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Abstract
In this paper, we investigate the problem of system identification for autonomous switched lin-
ear systems with complete state observations. We propose switched least squares method for the
identification for switched linear systems, show that this method is strongly consistent, and derive
data-dependent and data-independent rates of convergence. In particular, our data-dependent rate
of convergence shows that, almost surely, the system identification error is O

(√
log(T )/T

)
where

T is the time horizon. These results show that our method for switched linear systems has the same
rate of convergence as least squares method for non-switched linear systems. We compare our re-
sults with those in the literature. We present numerical examples to illustrate the performance of
the proposed system identification method.
Keywords: Stochastic Switched Linear Systems, System Identification, Least Squares Method,
Strong Consistency

1. Introduction

Switched Linear Systems Switched linear systems (SLS) are a good approximation of non-linear
time-varying systems arising in various applications including networked control systems (Deaecto
et al., 2014) and cyber-physical systems (De Persis and Tesi, 2015; Cetinkaya et al., 2018). There is
a rich literature on the stability analysis (e.g., Fang et al. (1994); Fang (1997); Costa et al. (2006))
and optimal control (e.g., Chizeck et al. (1986)) of SLS. However, most of the literature assumes
that the system model is known. The problem of system identification, i.e., identifying the dynamics
from data, has not received much attention.

System Identification The problem of identifying the system model from data is a key compo-
nent for control synthesis for both offline control methods and online control methods including
adaptive control and reinforcement learning (Goodwin et al., 1980). A commonly used method for
system identification is the least squares method. Lai and Wei (1982) provide asymptotic rates of
convergence and establish strong consistency of least squares method for regression. These results
have been extended to autonomous linear systems by Lai and Wei (1985) and ARMAX systems
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in Chen and Guo (1986, 1987); Lai and Wei (1986). See Chapter 6 of Caines (2018) for a unified
overview.

These classical results provide asymptotic convergence guarantees. In recent years, there has
been a significant interest in the machine learning community to establish finite-time convergence
guarantees for system identification under a variety of assumptions (Faradonbeh et al., 2020b, 2018;
Abbasi-Yadkori and Szepesvári, 2011; Faradonbeh et al., 2020a; Simchowitz et al., 2018; Oymak
and Ozay, 2019; Zheng et al., 2021; Lale et al., 2020).

System Identification for Switched Linear Systems System identification of SLS has received
less attention in the literature. There is some work on designing asymptotically stable controllers for
unknown SLS (Caines and Chen, 1985; Caines and Zhang, 1995; Xue and Guo, 2001) but these pa-
pers do not established rates of convergence for system identification. The problem of identification
of SLSs using set membership identification has been investigated in Ozay et al. (2015); Hespanhol
and Aswani (2020). There are few recent results which establish high probability rates of converge
for different models of SLS for subspace methods (Sarkar et al., 2019) and least-square methods
(Sattar et al., 2021). We provide a detailed comparison with these papers in Sec. 5.

Contribution We investigate the problem of identifying an unknown (autonomous) SLS with
i.i.d. switching. We propose a switched least squares method for system identification and provide
data-dependent and data-independent rates of convergence for this method. Using these bounds, we
establish strong consistency of the switched least squares method and establish a O(

√
log(T )/T )

rate of convergence, which matches with the rate of convergence of non-switched linear systems es-
tablished in Lai and Wei (1985). In contrast to the existing high-probability convergence guarantees
in the literature, Our results show that the estimation error converges to zero almost surely. To the
best of our knowledge, this is the first result in the literature which establishes strong consistency
and almost sure rates of convergence for SLS.

Organization The rest of the paper is organized as follows. In Sec 2, we state the system model,
assumptions, and the main results. In Sec. 3, we sketch the proof of results. We present an illus-
trative example in Sec. 4 and compare our assumptions and results with the existing literature in
Sec. 5. Finally, we conclude in Sec. 6.

Notation Given a matrix A, A(i, j) denotes its (i, j)-th element, λmax(A) and λmin(A) denote
the largest and smallest magnitudes of right eigenvalues, σmax(A) =

√
λmax(AᵀA) denotes the

spectral norm. For a square matrix Q, tr(Q) denotes the trace. When Q is symmetric, Q � 0 and
Q � 0 denotes that Q is positive semi-definite and positive definite, respectively. For two square
matrices, Q1 and Q2 of the same dimension, Q1 � Q2 means Q1 −Q2 � 0.

Given a sequence of positive numbers {at}t≥0, aT = O(T ) denotes lim supT→∞ aT /T < ∞,
and aT = o(T ) denotes lim supT→∞ aT /T = 0. Given a sequence of vectors {xt}t∈T , vec(xt)t∈T
denotes the vector formed by vertically stacking {xt}t∈T . Given a sequence of random variables
{xt}t≥0, x0:t is a short hand for (x0, · · · , xt) and σ(x0:t) denotes the sigma field generated by
random variables x0:t.

