
1

Renewal Monte Carlo:
Renewal theory based reinforcement learning

Jayakumar Subramanian and Aditya Mahajan

Abstract—An online reinforcement learning algorithm called
Renewal Monte Carlo (RMC) is presented. RMC works for
infinite horizon Markov decision processes with a designated
start state. RMC is a Monte Carlo algorithm that retains
the key advantages of Monte Carlo—viz., simplicity, ease of
implementation, and low bias—while circumventing the main
drawbacks of Monte Carlo—viz., high variance and delayed
updates. Given a parameterized policy πθ , the algorithm consists
of three parts: estimating the expected discounted reward Rθ
and the expected discounted time Tθ over a regenerative cycle;
estimating the derivatives ∇θRθ and ∇θTθ , and updating the
policy parameters using stochastic approximation to find the
roots of Rθ∇θTθ−Tθ∇θRθ . It is shown that under mild technical
conditions, RMC converges to a locally optimal policy. It is also
shown that RMC works for post-decision state models as well. An
approximate version of RMC is proposed where a regenerative
cycle is defined as successive visits to a pre-specified “renewal
set”. It is shown that if the value function of the system is
locally Lipschitz on the renewal set, then RMC converges to an
approximate locally optimal policy. Three numerical experiments
are presented to illustrate RMC and compare it with other state-
of-the-art reinforcement learning algorithms.

Index Terms—Reinforcement learning, Markov decision pro-
cesses, renewal theory, Monte Carlo methods, policy gradient,
stochastic approximation

I. INTRODUCTION

In recent years, reinforcement learning [1]–[4] has emerged
as an effective framework for learning how to act optimally
in unknown environments. Policy gradient methods [5]–[10]
have played a prominent role in the success of reinforcement
learning. Such methods have two critical components: policy
evaluation and policy improvement. In policy evaluation, the
performance of a parameterized policy is evaluated while in
policy improvement, the policy parameters are updated using
stochastic gradient ascent.

Policy gradient methods may be broadly classified as Monte
Carlo methods and temporal difference methods. In Monte
Carlo methods, performance of a policy is estimated using the
discounted return of one or more sample paths; in temporal
difference methods, an initial estimate for the (action-) value
function is chosen arbitrarily and then improved iteratively
using temporal differences. Monte Carlo methods are attractive
because they have zero bias, are simple and easy to implement,
and work for both discounted and average reward setups as

This work was supported by the Natural Sciences and Engineering Research
Council of Canada under Discovery Accelerator Grant 493011-16.

The authors are with the Electrical and Computer Engineering Depart-
ment, McGill University, Montreal, QC H3A 0E9, Canada. (e-mails: jayaku-
mar.subramanian@mail.mcgill.ca, aditya.mahajan@mcgill.ca)

Preliminary version of this paper was presented at the 57th IEEE Conference
on Decision and Control.

well as for models with continuous state and action spaces.
However, they suffer from various drawbacks. First, they have
a high variance because a single sample path is used to estimate
performance. Second, in Monte Carlo methods it is implicitly
assumed that the model is episodic (i.e., there is an end state
and the system stops when it reaches the end state). To use these
methods for infinite horizon models, the trajectory is arbitrarily
truncated to treat the model as an episodic model. For that
reason, the resultant policy is not asymptotically optimal. Third,
the policy improvement step cannot be carried out in tandem
with policy evaluation. One must wait until the end of the
episode to estimate the performance and only then can the
policy parameters be updated. For these reasons the literature on
policy gradient methods largely ignores Monte Carlo methods
and almost exclusively focuses on temporal difference methods
such as actor-critic with eligibility traces [3].

In this paper an online reinforcement learning algorithm
called Renewal Monte Carlo (RMC) is presented. RMC
works for infinite horizon Markov decision processes with
a designated start state. RMC is a Monte Carlo algorithm that
retains the key advantages of Monte Carlo—viz., simplicity,
ease of implementation, and low bias—while circumventing
the main drawbacks of Monte Carlo—viz., high variance and
delayed updates. The key intuition behind RMC is that, under
any reasonable policy, the reward process is ergodic. Therefore,
using ideas from renewal theory, it can be shown that the
performance of any parameterized policy πθ is proportional
to Rθ/Tθ, where Rθ and Tθ are the expected discounted
reward and the expected discounted time of the reward process
over a regenerative cycle. Hence, the performance gradient is
proportional to Hθ = ∇RθTθ − Rθ∇Tθ. Hence, any policy
for which Hθ is zero is locally optimal.

In RMC, Rθ and Tθ are estimated from Monte Carlo
evaluations over multiple regenerative cycles; ∇Rθ and ∇Tθ
are estimated using either likelihood ratio or simultaneous
perturbation based estimators; and the root of Hθ is obtained
using stochastic approximation. We show that under mild
technical conditions, RMC converges to a locally optimal
policy.

The RMC algorithm is generalized to post-decision state
models, where regenerative cycle is defined as successive visits
to an initial post-decision state.

An approximate RMC algorithm is proposed where suc-
cessive visits to a pre-specified “renewal set” is viewed as a
regenerative cycle. We show that if the value function for the
system is locally Lipschitz continuous on the renewal set, then
RMC converges to approximate locally optimal policy.

The effectiveness of RMC is illustrated on three examples:

2

randomly generated Markov decision processes, event-driven
communication, and inventory control. The last two examples
have continuous state space and show that RMC works well
for continuous state models as well.

Although renewal theory is commonly used to estimate
performance of stochastic systems [11], [12], those methods
assume that the probability law of the primitive random vari-
ables and its weak derivative are known, which is not the case
in reinforcement learning. Renewal theory is also commonly
used in queuing theory and Markov decision processes (MDPs)
with average reward criteria and a known system model. There
is some prior work on using renewal theory for reinforcement
learning [13], [14], where renewal theory based estimators for
the average return and differential value function for average
reward MDPs are developed. In RMC, renewal theory is used
in a different manner for discounted reward MDPs (and the
results generalize to average cost MDPs).

