2

× log

( T∑
t=1

(X̆i
T )

2

(σ̆i)2

)])

≤ O
(
d(σ̆i)4E

[
F1(X̆

i
T )
F2(X̆

i
T )

(σ̆i)2
(X̆i

T )
2

(σ̆i)2
log

( T∑
t=1

(X̆i
T )

2

(σ̆i)2

)])
≤ Õ(d(σ̆i)4) (52)

where the last inequality follows by observing that
F1(X̆

i
T )

F2(X̆
i
T )

(σ̆i)2
(X̆i

T )2

(σ̆i)2 log
(∑T

t=1
(X̆i

T )2

(σ̆i)2

)
is a polynomial in

X̆i
T /σ̆

i multiplied by log(
∑T

t=1
(X̆i

T )2

(σ̆i)2 ) and, using Lemma 5.
The result then follows by substituting (48) and (52)

in (47). ■
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