R and N denote the set of real and natural numbers. For a set T , |T | denotes its cardinality.
For a vector x, ‖x‖ denotes the Euclidean norm. For a matrix A, ‖A‖ denotes the spectral norm
and ‖A‖∞ denotes the element with the largest absolute value. Convergence in almost sure sense is
abbreviated as a.s.
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2. System model and problem formulation

System model Consider a discrete-time (autonomous) switched linear system. The state of the
system has two components: a discrete component st ∈ {1, . . . , k} and a continuous component
xt ∈ Rn. There is a finite set A = {A1, . . . , Ak} of system matrices, where Ai ∈ Rn×n. The
continuous component xt of the state starts at a fixed value x0 and evolves according to:

xt+1 = Astxt + wt, t ≥ 0, (1)

where {wt}t≥0, wt ∈ Rn, is a noise process. The discrete component is distributed in an indepen-
dent and identically distributed manner with P(st = i) = pi 6= 0, where p = (p1, . . . , pk) is a
probability mass function.

Assumptions on the model Let Ft−1 = σ(x0:t, s0:t) denote the sigma-algebra generated by the
history of the complete state. Furthermore, let σi denote the maximum singular value of Ai, i ∈
{1, . . . , k}. It is assumed that the model satisfies the following assumptions:

Assumption 1 The noise process {wt}t≥0 is a martingale difference sequence with respect to
{Ft}≥0, i.e., E[|wt|] <∞ and E[wt | Ft−1] = 0. Furthermore, there exists a constant α > 2 such
that supt≥0E[‖wt‖α | Ft−1] < ∞ a.s. and there exists a symmetric and positive definite matrix
C ∈ Rn×n such that lim infT→∞

1
T

∑T−1
t=0 wtw

ᵀ
t = C.

Assumption 2 The switching probabilities p = (p1, . . . , pk) are such that
∏k
i=1 σ

pi
i < 1.

Assumption 1 is a standard assumption in the asymptotic analysis of system identification of
linear systems (Caines, 2018; Lai and Wei, 1982, 1985; Chen and Guo, 1986, 1987) and allows the
noise process to be non-stationary and have heavy tails (as long as moment condition is satisfied).
Assumption 2 is a standard assumption for almost sure exponential statbility of noise-free switched
linear system i.e., when wt = 0 (Fang et al., 1994). Some of the recent results on system identifi-
cation of Markov jump linear systems impose slightly different assumptions and we compare with
those in Sec. 5.

System identification and switched least squares estimates We are interested in the setting
where the system dynamicsA and the switching probabilities p are unknown. Let θᵀ = [A1, . . . , Ak]
∈ Rn×nk denote the unknown parameters of the system dynamics matrices. We consider an agent
that observes the complete state (xt, st) of the system at each time and generates an estimate θ̂T of
θ as a function of the observation history (x0:T , s0:T ). A commonly used estimate in such settings
is the least squares estimate:

θ̂
ᵀ
T = arg min

θᵀ=[A1,...,Ak]

T−1∑
t=0

‖xt+1 −Astxt‖2. (2)

The components [Â1,T , . . . , Âk,T ] = θ̂
ᵀ
T of the least squares estimate can be computed in a

switched manner. Let Ti,T = {t ≤ T | st = i} denote the time indices until time T when the
discrete state of the system equals i. Note that for each t ∈ Ti,T , Ast = Ai. Therefore, we have

Âi,T = arg min
Ai∈Rn×n

∑
t∈Ti,T

‖xt+1 −Aixt‖2, ∀i ∈ {1, · · · , k}. (3)
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Let Xi,T =
∑

t∈Ti,T xtx
ᵀ
t denote the unnormalized empirical covariance of the continuous com-

ponent of the state at time instant T when the discrete component equals i. Then, Âi,T can be
computed recursively as follows:

Âi,T+1 = Âi,T +

[
X−1
i,T xT (xT+1 − Âi,TxT )

ᵀ

1 + xᵀTX
−1
i,T xT

]
1{sT+1 = 1} (4)

where Xi,T may be updated as Xi,T+1 = Xi,T +
[
xT+1x

ᵀ
T+1

]
1{sT+1 = 1}. Due to the switched

nature of the least squares estimate, we refer to above estimation procedure as switched least squares
system identification.

The main results A fundamental property of any sequential parameter estimation method is
strong consistency, which we define below.

Definition 1 An estimator θ̂T of parameter θ is called strongly consistent if limT→∞ θ̂T = θ, a.s.

Our main result is to establish that the switched least squares estimator is strongly consistent. We
do so by providing two different characterization of the rate of convergence. We first provide a
data-dependent rate of convergence which depends on the spectral properties of the unnormalized
empirical covariance. We then present a data-independent characterization of rate of convergence
which only depends on T . All proofs are presented in Sec. 3.

Theorem 2 Under Assumptions 1 and 2, the switched least squares estimates {Âi,T }ki=1 are
strongly consistent, i.e., for each i ∈ {1, . . . , k}, we have: limT→∞

∥∥Âi,T −Ai∥∥∞ = 0, a.s.
Furthermore, the rate of convergence is upper bounded by the following expression:

∥∥Âi,T −Ai∥∥∞ ≤ O(
√

log
[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

Remark 3 Notice that Theorem 2 is not a direct consequence of the decoupling procedure in
switched least squares method. The k least squares problems have a common covariate process.
Therefore, the convergence of the switched least squares method and the stability of the switched
linear systems are interconnected problems. Our proof techniques leverage this connection to es-
tablish the consistency of the system identification method.