II. RMC ALGORITHM

Consider a Markov decision process (MDP) with state St ∈
S and action At ∈ A. The system starts in an initial state
s0 ∈ S and at each time t there is a controlled transition from
St to St+1 according to a transition kernel P (At). At each
time t, a per-step reward Rt = r(St, At, St+1) is received.

A (time-homogeneous and Markov) policy π maps the
current state to a distribution on actions, i.e., At ∼ π(St).
We use π(a|s) to denote P(At = a|St = s). The performance
of a policy π is given by

Jπ = EAt∼π(St)

[∞∑
t=0

γtRt

∣∣∣∣ S0 = s0

]
, (1)

where γ ∈ (0, 1) is the discount factor. We are interested in
identifying an optimal policy, i.e., a policy that maximizes the
performance. When S and A are Borel spaces, we assume that
the model satisfies the standard regularity conditions under
which time-homogeneous Markov policies are optimal [15].

Suppose policies are parameterized by a closed and convex
subset Θ of the Euclidean space.1 Given θ ∈ Θ, we use πθ to
denote the policy parameterized by θ and Jθ to denote Jπθ .
We assume that for all policies πθ, θ ∈ Θ, the designated start
state s0 is positive recurrent.

The typical approach for policy gradient based reinforcement
learning is to start with an initial choice θ0 ∈ Θ and iteratively
update it using stochastic gradient ascent. In particular, let
∇̂Jθm be an unbiased estimator of ∇θJθ

∣∣
θ=θm

, then update

θm+1 =
[
θm + αm∇̂Jθm

]
Θ

(2)

where [θ]Θ denotes the projection of θ onto Θ and {αm}m≥1

are learning rates that satisfy the standard assumptions:
∞∑
m=1

αm =∞ and
∞∑
m=1

α2
m <∞. (3)

Under mild technical conditions [16], the above iteration
converges to a θ∗ that is locally optimal, i.e., ∇θJθ

∣∣
θ=θ∗

= 0.

1Examples of such parametized policies include the weights of a Gibbs
soft-max policy, the weights of a deep neural network, or the thresholds in a
control limit policy, and so on.

In RMC, we approximate ∇θJθ by a renewal theory based
estimator as explained below.

Let τ (n) denote the stopping time when the system returns
to the start state s0 for the n-th time. In particular, let τ (0) = 0
and for n ≥ 1 define τ (n) = min{t > τ (n−1) : st = s0}.
We call the sequence of (St, At, Rt) from τ (n−1) to τ (n) − 1
as the n-th regenerative cycle. Let R(n) and T(n) denote the
total discounted reward and total discounted time of the n-th
regenerative cycle, i.e.,

R(n) = Γ(n)
τ(n)−1∑
t=τ(n−1)

γtRt and T(n) = Γ(n)
τ(n)−1∑
t=τ(n−1)

γt, (4)

where Γ(n) = γ−τ
(n−1)

. By the strong Markov property [17],
{R(n)}n≥1 and {T(n)}n≥1 are i.i.d. sequences. Let Rθ and Tθ
denote E[R(n)] and E[T(n)], respectively. Define

R̂ =
1

N

N∑
n=1

R(n) and T̂ =
1

N

N∑
n=1

T(n), (5)

where N is an arbitrarily chosen number of cycles. Then, R̂
and T̂ are unbiased and asymptotically consistent estimators
of Rθ and Tθ.

From ideas of renewal theory [18], we have the following.

Proposition 1 (Renewal Relationship) The performance of
policy πθ is given by:

Jθ =
Rθ

(1− γ)Tθ
. (6)

PROOF Consider the performance:

Jθ = EAt∼πθ(St)

[τ(1)−1∑
t=0

γtRt + γτ
(1)
∞∑

t=τ(1)

γt−τ
(1)

Rt

∣∣∣∣ S0 = s0

]
(a)
= Rθ + EAt∼πθ(St)[γ

τ(1)

] Jθ (7)

where the second expression in (a) uses the independence of
random variables from (0, τ (1)−1) to those from τ (1) onwards
due to the strong Markov property [17].

Now, by definition, Tθ = (1− EAt∼πθ(St)[γ
τ(1)

])/(1− γ).
Rearranging terms, we get EAt∼πθ(St)[γ

τ(1)

] = 1− (1− γ)Tθ.
Substituting this in (7), we get the result of the proposition.�

Differentiating both sides of (6) with respect to θ, we get

∇θJθ =
Hθ

T2
θ(1− γ)

, where Hθ = Tθ∇θRθ − Rθ∇θTθ. (8)

Therefore, instead of using stochastic gradient ascent to find
a local maximum of Jθ, we can use stochastic approximation
to find a root of Hθ.

Theorem 1 Consider the sequence {θm}m≥1 where the initial
θ0 ∈ Θ is chosen arbitrarily, and for m > 0,

θm+1 =
[
θm + αmĤm

]
Θ
, (9)

where {αm}m≥1 satisfies (3) and Ĥm is an unbiased estimator
of Hθm . Then, the sequence {θm}m≥1 converges almost surely
and

lim
m→∞

∇θJθ
∣∣
θm

= 0.

3

Algorithm 1: RMC Algorithm with likelihood ratio based
gradient estimates.

input : Intial policy θ0, discount factor γ, initial
state s0, number of regenerative cycles N

for iteration m = 0, 1, . . . do
for regenerative cycle n1 = 1 to N do

Generate n1-th regenerative cycle using policy πθm .
Compute R(n1) and T(n1) using (4).