We simplify the result in Theorem 2 and characterize the data dependent result found in Theorem 2
in terms of horizon T and the cardinality of the set Ti,T .

Corollary 4 Under Assumptions 1 and 2, for each i ∈ {1, . . . , k}, we have:∥∥Âi,T −Ai∥∥∞ ≤ O√( log(T )
)
/|Ti,T |), a.s.

Remark 5 The assumption that pi 6= 0 implies that for sufficiently large T , |Ti,T | 6= 0 almost
surely, therefore the expressions in above bounds are well defined.

The result of Corollary 4 still depends on the data. When system identification results are used for
adaptive control or reinforcement learning, it is useful have a data-independent characterization of
the rate of convergence. We present this characterization in the next theorem.
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Theorem 6 Under Assumptions 1 and 2, the rate of convergence of the switched least squares
estimator Âi,T is upper bounded by:∥∥Âi,T −Ai∥∥∞ ≤ O√log(T )/piT ), a.s.

where the constants in the O(·) notation do not depend on p and T . Therefore, the estimation
process is strongly consistent, i.e., limT→∞

∥∥θ̂T −θ∥∥∞ = 0 a.s. with the convergence rate given by:∥∥θ̂T − θ∥∥∞ ≤ O√log(T )/p∗T ), a.s.

where p∗ = minj pj .

Theorem 6 shows that Assumptions 1 and 2 guarantee that the switched least squares method for
SLS has the same rate of convergence of O(

√
log(T )/T ) as non-switched case established in Lai

and Wei (1985). Moreover, the constants show that the estimation error of i-th least squares problem
is proportional to 1/

√
pi ; therefore, the rate of convergence of θ̂t is proportional to 1/

√
p∗, where

p∗ is the smallest probability of switching in PMF p.

3. Proof of the main results

In this section, we present the proof of Theorems 2 and 6 and Corollary 4. In Section 3.2, we
review the background on the rate of convergence for least squares regression. In Section 3.2, we
characterize the asymptotic behaviors of continuous state of the system and covariates of the i-th
least squares problem. Only proof sketches are presented, see the appendices for complete proofs.
The proof the of main theorems are presented in Section 3.3.

3.1. Background on least square estimator

Given a filtration {Gt}t≥0, consider the following regression model:

yt = β
ᵀ
zt + wt, t ≥ 0, (5)

where β ∈ Rn is an unknown parameter, zt ∈ Rn is Gt−1-measurable covariate process, yt is the
observation process, and wt ∈ R is a noise process satisfying Assumption 1 with Ft replaced by
Gt. Then the least squares estimate β̂T of β is given by:

β̂T = arg min
βᵀ

T∑
τ=0

‖yτ − β
ᵀ
zτ‖2. (6)

The following result by Lai and Wei (1982) characterizes the rate of convergence of β̂T to β in terms
of unnormalized covariance matrix of covariates ZT :=

∑T
τ=0 zτz

ᵀ
τ .

Theorem 7 (Theorem 1 of Lai and Wei (1982)) Suppose the following conditions are satisfied:
(C1) λmin(ZT ) → ∞, a.s. and (C2) log(λmax(ZT )) = o(λmin(ZT )), a.s. Then the least squares
estimate in (6) is strongly consistent with the rate of convergence:

‖β̂T − β‖∞ = O
(√

log
[
λmax(ZT )

]
λmin(ZT )

)
a.s.

5



CONSISTENCY AND RATE OF CONVERGENCE OF LS METHOD IN AUTONOMOUS SLS

The results of Theorem 7 are valid as long as the covariate process {zt}t≥0 is Gt−1-measurable. For
the switched least squares system identification if we take Gt to be equal to Ft and verify conditions
(C1) and (C2) in Theorem 7, then we can use Theorem 7 to establish the strong consistency and rate
of convergence. As mentioned earlier in Remark 3, the empirical covariances are coupled across
different components due to the system dynamics. For this reason, establishing (C1) and (C2) is
non-trivial. In the next section, we establish properties of the system that enable us to prove (C1)
and (C2) for the switched least squares system identification.

3.2. Asymptotic Behavior of Continuous Component

To simplify the notation, we assume that x0 = 0 which does not entail any loss of generality. Let
Φ(t−1, τ+1) = Ast−1 · · ·Asτ+1 denote the state transition matrix where we follow the convention
that Φ(t, τ) = I , for t < τ . Then we can write the dynamics (1) of the continuous component of
the state in convolutional form as:

xt =
t−1∑
τ=0

Φ(t− 1, τ + 1)wτ . (7)

In the following lemma, we show that Assumption 2 implies that the sum of norms of the state-
transition matrices are uniformly bounded.

Lemma 8 (Uniform Boundedness) Under Assumption 2, there exists a constant Γ̄ <∞ such that
for all T > 1,

∑T−1
τ=0 ‖Φ(T − 1, τ + 1)‖ ≤ Γ̄, a.s.

Proof (sketch) Let γt = σst denote the maximum singular value of the system dynamics Ast at
time t. Basic properties of matrix norm implies that:

‖Φ(t− 1, τ − 1)‖ ≤ γτ−1 · · · γt−1 =

k∏
i=1

[
σ
mi(t−1,τ−1)
i

]t−τ+1
, (8)

wheremi(t−1, τ−1) denotes the average number of times the discrete state equals i in the interval
[τ − 1, t− 1]. By the strong law of large numbers and continuity, we can argue that the term inside
the square brackets in the right hand side of Eq. (8) converges almost surely to σpii . The result then
follows from Assumption 2.1

Next, we characterize the asymptotic behavior of state of the system xτ and the matrix Xi,τ .

Proposition 9 Under Assumptions 1 and 2, the following hold a.s. for each i ∈ {1, · · · , k}:
(P1)

∑
τ∈Ti,T

‖xτ‖2 = O(T ), (P2) λmax(Xi,T ) = O(T ), and (P3) lim inf
T→∞

λmin(Xi,T )/|Ti,T | > 0.

Proof (sketch)
(P1): Starting from Eq. (7), we have

‖xt‖2
(a)

≤
( T−1∑
τ=1

‖Φ(t− 1, τ + 1)‖‖w(τ)‖
)2 (b)

≤ Γ̄

T−1∑
τ=1

‖Φ(t− 1, τ + 1)‖‖w(τ)‖2,

1. The actual argument is slightly more nuanced and requires ε-δ continuity and convergence arguments.
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where (a) follows from property of matrix norms, (b) follows from Cauchy-Schwartz inequality,
and Lemma 8. Hence,∑

t∈Ti,T

‖xt‖2 ≤ Γ̄
∑
t∈Ti,T

T−1∑
τ=1

‖Φ(t− 1, τ + 1)‖‖w(τ)‖2 ≤ Γ̄2
T−1∑
τ=1

‖w(τ)‖2. (9)

Now, as argued in Lai and Wei (1985), using Assumption 1 and the strong law of large numbers for
Martingale difference sequences, we can show that

∑T−1
τ=1 ‖w(τ)‖2 = O(T ), a.s. Combining this

with Eq. (9) completes the proof of (P1).
(P2): Follows from (P1) and the inequality λmax(Xi,T ) ≤ tr(Xi,T ).
(P3): Using the strong law of large numbers for martingale difference sequences, we can show:∥∥∥ T∑

τ=0

Asτxτw
ᵀ
τ + wτx

ᵀ
τA

ᵀ
sτ

∥∥∥ = o(T ) a.s.

Using this, we can show that
∑

t∈Ti,T xτx
ᵀ
τ �

∑
t∈Ti,T wτw

ᵀ
τ + o(T ). Hence,

lim inf
|Ti,T |→∞

∑
τ∈Ti,T xτx

ᵀ
τ

|Ti,T |
� lim inf
|Ti,T |→∞

∑
τ∈Ti,T wτw

ᵀ
τ

|Ti,T |
= C � 0 a.s.

Therefore, λmin

(
lim inf |Ti,T |→∞

∑
τ∈Ti,T xτx

ᵀ
τ/|Ti,T |

)
> 0, a.s. which proves (P3).

Corollary 10 Proposition 9 implies that the system is stable in the average sense. i.e.

lim sup
T→∞

1

T

T−1∑
τ=0

‖xτ‖2 <∞.

3.3. Proof of the Main Results

Using the results established in the previous section, we present proof of the main results

Proof of Theorem 2 To prove this theorem, we check the sufficient conditions in Theorem 7.
First notice that Xi,T is FT−1 measurable. Also we have:

(C1) By Proposition 9-(P3), we see that λmin(Xi,T ) → ∞ a.s.; therefore, (C1) in Theorem 7 is
satisfied.

(C2) Proposition 9-(P2) and (P3) imply that there exist positive constants C1, C2, such that :

lim sup
T→∞

log(λmax(Xi,T ))

λmin(Xi,T )
≤ lim sup

T→∞

log(C1) + log(T )

C2|Ti,T |
= 0 a.s. (10)

where the last inequality uses the fact that pi > 0 implies |Ti,T | = O(T ), a.s. Therefore, the
second condition of Theorem 7 is satisfied.

Therefore, by Theorem 7, for each i ∈ {1, · · · , k}, we have:

∥∥Âi,T −Ai∥∥∞ ≤ O(
√

log
[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

which proves the claim in Theorem 2.
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Proof of Corollary 4 Corollary 4 is the direct consequence of Theorem 2. The right hand
side of Eq. (10) implies that for each i, the estimation error ‖Âi,T − Ai

∥∥
∞ is upper-bounded by

O
(√

log(T )/|Ti,T |
)
, a.s.