Set R̂m = mean(R(n1) : n1 ∈ {1, . . . , N}).
Set T̂m = mean(T(n1) : n1 ∈ {1, . . . , N}).
for regenerative cycle n2 = N + 1 to 2N do

Generate n2-th regenerative cycle using policy πθm .
Compute R

(n2)
σ , T(n2)

σ and Λσ for all σ using (12).
Set R̂(n2) =

∑τn2−1
σ=τn2−1 R

(n2)
σ Λσ .

Set T̂(n2) =
∑τn2−1
σ=τn2−1 T

(n2)
σ Λσ .

Set ∇̂Rm = mean(R̂(n2) : n2 ∈ {N + 1, . . . , 2N})
Set ∇̂Tm = mean(T̂(n2) : n2 ∈ {N + 1, . . . , 2N})
Set Ĥm = T̂m∇̂Rm − R̂m∇̂Tm.

Update θm+1 =
[
θm + αmĤm

]
Θ

.

PROOF The convergence of the {θm}m≥1 follows from [16,
Theorem 2.2] and the fact that the model satisfies conditions
(A1)–(A4) of [16, pg 10–11]. �

Proposition 2 Let R̂m, T̂m, ∇̂Rm and ∇̂Tm be unbiased
estimators of Rθm , Tθm , ∇θRθm , and ∇θTθm , respectively
such that T̂m ⊥ ∇̂Rm and R̂m ⊥ ∇̂Tm.2 Then,

Ĥm = T̂m∇̂Rm − R̂m∇̂Tm (10)

is an unbiased estimator of Hθm . Furthermore, assume that
1) Hθ is continuous,
2) the estimate Ĥm has bounded variance,
3) The differential equation dθ/dt = Hθ has isolated limit

points that are locally asymptotically stable.
Then, the sequence {θm}m≥1 generated by (9) converges
almost surely and

lim
m→∞

∇θJθ
∣∣
θm

= 0.

PROOF The independence assumption implies that Ĥm is
unbiased. The model satisfies conditions (A2.1)–(A2.6) of [19,
pg. 126], so [19, Thm 2.1] implies that {θm}m≥1 converges.
The convergence to a local maximum follows from the
discussion in [19, Sec. 5.8]. �

We can estimate Rθ and Tθ using (5). We present two
methods to estimate the gradients of Rθ and Tθ: (i) a likelihood
ratio based gradient estimator which works when the policy
is differentiable with respect to the policy parameters; and
(ii) is a simultaneous perturbation based gradient estimator that
uses finite differences, which is useful when the policy is not
differentiable with respect to the policy parameters.

2X ⊥ Y denotes that random variables X and Y are independent.

A. Likelihood ratio based gradient estimator

One approach to estimate the performance gradient is to
use likelihood radio based estimates [12], [20], [21]. Suppose
the policy πθ(a|s) is differentiable with respect to θ. For any
time t, define the likelihood function

Λt = ∇θ log[πθ(At | St)], (11)

and for σ ∈ {τ (n−1), . . . , τ (n) − 1}, define

R(n)
σ = Γ(n)

τ(n)−1∑
t=σ

γtRt and T(n)
σ = Γ(n)

τ(n)−1∑
t=σ

γt. (12)

In this notation R(n) = R
(n)

τ(n−1) and T(n) = T
(n)

τ(n−1) . Then,
define the following estimators for ∇θRθ and ∇θTθ:

∇̂R =
1

N

N∑
n=1

τ(n)−1∑
σ=τ(n−1)

R(n)
σ Λσ, (13)

∇̂T =
1

N

N∑
n=1

τ(n)−1∑
σ=τ(n−1)

T(n)
σ Λσ, (14)

where N is an arbitrarily chosen number.

Proposition 3 ∇̂R and ∇̂T defined above are unbiased and
asymptotically consistent estimators of ∇θRθ and ∇θTθ.

PROOF Let Pθ denote the probability induced on the sample
paths when the system is following policy πθ. For t ∈
{τ (n−1), . . . , τ (n) − 1}, let D(n)

t denote the sample path
(Ss, As, Ss+1)t

s=τ(n−1) for the n-th regenerative cycle until
time t. Then,

Pθ(D
(n)
t) =

t∏
s=τ(n−1)

πθ(As|Ss)P(Ss+1|Ss, As)

Therefore,

∇θ logPθ(D
(n)
t) =

t∑
s=τ(n−1)

∇θ log πθ(As|Ss) =

t∑
s=τ(n−1)

Λs. (15)

Note that Rθ can be written as:

Rθ = Γ(n)
τ(n)−1∑
t=τ(n−1)

γtEAt∼πθ(St)[Rt].

Using the log derivative trick,3 we get

∇θRθ = Γ(n)
τ(n)−1∑
t=τ(n−1)

γt EAt∼πθ(St)[Rt∇θ logPθ(D
(n)
t)]

(a)
= Γ(n)EAt∼πθ(St)

[τ(n)−1∑
t=τ(n−1)

[
γtRt

t∑
σ=τ(n−1)

Λσ

]]
(b)
= EAt∼πθ(St)

[τ(n)−1∑
σ=τ(n−1)

Λσ

[
Γ(n)

τ(n)−1∑
t=σ

γtRt

]]
3Log-derivative trick: For any distribution p(x|θ) and any function f ,

∇θEX∼p(X|θ)[f(X)] = EX∼p(X|θ)[f(X)∇θ log p(X|θ)].

4

(c)
= EAt∼πθ(St)

[τ(n)−1∑
σ=τ(n−1)

R(n)
σ Λσ

]
(16)

where (a) follows from (15), (b) follows from changing the
order of summations, and (c) follows from the definition of
R

(n)
σ in (12). ∇̂R is an unbiased and asymptotically consistent

estimator of the right hand side of the last equation in (16).
The result for ∇̂T follows from a similar argument. �

Algorithm 1 combines the above estimates with the stochastic
gradient ascent iteration of Theorem 1. An immediate conse-
quence of Proposition 2 and Theorem 1 is the following.