Proof of Theorem 6 We first establish the strong consistency of the parameter θ̂T . By Theorem 2
and the fact that k <∞, we get:

∥∥θ̂T − θ∥∥∞ ≤ max
i∈{1,··· ,k}

O
(√

log
[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

Therefore the result follows by applying Theorem 2 to the argmax of above equation. For the
second part notice that by the law of large numbers we have limT→∞ |Ti,T |/T = pi, a.s. Now, by
Corollary 4, we get:

∥∥Âi,T −Ai∥∥∞ ≤ O(
√

log(T )

|Ti,T |

)
= O

(√
log T

piT

)
a.s.

which is the claim of Theorem 6.

4. Numerical Simulation

5000 10000 15000 20000 25000 30000
Horizon T

0.00

0.01

0.02

0.03

0.04

0.05

Es
tim

at
io

n 
Er

ro
r e

e1, T

e2, T

Figure 1: Performance of switched least squares
method for the example of Sec. 4. The
solid line shows the median across 30
runs and the shaded region shows the
25% to 75% quantile bound.

In this section, we illustrate the result of Theo-
rem 2 via an example. Consider a SLS with n =
2, k = 2, A1 = [ 1.5 0

0 0.2 ], and A2 = [ 0.01 0.1
0.1 0.1 ],

switching probabilities p = (0.75, 0.25), and
i.i.d. {wt}t≥0 with wt ∼ N (0, I). Note that
the example satisfies Assumptions 1 and 2, but
it is not mean square stable (see the next sec-
tion). We run the switched least squares for the
horizon of T = 30000 and repeat the experi-
ment for 20 independent runs. We plot the esti-
mation error ei,T = ‖Âi,t − A1‖∞ versus time
in Fig. 1. The plot shows that the estimation er-
ror is converging almost surely even though the
system is not mean square stable.

5. Related work

As mentioned in the introduction, there are two papers which analyze models similar to ours: Sarkar
et al. (2019) and Sattar et al. (2021). In this section, we compare our model, assumptions and results
from these papers.

Sarkar et al. (2019) investigate the problem of learning the parameters of an unknown SLS
of unknown order from input-output data using subspace methods. Under the assumption that the
system is mean-square stable, the noise processes are i.i.d. subgaussian, and the system matrices sat-
isfy some technical conditions, they propose an algorithm to estimate an SLS version of the Henkel
matrix and obtain parameter estimated by balanced truncation. They show that when the number

8
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of samples Ns is sufficiently large, then with high probability the estimation error is Õ(N
−∆s/2
s ),

where ∆s = log(1/ρmax)/ log(k/ρmax) and ρmax = λmax(
∑k

i=1 piAi ⊗Ai).
The model analyzed in Sarkar et al. (2019) is more general than our model but the proposed

algorithms are different. Sarkar et al. (2019) analyze a subspace-based algorithm, while we analyze
a switched least squares algorithm. Both of subspace methods and least squares methods are funda-
mental methods for system identification of linear systems. The results are derived under different
assumptions: we impose a slightly weaker assumption on the noise process and our assumption on
the stability of the models are different. Moreover, the nature of the results are different: Sarkar
et al. (2019) provide high probability rates of convergence while we provide almost sure ones. We
disscus the differences between the stability assumptions and the nature of convergence below. Fi-
nally, we note that the rate of convergence Õ(N

−∆/2
s ) depends on the number of subsystems, while

our rate of Õ(T−1/2) does not.
Sattar et al. (2021) consider a SLS where the discrete states evolves in a Markov manner. Such

systems are called Markov Jump Linear Systems (MJLS). Under the assumption that the system is
mean square stable, the switching distribution is ergodic and the noise is i.i.d. subgaussian, they pro-
pose a system identification procedure where random Gaussian noise is injected as control input and
system parameters are estimated using least squares. Sattar et al. (2021) show that when T is suffi-
ciently large, then with high probability the estimation error is O((

√
k log T +

√
log(1/δ))/

√
T ).

Sattar et al. (2021) also propose a certainty equivalent control algorithm and analyze its regret.
The model analyzed in Sattar et al. (2021) is more general than our model and the proposed

algorithms are similar. However, the assumptions and the nature of the result differ in a manner
similar to those for Sarkar et al. (2019). We impose weaker assumptions on the noise process,
our assumption on the stability of the models are different, and we provide almost sure rate of
convergence. We discuss the difference between the stability assumptions and the nature of the
convergence below.

Discussion on nature of the convergence Both Sarkar et al. (2019) and Sattar et al. (2021) estab-
lish high probability rate of convergence. In particular, they show that for any δ > 0 and sufficiently
large T , ‖Âi − Ai‖ ≤ Õ(f(δ, T )) with probability 1 − δ, where rate of convergence of f(δ, T ) is
o(T ) but differs in the two papers. In contrast, our results establish an almost sure rate of conver-
gence. Thus our results imply strong consistency of the system identification while the results of
Sarkar et al. (2019) and Sattar et al. (2021) do not. This is because strong consistency is defined in
terms of almost sure convergence, which is a stronger notion of convergence than convergence in
probability implied by the high probability bounds.

On the other hand, the results of Sarkar et al. (2019) and Sattar et al. (2021) are finite-time
bounds, i.e., they provide an explicit lower bound on the number of samples needed for the rate of
convergence bounds to be valid. In contrast, our result bounds are asymptotic and hold in the limit
but do not provide finite time guarantees.

Discussion on Stability Assumption Both Sattar et al. (2021) and Sarkar et al. (2019) assume
that the switched system is mean square stable, i.e., there exist a deterministic vector x∞ ∈ Rn
and a deterministic positive definite matrix Q∞ ∈ Rn×n such that for any deterministic initial state
x0 ∈ R, we have

lim
τ→∞

∥∥E[xτ ]− x∞
∥∥→ 0 and lim

τ→∞

∥∥E[xτx
ᵀ
τ ]−Q∞

∥∥→ 0.

9
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As shown in Theorem 3.9 of Costa et al. (2006), mean square stability is equivalent λmax(
∑k

i=1 piAi⊗
Ai) < 1. Corollary 10 shows that our assumption on stability implies stability in the average sense
(see Duncan and Pasik-Duncan (1990)), i.e,

lim sup
T→∞

1

T

T−1∑
τ=0

‖xτ‖2 <∞.

The two notions of stability are different as we illustrate via examples below.

Example 1 Let θᵀ = {A1, 0}, and p = (p1, p2), with λmax(p1A1) > 1 and x0 6= 0. Then:

E[xτ+1] = E[Aστxτ + wt] = p1A1E[xτ ] = · · · = (p1A1)τE(x0) =⇒ lim
τ→∞

E(xτ ) =∞.

Therefore, this system is not mean square stable. However, this system satisfies Assumption 2 and
therefore is stable in the average sense.

Example 2 Consider non-switched system with matrix A, with λmax(A) < 1 and σmax(A) > 1.
This system is mean square stable, but it doesn’t satisfy Assumption 2.

6. Conclusion and Future Directions

In this paper, we investigated the asymptotic performance of the switched least squares for system
identification of (autonomous) switched linear systems. We proposed the switched least squares
method and established both data dependent and data independent rates of convergence. We showed
this method for system identification is strongly consistent and we derived the almost sure rate of
convergence of O(

√
log(T )/T ). This analysis provide a solid first step toward establishing almost

sure regret bounds for adaptive control of SLSs.
The current results are established for autonomous systems with i.i.d. switching when the com-

plete state of the system is observed. Interesting future research directions include relaxing these
modeling assumptions and considering non-autonomous (i.e. controlled) systems with more general
switching under partial observability.
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Appendix A. Proof of Lemma 8

Recall that σi = σmax(Ai), i ∈ {1, . . . , k}. Define γt = σst . Then, by sub-multiplicative property
of the matrix norms, we have:

‖Φ(t− 1, τ + 1)‖ = ‖Ast−1 . . . Asτ+1‖ ≤ γt−1 · · · γτ+1 =: Γt−1,τ+1. (11)

Given numbers m1, . . . ,mk, define f(m1, . . . ,mk) = σm1
1 · · ·σmkk . Let mi(t − 1, τ + 1) =

τ−1∑
t′=τ+1

1{sτ=i}
t−τ−1 denote the number of times the discrete state equals i in [τ + 1, t− 1]. Then,

Γt−1, τ + 1 = γt−1 · · · γτ+1 = f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))t−τ−1.

By the strong law of large numbers, we know

lim
t→∞

mi(t− 1, τ + 1) = pi, a.s. ∀i ∈ {1, . . . , k}.

Furthermore, the rate of convergence of mi(t− 1, τ + 1) to pi only depends on τ + 1 and t− 1 only
through their difference. Thus, for any ε > 0, there exists a N(ε) such that for all t− τ −1 ≥ N(ε),
|mi(t−1, τ+1)−pi| < ε a.s. for all i. By the continuity of f(·), for any ε′ > 0, there exists aN ′(ε′)
such that for all t−τ−1 ≥ N ′(ε′), |f(m1(t−1, τ+1), · · · ,mk(t−1, τ+1))−f(p1, · · · , pk)| < ε′

a.s. Hence,

f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1)) < f(p1, . . . , pk) + ε′ a.s.

By Assumption 2, we know f(p1, . . . , pk) < 1. Now we can pick ε′ such that f(p1, . . . , pk) + ε′ =:

β∗ < 1. Then for all t ≥ 1,

t−1∑
τ=1

f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))t−τ−1

≤
t−N(ε′)−1∑

τ=1

β∗t−τ−1 +
t−1∑

τ=t−N ′(ε′)

f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))t−τ−1

<
β∗N

′(ε′)

1− β∗
+

t−1∑
τ=t−N ′(ε′)

F t−τ−1
∗ ,

where F∗ = max
p1,...,pk∈∆k

f(p1, . . . , pk) (where ∆k is the k-dimensional simplex), which is clearly

bounded. As a result, both terms in the right hand side are bounded which implies the statement in
the claim.