Corollary 1 The sequence {θm}m≥1 generated by Algo-
rithm 1 converges to a local maximum. 2

Remark 1 Algorithm 1 is presented in its simplest form. It is
possible to use standard variance reduction techniques such as
subtracting a baseline [21]–[23] to reduce variance. 2

Remark 2 In Algorithm 1, we use two separate runs to
compute (R̂m, T̂m) and (∇R̂m,∇T̂m) to ensure that the
independence condition of Proposition 2 is satisfied. In practice,
we found that using a single run to compute both (R̂m, T̂m)
and (∇R̂m,∇T̂m) has negligible effect on the accuracy of
convergence (but speeds up convergence by a factor of two).2

Remark 3 It has been reported in the literature [24] that using
a biased estimate of the gradient given by:

R(n)
σ = Γ(n)

τ(n)−1∑
t=σ

γt−σRt, (17)

(and a similar expression for T (n)
σ) leads to faster convergence.

We call this variant RMC with biased gradients and, in our
experiments, found that it does converge faster than RMC. 2

B. Simultaneous perturbation based gradient estimator

Another approach to estimate performance gradient is to
use simultaneous perturbation based estimates [25]–[28]. The
general one-sided form of such estimates is

∇̂Rθ = δ(R̂θ+cδ − R̂θ)/c

where δ is a random variable with the same dimension as θ and
c is a small constant. The expression for ∇̂Tθ is similar. When
δi ∼ Rademacher(±1), the above method corresponds to si-
multaneous perturbation stochastic approximation (SPSA) [25],
[26]; when δ ∼ Normal(0, I), it corresponds to smoothed
function stochastic approximation (SFSA) [27], [28].

Substituting these estimates in (10) and simplifying, we get

Ĥθ = δ(T̂θR̂θ+cδ − R̂θT̂θ+cδ)/c.

The complete algorithm in shown in Algorithm 2. Since
(R̂θ, T̂θ) and (R̂θ+cδ, T̂θ+cδ) are estimated from separate
sample paths, Ĥθ defined above is an unbiased estimator of
Hθ. Then, an immediate consequence of Proposition 2 and
Theorem 1 is the following.

Corollary 2 The sequence {θm}m≥1 generated by Algo-
rithm 2 converges to a local maximum. 2

Algorithm 2: RMC Algorithm with simultaneous pertur-
bation based gradient estimates.
input : Intial policy θ0, discount factor γ, initial

state s0, number of regenerative cycles N ,
constant c, perturbation distribution ∆

for iteration m = 0, 1, . . . do
for regenerative cycle n1 = 1 to N do

Generate n1-th regenerative cycle using policy πθm .
Compute R(n1) and T(n1) using (4).

Set R̂m = mean(R(n1) : n1 ∈ {1, . . . , N}).
Set T̂m = mean(T(n1) : n1 ∈ {1, . . . , N}).
Sample δ ∼ ∆.
Set θ′m = θm + cδ.
for regenerative cycle n2 = N + 1 to 2N do

Generate n2-th regenerative cycle using policy πθm .
Compute R(n2) and T(n2) using (4).

Set R̂′m = mean(R(n2) : n2 ∈ {N + 1, . . . , 2N}).
Set T̂′m = mean(T(n2) : n2 ∈ {N + 1, . . . , 2N}).
Set Ĥm = δ(T̂mR̂′m − R̂mT̂′m)/c.

Update θm+1 =
[
θm + αmĤm

]
Θ

.

C. Remark on average reward setup

The results presented above also apply to average reward
models where the objective is to maximize

Jπ = lim
th→∞

1

th
EAt∼π(St)

[th−1∑
t=0

Rt

∣∣∣∣ S0 = s0

]
. (18)

Let the stopping times τ (n) be defined as before. Define the
total reward R(n) and duration T(n) of the n-th regenerative
cycle as

R(n) =

τ(n)−1∑
t=τ(n−1)

Rt and T(n) = τ (n) − τ (n−1).

Let Rθ and Tθ denote the expected values of R(n) and T(n)

under policy πθ. Then from standard renewal theory we have
that the performance Jθ is equal to Rθ/Tθ and, therefore
∇θJθ = Hθ/T

2
θ , where Hθ is defined as in (8). We can use

both variants of RMC presented above to obtain estimates of
Hθ and use these to update the policy parameters using (9).

III. RMC FOR POST-DECISION STATE MODEL

In many models, the state dynamics can be split into two
parts: a controlled evolution followed by an uncontrolled
evolution. For example, many continuous state models have
dynamics of the form St+1 = f(St, At) +Nt, where {Nt}t≥0

is an independent noise process. For other examples, see the
inventory control and event-triggered communication models in
Sec. V. Such models can be written in terms of a post-decision
state model described below.

Consider a post-decision state MDP with pre-decision state
S−t ∈ S−, post-decision state S+

t ∈ S+, action At ∈ A. The
system starts at an initial state s+

0 ∈ S+ and at time t:

5

1) there is a controlled transition from S−t to S+
t according

to a transition kernel P−(At);
2) there is an uncontrolled transition from S+

t to S−t+1

according to a transition kernel P+;
3) a per-step reward Rt = r(S−t , At, S

+
t) is received.

Remark 4 When S+ = S− and P+ is identity, then the
above model reduces to the standard MDP model, considered
in Sec. II. When P+ is a deterministic transition, the model
reduces to a standard MDP model with post decision states [29],
[30]. 2

As in Sec. II, we choose a (time-homogeneous and Markov)
policy π that maps the current pre-decision state S− to a
distribution on actions, i.e., At ∼ π(S−t). We use π(a|s−) to
denote P(At = a|S−t = s−).

The performance when the system starts in post-decision
state s+

0 ∈ S+ and follows policy π is given by

Jπ = EAt∼π(St)

[∞∑
t=0

γtRt

∣∣∣∣ S+
0 = s+

0

]
, (19)

where γ ∈ (0, 1) is the discount factor. As before, we are
interested in identifying an optimal policy, i.e., a policy that
maximizes the performance. When S and A are Borel spaces,
we assume that the model satisfies the standard conditions under
which time-homogeneous Markov policies are optimal [15].
Let τ (n) denote the stopping times such that τ (0) = 0 and for
n ≥ 1,

τ (n) = min{t > τ (n−1) : s+
t−1 = s+

0 }.
The slightly unusual definition (using s+

t−1 = s+
0 rather than

the more natural s+
t = s+

0) is to ensure that the formulas for
R(n) and T(n) used in Sec. II remain valid for the post-decision
state model as well. Thus, using arguments similar to Sec. II,
we can show that both variants of RMC presented in Sec. II
converge to a locally optimal parameter θ for the post-decision
state model as well.

IV. APPROXIMATE RMC

In this section, we present a variant of RMC that trades
off accuracy with the speed of convergence. One potential
limitation of RMC is that the system may take a long time
to revisit the initial state. We can circumvent this limitation
by considering a “renewal set” B around the start state and
pretending that a renewal takes place whenever the state
enters B. Doing so, results in a loss in accuracy. Since each
regenerative cycles does not start in the same state, the renewal
relationship of Proposition 1 is no longer valid. Nonetheless, in
this section, we show that if the model has sufficient regularity
so that the value function is locally Lipschitz in the renewal
set, the error due to this approximation is bounded.

Suppose that the state and action spaces S and A are
separable metric spaces (with metrics dS and dA). Given
a “renewal set” B containing the start state s0 and let
ρB = sups∈B dS(s, s0) denote the radius of B with respect to
s0. Given a policy π, let τ (n) denote the stopping times for
successive visits to B, i.e., τ (0) = 0 and for n ≥ 1,

τ (n) = min{t > τ (n−1) : st ∈ B}.

Define R(n) and T(n) as in (4) and let RBθ and TBθ denote the
expected values of R(n) and T(n), respectively. Define

JBθ =
RBθ

(1− γ)TBθ
.

Theorem 2 Given a policy πθ, let Vθ denote the value function
and T

B

θ = EAt∼πθ(St)[γ
τ(1) |S0 = s0] (which is always less

than γ). Suppose the following condition is satisfied:
(C) The value function Vθ is locally Lipschitz in B, i.e., there

exists a Lθ such that for any s, s′ ∈ B,

|Vθ(s)− Vθ(s′)| ≤ LθdS(s, s′).

Then ∣∣Jθ − JBθ ∣∣ ≤ LθT
B

θ

(1− γ)TBθ
ρB ≤ γ

(1− γ)
Lθρ

B . (20)

PROOF We follow an argument similar to Proposition 1.

Jθ = Vθ(s0) = EAt∼πθ(St)

[τ(1)−1∑
t=0

γtRt

+ γτ
(1)

∞∑
t=τ(1)

γt−τ
(1)

Rt

∣∣∣∣ S0 = sτ(1)

]
(a)
= RBθ + EAt∼πθ(St)[γ

τ(1) |S0 = s0]Vθ(sτ(1)) (21)

where (a) uses the strong Markov property [17]. Since Vθ is
locally Lipschitz with constant Lθ and sτ(1) ∈ B, we have that

|Jθ − Vθ(sτ(1))| = |Vθ(s0)− Vθ(sτ(1))| ≤ LθρB .
Substituting the above in (21) gives

Jθ ≤ RBθ + T
B

θ (Jθ + Lθρ
B).

Substituting TBθ = (1−TBθ)/(1−γ) and rearranging the terms,
we get

Jθ ≤ JBθ +
LθT

B

θ

(1− γ)TBθ
ρB .

The proof for the other direction is similar. The second
inequality in (20) follows from T

B

θ ≤ γ and TBθ ≥ 1. �

Based on Theorem 2, a policy that minimizes JBθ is
approximately optimal. Such a policy can be identified by
modifying both variants of RMC to declare a renewal whenever
the state lies in B.

Local Lipschitz continuity of value functions can be verified
for specific models (e.g., the model presented in Sec. V-C).
Sufficient conditions for global Lipschitz continuity have been
identified in [31, Theorem 4.1], [32, Lemma 1, Theorem 1],
and [33, Lemma 1]). We state these conditions below.

Proposition 4 Let Vθ denote the value function for any policy
πθ. Suppose the model satisfies the following conditions:

1) The transition kernel P is Lipschitz, i.e., there exists a
constant LP such that for all s, s′ ∈ S and a, a′ ∈ A,

K(P (·|s, a), P (·|s′, a′)) ≤ LP
[
dS(s, s′) + dA(a, a′)

]
,

6

where K is the Kantorovich metric (also called the
Wasserstein distance) between probability measures.

2) The per-step reward r is Lipschitz, i.e., there exists a
constant Lr such that for all s, s′, s+ ∈ S and a, a′ ∈ A,

|r(s, a, s+)− r(s′, a′, s+)| ≤ Lr
[
dS(s, s′) + dA(a, a′)

]
.

In addition, suppose the policy satisfies the following:
3) The policy πθ is Lipschitz, i.e., there exists a constant

Lπθ such that for any s, s′ ∈ S,

K(πθ(·|s), πθ(·|s′)) ≤ Lπθ dS(s, s′).

4) γLP (1 + Lπθ) < 1.
5) The value function Vθ exists and is finite.

Then, Vθ is globally Lipschitz. In particular, for any s, s′ ∈ S ,

|Vθ(s)− Vθ(s′)| ≤ LθdS(s, s′),

where Lθ = Lr(1 + Lπθ)/
(
1− γLP (1 + Lπθ)

)
.

V. NUMERICAL EXPERIMENTS

We present three experiments to evaluate the performance
of RMC: a randomly generated MDP, event-triggered com-
munication, and inventory management. The code for all the
experiments is available at [34].