Appendix B. Proof of Proposition 9

We first state the Strong Law of Large Numbers (SLLN) for Martingale Difference Sequences
(MDS).
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Theorem 11 (Theorem 3.3.1 of Stout (1974)) Suppose {Xτ}τ≥1is a martingale difference sequence
with respect to the filtration {Fτ}τ≥1 . Let aτ be Fτ−1 measurable and for each τ ≥ 1 we have
aτ →∞ as τ →∞, a.s. If for some p ∈ (0, 2], we have:

∞∑
τ=0

E
[
|Xτ |p|Fτ−1

]
apτ

<∞,

then : ∑T
τ=0Xτ

aT
→ 0 a.s.

B.1. Proof of (P1)

We start by the following Lemma which shows the implication of Assumption 1 on the growth rate
of energy of the noise process. This result was presented in Lai and Wei (1985) where a proof sketch
was provided. For the sake of completeness, we provide a detailed proof.

Lemma 12 Assumption 1, implies the following growth rate:

T∑
τ=0

‖wτ‖2 = O(T ), a.s. (12)

Proof Let ζτ := ‖wτ‖ − E[‖wτ‖|Fτ−1]. Assumption 1 implies that:

sup
τ
E[|ζτ |2|Fτ−1] <∞, a.s.

Hence, by taking p = 2 and aτ = τ in Theorem 11, the above expression implies that
∑T

τ=0 ζτ =

o(T ), a.s. Furthermore, by Assumption 1,
∑T

τ=0E[‖wτ‖2|Fτ−1] = O(T ). Therefore, we get:

T∑
τ=0

‖wτ‖2 =
T∑
τ=0

ζτ +
T∑
τ=0

E[‖wτ‖2|Fτ−1] =
T∑
τ=0

ζτ +O(T ) = O(T ), a.s.

Using the convolution formula in Eq. (7), we can bound the norm of the state ‖xt‖2 as following:

‖xt‖2 =
(∥∥ t−1∑

τ=1

Φ(t− 1, τ + 1)w(τ)
∥∥)2 (a)

≤
( t−1∑
τ=1

‖Φ(t− 1, τ + 1)w(τ)‖
)2

(b)

≤
( t−1∑
τ=1

‖Φ(t− 1, τ + 1)‖‖w(τ)‖
)2 (c)

≤
( t−1∑
τ=1

Γt,τ+1‖w(τ)‖
)2

(13)
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where (a) follows from triangle inequality and (b) follow from sub-multiplicative property of the
matrix norm, and (c) follows from Eq. (11). Now for a fixed i, i ∈ {1, · · · , k}, we have:

∑
t∈Ti,T

‖xt‖2 ≤
∑
t∈Ti,T

( t−1∑
j=1

Γj+1,t−1‖w(j)‖
)2 (d)

≤
∑
t∈Ti,T

( t−1∑
j=1

Γj+1,t−1

)( t−1∑
j=1

Γj+1,t−1‖w(j)‖2
)

(e)

≤ Γ̄
∑
t∈Ti,T

( t−1∑
j=1

Γj+1,t−1‖w(j)‖2
) (f)

≤ Γ̄
T−1∑
j=1

( ∑
t∈Ti,T ,j≤t

Γj+1,t−1

)
‖w(j)‖2

(g)

≤ Γ̄2
T−1∑
j=1

‖w(j)‖2 = O(T ) a.s.

where (d) follows from Cauchy-Schwarz’s inequality, (e) follows from Lemma 8, (f) follows from
changing the order of summation, and (g) follows from boundedness of sub-sums of

∑T−1
τ=0 Γτ+1,T−1,

and Lemma 8.

B.2. Proof of (P2)

First, notice that we have the following lower and upper bounds for maximum eigenvalue of a
matrix:

λmax

( ∑
t∈Ti,T

xtx
ᵀ
t

) (a)

≤ tr
( ∑
t∈Ti,T

xtx
ᵀ
t

)
=
∑
t∈Ti,T

‖xi‖2

where (a) follows from the fact that trace of a matrix is sum its eigenvalues and all eigenvalues of
xtx

ᵀ
t are non-negative. Using inequality (a), and Proposition 9-(P1), we get:

λmax

( ∑
t∈Ti,T

xtx
ᵀ
t

)
=
∑
t∈Ti,T

‖xi‖2 = O(T ) a.s.

which completes the proof.

B.3. Proof of (P3)

B.3.1. PRELIMINARY RESULTS

First we prove the following preliminary lemma:

Lemma 13 Assumption 1 and 2 imply:

∞∑
τ=1

‖xτ‖2

τ2
<∞ a.s.

Proof The results is a direct consequence of Abel’s lemma. Let ST :=
∑T

τ=1 ‖xτ‖2, then we have:

T∑
τ=1

‖xτ‖2

τ2
=

T∑
τ=1

Sτ − Sτ−1

τ2
=
ST
T
− S0

1
+

T∑
τ=2

Sτ−1

( 1

(τ − 1)2
− 1

τ2

)
(a)
=

T∑
τ=2

O
(

1

τ2

)
<∞

where (a) follows from Proposition 9-(P1), which implies ST = O(T ).
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Lemma 14 We have the following:

∥∥∥ T∑
τ=1

Asτxτw
ᵀ
τ + wτx

ᵀ
τA

ᵀ
sτ

∥∥∥ = o(T ) a.s.