A. Randomized MDP (GARNET)

In this experiment, we study a randomly generated
GARNET(100, 10, 50) model [35], which is an MDP with
100 states, 10 actions, and a branching factor of 50 (which
means that each row of all transition matrices has 50 non-zero
elements, chosen Unif[0, 1] and normalized to add to 1). For
each state-action pair, with probability p = 0.05, the reward is
chosen Unif[10, 100], and with probability 1− p, the reward
is 0. The discount factor γ = 0.9. The first state is chosen as
start state. The policy is parameterized by a Gibbs soft-max
distribution (which has states × actions = 100×10 parameters)
where each parameter belongs to the interval [−10, 10] and the
temperature is kept constant and equal to 1.

We compare the performance of the following algorithms:
1) RMC with likelihood ratio based gradient estimator (see

Sec. II-A) where the gradient is estimated using a single
run (see Remark 2 in Sec. II). The policy parameters
are updated after N = 4 renewals and the learning is
adapted using ADAM(0.05)4 [36].

2) RMC with biased gradient denoted by RMC-B (see
Remark 2) where all parameters are same as in RMC.

3) Actor critic with eligibility traces for the critic [3],
which we refer to as AC-λ with λ ∈ {0, 0.5, 1},
where the learning rate for the actor is adapted using
ADAM(0.1) [36].

4) TPRO [8] and PPO [9], which are two state of the
art policy gradient based RL algorithms for models
with discrete action spaces, where we use the default
architecture and parameters from ChainerRL [37].

4We use ADAM(α) to denote the choice of the α parameter of ADAM. All
other parameters have their default value.

We run each algorithm for 2 × 105 samples and repeat
this experiment 100 times. To compare the performance of
these algorithms, we periodically evaluate the performance of
πθm for each trajectory using Monte Carlo evaluation (over
200 samples averaged over 10 independent runs). The median,
first quartile, and third quartile across 100 runs are shown in
Fig. 1a. The optimal performance (which is computed using
value iteration and the knowledge of the model) is also shown.

We observe that AC-λ, TRPO, and PPO learn faster (which
is expected because the critic is keeping track of the entire
value function) but have higher variance. AC-λ gets stuck in
a local minimum while RMC, RMC-B, TRPO, and PPO do
not. Policy gradient algorithms only guarantee convergence
to a local optimum. We are not sure why AC-λ converges to
a different local maximum from RMC, RMC-B, TRPO and
PPO. We also observe that RMC-B (which is RMC with biased
evaluation of the gradient) learns faster than RMC.

It is worth highlighting that although TRPO/PPO converge
in fewer number of samples compared to RMC/RMC-B, they
require significantly more computational resources. In our
experiments, each run of TRPO took ≈ 10 minutes (wall
clock time), PPO took ≈ 16 minutes, AC-λ took ≈ 1 minute,
whereas RMC/RMC-B took ≈ 40 seconds.

B. Event-Triggered Communication

In this experiment, we study an event-triggered communi-
cation problem that arises in networked control systems [38],
[39]. A transmitter observes a first-order autoregressive process
{Xt}t≥1, i.e., Xt+1 = αXt +Wt, where α,Xt,Wt ∈ R, and
{Wt}t≥1 is an i.i.d. process. At each time, the transmitter
uses an event-triggered policy (explained below) to determine
whether to transmit or not (denoted by At = 1 and At = 0,
respectively). Transmission takes place over an i.i.d. erasure
channel with erasure probability pd. Let S−t and S+

t denote the
“error” between the source realization and its reconstruction
at a receiver. It can be shown that S−t and S+

t evolve as
follows [38], [39]: when At = 0, S+

t = S−t ; when At = 1,
S+
t = 0 if the transmission is successful (w.p. (1− pd)) and
S+
t = S−t if the transmission is not successful (w.p. pd); and
S−t+1 = αS+

t + Wt. Note that this is a post-decision state
model, where the post-decision state resets to zero after every
successful transmission.5

The per-step cost has two components: a communication
cost of λAt, where λ ∈ R>0 and an estimation error (S+

t)2.
The objective is to minimize the expected discounted cost.

An event-triggered policy is a threshold policy that chooses
At = 1 whenever |S−t | ≥ θ, where θ is a design choice. Under
certain conditions, such an event-triggered policy is known
to be optimal [38], [39]. When the system model is known,
algorithms to compute the optimal θ are presented in [40], [41].
In this section, we use RMC to identify the optimal policy
when the model parameters are not known.

In our experiment we consider an event-triggered model
with α = 1, λ = 500, pd = 0.0, Wt ∼ N (0, 1), γ = 0.9.

We compare the performance for the following algorithms:

5Had we used the standard MDP model instead of the post-decision state
model, this restart would not have always resulted in a renewal.

7

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Samples ×105

0

50

100

150

200

250

300

P
er

fo
rm

an
ce

Exact TRPO PPO AC-0 AC-1 AC-0.5 RMC RMC-B

(a) GARNET

0.2 0.4 0.6 0.8 1.0
Samples ×106

60

80

100

120

140

160

180

200

T
ot

al
C

os
t

Exact PPO TRPO RMC

(b) Event-Triggered communication

0 1 2 3 4
Samples ×106

180

200

220

240

260

280

T
ot

al
C

os
t

Exact DDPG RMC

(c) Inventory control

Fig. 1: Comparison of RMC with other state of the art algorithms for the three benchmark environments. The solid lines show
the median values and the shaded area shows the region between the first and third quartiles.

1) RMC with simultaneous perturbation based gradient esti-
mate (see Sec. II-B)6, where the policy is parameterized
by the threshold θ. We choose c = 0.3, N = 1 and
∆ = N (0, 1) in Algorithm 2. The learning rate is adapted
using ADAM(0.01) [36].

2) TPRO [8] and PPO [9], which are two state of the
art policy gradient based RL algorithms for models
with discrete action spaces, where we use the default
architecture and parameters from ChainerRL [37].

We run each algorithm for 2× 106 samples and repeat this
experiment 100 times for RMC and 10 times for TRPO and
PPO. To compare the performance of these algorithms, we
periodically evaluate the performance of πθm for each trajectory
using Monte Carlo evaluation (over 200 samples averaged over
10 independent runs). The median, first quartile, and third
quartile across the runs are shown in Fig. 1b. The optimal total
cost computed using [41] and the knowledge of the model is
also shown in Fig. 1b.

We observe that all three algorithms converge to the optimal
values. TRPO and PPO converge in fewer number of samples
(which is expected because the critic is keeping track of
the entire value function), but require significantly more
computational resources. In our experiments, each run of TRPO
took ≈ 1.4 hours (wall clock time), PPO took ≈ 2.7 hours
whereas RMC took ≈ 0.5 seconds.

C. Inventory Control

In this experiment, we study an inventory management
problem that arises in operations research [42], [43]. Let St ∈ R
denote the volume of goods stored in a warehouse, At ∈ R≥0

denote the amount of goods ordered, and Dt denotes the
demand. The state evolves according to St+1 = St+At−Dt+1.

We work with the normalized cost function:

C(s) = aps(1− γ)/γ + ahs1{s≥0} − abs1{s<0},

where ap is the procurement cost, ah is the holding cost, and
ab is the backlog cost (see [44, Chapter 13] for details).

It is known that there exists a threshold θ such that the
optimal policy is a base stock policy with threshold θ (i.e.,

6An event-triggered policy is a parametric policy but πθ(a|s−) is not
differentiable in θ. Therefore, the likelihood ratio method cannot be used to
estimate performance gradient.

whenever the current stock level falls below θ, one orders up
to θ). Furthermore, for s ≤ θ, we have that [44, Sec. 13.2]

Vθ(s) = C(s) +
γ

(1− γ)
E[C(θ −D)]. (22)

So for B ⊂ (0, θ), the value function is locally Lipschitz in B
with

Lθ =

(
ah +

1− γ
γ

ap

)
.

So, we can use approximate RMC to learn the optimal policy.
In our experiments, we consider an inventory management

model with ah = 1, ab = 1, ap = 1.5, Dt ∼ Exp(λ) with
λ = 0.025, start state s0 = 1, discount factor γ = 0.9.

We compare the performance for the following algorithms:
1) RMC with simultaneous perturbation based gradient

(see Sec. II-B), where the policy is parameterized by
the threshold θ. We choose c = 3.0, N = 100, and
∆ = N (0, 1) in Algorithm 2 and choose B = (0, 1) for
approximate RMC. The learning rate is adapted using
ADAM(0.25) [36].

2) DDPG [45], which is of one of state of the art RL
algorithms for models with continuous action spaces,
where we use the default architecture and implementation
from ChainerRL [37].

We run each algorithm for ≈ 5 × 106 samples and repeat
this experiment 100 times for RMC and 10 times for DDPG.
To compare the performance of these algorithms, we use
Monte Carlo evaluation (over 200 samples averaged over
100 independent runs for RMC and 10 independent runs for
DDPG) periodically to evaluate the performance of πθm for
each trajectory. The median, first quartile and third quartile
across the runs are shown in Fig. 1c. The optimal performance
computed using [44, Sec. 13.2]7 is also shown.

We observe that DDPG learns in fewer number of samples
but it takes more time. In our experiments each run of
DDPG took ≈ 10 hours (wall clock time) whereas RMC took
≈ 30 seconds. In addition, RMC converges smoothly to an
approximately optimal parameter value with total cost within
the bound predicted in Theorem 2. The grey rectangular region
in Fig. 1c shows this bound.

7For Exp(λ) demand, the optimal threshold is (see [44, Sec. 13.2])

θ∗ =
1

λ
log

(
ah + ab

ah + ap(1− γ)/γ)

)
.

8

VI. CONCLUSIONS

We present a renewal theory based reinforcement learning
algorithm called Renewal Monte Carlo (RMC). RMC retains
the key advantages of Monte Carlo methods and has low bias,
is simple and easy to implement, and works for models with
continuous state and action spaces. In addition, due to the
averaging over multiple renewals, RMC has low variance. We
generalize the RMC algorithm to post-decision state models
and present a variant that converges faster to an approximately
optimal policy, where the renewal state is replaced by a renewal
set. The error in using such an approximation is bounded by
the size of the renewal set.

In certain models, one is interested in the performance at a
reference state that is not the start state. In such models, we
can start with an arbitrary policy and ignore the trajectory until
the reference state is visited for the first time and use RMC
from that time onwards (assuming that the reference state is
the new start state).

ACKNOWLEDGMENT

The authors are grateful to Joelle Pineau for useful feedback
and for suggesting the idea of approximate RMC. The authors
are also grateful to the anonymous reviewers for suggestions
that led to an improved exposition and more detailed numerical
experiments.

REFERENCES

[1] D. Bertsekas and J. Tsitsiklis, Neuro-dynamic Programming. Athena
Scientific, 1996.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 2018.

[4] C. Szepesvári, Algorithms for reinforcement learning. Morgan &
Claypool Publishers, 2010.

[5] R. S. Sutton, D. A. McAllester et al., “Policy gradient methods for
reinforcement learning with function approximation,” in Advances in
Neural Information Processing Systems, Nov. 2000, pp. 1057–1063.

[6] S. M. Kakade, “A natural policy gradient,” in Advances in Neural
Information Processing Systems, Dec. 2002, pp. 1531–1538.

[7] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM J.
Control Optim., vol. 42, no. 4, pp. 1143–1166, 2003.

[8] J. Schulman, S. Levine et al., “Trust region policy optimization,” in
International Conference on Machine Learning, June 2015.

[9] J. Schulman, F. Wolski et al., “Proximal policy optimization algorithms,”
arXiv:1707.06347, 2017.