Proof We prove the limit element-wise. The (l, p)-th element of the matrix Asτxτw
ᵀ
τ is:[

Asτ (l, 1)xτ (1) + · · ·+Asτ (l, n)xτ (n)
]
wτ (p). Our goal is to prove:

T∑
τ=1

(
Asτ (l, 1)xτ (1) + · · ·+Asτ (l, n)xτ (n)

)
wτ (p) = o(T ) a.s.

In order to show the above expression, we use Theorem 11 and by setting at = t and p = 2 we
show:

T∑
τ=1

E
[(
Asτ (l, 1)xτ (1) + · · ·+Asτ (l, n)xτ (n)

)2
w2
τ (p)

∣∣∣Fτ−1

]
τ2

<∞ (14)

We have:

E
[(
Asτ (l, 1)xτ (1) + · · ·+Asτ (l, n)xτ (n)

)2
w2
τ (p)

∣∣∣Fτ−1

]
=

k∑
i=1

piE
[(
Ai(l, 1)xτ (1) + · · ·+Ai(l, n)xτ (n)

)2
w2
τ (p)

∣∣∣Fτ−1

]

Let A∗ = maxi∈{1,...,k} ‖A‖∞. Then, for each fixed i, we have:

E
[(
Ai(l, 1)xτ (1) + · · ·+Ai(l, n)xτ (n)

)2
w2
τ

∣∣∣Fτ−1

]
(a)

≤ A∗ sup
τ
E[w2

τ (p)
∣∣Fτ−1]

(
xτ (1) + · · ·+ xτ (n)

)2

(b)

≤ nA∗ sup
τ
E
[
w2
τ (p)

∣∣Fτ−1

] n∑
j=1

x2
τ (j) = nA∗ sup

τ
E
[
w2
τ (p)

∣∣Fτ−1

]
‖xτ‖2

where (a) is because xτ is Fτ−1 measurable, and (b) is by Cauchy-Schwarz’s inequality. Based on
Assumption 1, E

[
w2
τ (p)

∣∣Fτ−1

]
is uniformly bounded. Therefore the left hand side of Eq. (14) is

bounded by:

nA∗ sup
τ

{
E[w2

τ (p)|Fτ−1]
} T∑
τ=1

‖xτ‖2

τ2

(c)

≤ ∞

where (c) follows from Lemma 13 .

16



CONSISTENCY AND RATE OF CONVERGENCE OF LS METHOD IN AUTONOMOUS SLS

B.3.2. PROOF OF PROPOSITION 9-(P3)

Finally, we prove the statement in the proposition. We have:

xτx
ᵀ
τ = (Asτ−1xτ−1 + wτ−1)(Asτ−1xτ−1 + wτ−1)

ᵀ

= Asτ−1xτ−1x
ᵀ
τ−1A

ᵀ
sτ−1

+Asτ−1xτ−1w
ᵀ
τ−1 + wτ−1x

ᵀ
τ−1A

ᵀ
sτ−1

+ wτ−1w
ᵀ
τ−1.

Since Asτ−1xτ−1x
ᵀ
τ−1A

ᵀ
sτ−1

is positive semi definite, we have:

xτx
ᵀ
τ � Asτ−1xτ−1w

ᵀ
τ−1 + wτ−1x

ᵀ
τ−1A

ᵀ
sτ−1

+ wτ−1w
ᵀ
τ−1,

By summing over τ ∈ Ti,T , we get:∑
τ∈Ti,T

xτx
ᵀ
τ �

∑
τ∈Ti,T

wτ−1w
ᵀ
τ−1 +

∑
τ∈Ti,T

[
Asτ−1xτ−1w

ᵀ
τ−1 + wτ−1x

ᵀ
τ−1A

ᵀ
sτ−1

]
(a)
=

∑
τ∈Ti,T

wτ−1w
ᵀ
τ−1 + o(T ) a.s.

where (a) follows from Lemma 14. Furthermore, since |Ti,T | = piT a.s., we have:

lim inf
|Ti,T |→∞

∑
τ∈Ti,T xτx

ᵀ
τ

|Ti,T |
� lim inf
|Ti,T |→∞

∑
τ∈Ti,T wτ−1w

ᵀ
τ−1

|Ti,T |
(b)
= C � 0 a.s.

(b) holds by Assumption 1. Therefore

lim inf
|Ti,T |→∞

∑
τ∈Ti,T xτx

ᵀ
τ

|Ti,T |
� 0 =⇒ λmin

(
lim inf
|Ti,T |→∞

∑
τ∈Ti,T xτx

ᵀ
τ

|Ti,T |

)
> 0, a.s.

which concludes the proof.

Appendix C. Proof of Corollary 10

Using Eq. (13), we have:

T∑
τ=1

‖xτ‖2 =

k∑
i=1

∑
τ∈Ti,T

‖xτ‖2
(a)
= kO(T ) = O(T ) a.s.

where (a) follows from Prop. 9-(P2).
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