[10] D. Silver, J. Schrittwieser et al., “Mastering the game of go without
human knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[11] P. Glynn, “Optimization of stochastic systems,” in Proc. Winter Simulation
Conference, Dec. 1986, pp. 52–59.

[12] ——, “Likelihood ratio gradient estimation for stochastic systems,”
Communications of the ACM, vol. 33, pp. 75–84, 1990.

[13] P. Marbach and J. N. Tsitsiklis, “Simulation-based optimization of Markov
reward processes,” IEEE Trans. Autom. Control, vol. 46, no. 2, pp. 191–
209, Feb 2001.

[14] ——, “Approximate gradient methods in policy-space optimization of
Markov reward processes„” Discrete Event Dynamical Systems, vol. 13,
no. 2, pp. 111–148, 2003.

[15] O. Hernández-Lerma and J. B. Lasserre, Discrete-time Markov Control
Processes: Basic Optimality Criteria. Springer, 1996, vol. 30.

[16] V. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint.
Cambridge University Press, 2008.

[17] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability.
Springer, 2012.

[18] W. Feller, An Introduction to Probability Theory and its Applications.
John Wiley and Sons, 1966, vol. 1.

[19] H. Kushner and G. G. Yin, Stochastic approximation and recursive
algorithms and applications. Springer, 2003.

[20] R. Y. Rubinstein, “Sensitivity analysis and performance extrapolation for
computer simulation models,” Operations Research, vol. 37, no. 1, pp.
72–81, 1989.

[21] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[22] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction
techniques for gradient estimates in reinforcement learning,” Journal of
Machine Learning Research, vol. 5, no. Nov, pp. 1471–1530, 2004.

[23] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in
International Conference on Intelligent Robots and Systems, Oct. 2006.

[24] P. Thomas, “Bias in natural actor-critic algorithms,” in International
Conference on Machine Learning, June 2014, pp. 441–448.

[25] J. C. Spall, “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation,” IEEE Trans. Autom. Control,
vol. 37, no. 3, pp. 332–341, 1992.

[26] J. L. Maryak and D. C. Chin, “Global random optimization by
simultaneous perturbation stochastic approximation,” IEEE Trans. Autom.
Control, vol. 53, no. 3, pp. 780–783, Apr. 2008.

[27] V. Katkovnik and Y. Kulchitsky, “Convergence of a class of random
search algorithms.” Automation and Remote Control, vol. 33, no. 8, pp.
1321–1326, 1972.

[28] S. Bhatnagar, H. Prasad, and L. Prashanth, Stochastic Recursive Algo-
rithms for Optimization: Simultaneous Perturbation Methods. Springer,
2013, vol. 434.

[29] B. Van Roy, D. P. Bertsekas et al., “A neuro-dynamic programming
approach to retailer inventory management,” in 36th IEEE Conference
on Decision and Control, 1997, vol. 4, Dec. 1997, pp. 4052–4057.

[30] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality, 2nd ed. John Wiley & Sons, 2011.

[31] K. Hinderer, “Lipschitz continuity of value functions in Markovian
decision processes,” Mathematical Methods of Operations Research,
vol. 62, no. 1, pp. 3–22, Sep 2005.

[32] E. Rachelson and M. G. Lagoudakis, “On the locality of action domination
in sequential decision making,” in International Symposium on Artificial
Intelligence and Mathematics, Fort Lauderdale, US, Jan. 2010.

[33] M. Pirotta, M. Restelli, and L. Bascetta, “Policy gradient in Lipschitz
Markov decision processes,” Machine Learning, vol. 100, no. 2, pp.
255–283, Sep 2015.

[34] J. Subramanian and A. Mahajan, “Renewal Monte Carlo,”
https://codeocean.com/capsule/027c3bab-27cf-4f47-8153-6533c2bfc1e5,
Aug. 2019.

[35] S. Bhatnagar, R. Sutton et al., “Natural actor-critic algorithms,” Dept. of
Computing Science, University of Alberta, Canada, Tech. Rep., 2009.

[36] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[37] Preferred Networks Inc. “ChainerRL, A deep reinforcement learning
library built on top of Chainer”. [Online]. Available: https:
//github.com/chainer/chainerrl

[38] G. M. Lipsa and N. Martins, “Remote state estimation with communi-
cation costs for first-order LTI systems,” IEEE Trans. Autom. Control,
vol. 56, no. 9, pp. 2013–2025, Sep. 2011.

[39] J. Chakravorty, J. Subramanian, and A. Mahajan, “Stochastic approxima-
tion based methods for computing the optimal thresholds in remote-state
estimation with packet drops,” in Proc. American Control Conference,
Seattle, WA, May 2017, pp. 462–467.

[40] Y. Xu and J. P. Hespanha, “Optimal communication logics in networked
control systems,” in 43rd IEEE Conference on Decision and Control,
Dec. 2004, pp. 3527–3532.

[41] J. Chakravorty and A. Mahajan, “Fundamental limits of remote estimation
of Markov processes under communication constraints,” IEEE Trans.
Autom. Control, vol. 62, no. 3, pp. 1109–1124, Mar. 2017.

[42] K. J. Arrow, T. Harris, and J. Marschak, “Optimal inventory policy,”
Econometrica: Journal of the Econometric Society, pp. 250–272, 1951.

[43] R. Bellman, I. Glicksberg, and O. Gross, “On the optimal inventory
equation,” Management Science, vol. 2, no. 1, pp. 83–104, 1955.

[44] P. Whittle, Optimization Over Time: Dynamic Programming and Optimal
Control. John Wiley and Sons, Ltd., 1982.

[45] T. P. Lillicrap, J. J. Hunt et al., “Continuous control with deep reinforce-
ment learning,” in International Conference on Learning Representations,
San Juan, Puerto Rico, May 2-4, 2016.

