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Significant interest in RL for control

Robotics
Self driving cars

Smart Grids

Simplest setting: Linear quadratic regulation

Different classes of RL algorithms
Provide different performance guarantees under
different assumptions on the uncertainty

Relax the assumptions on uncertainty for a specific class of RL algorithms
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Linear Quadratic Regulation

xt+1 = Aθxt + Bθut + wt, wt ∼ N(0, σ2
wI)

c(xt, ut) = x⊺t Qxt + u⊺
t Rut.

Given θ⊺ = [Aθ, Bθ], choose a policy π to minimize

J(π; θ) = limsup
T→∞

1
T 𝔼

[

T
∑
t=1

c(xt, wt)
]
.
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θSθAθ

• Sθ is the solution of the algebraic Riccati eqn
Moreover: J(π⋆

θ; θ) = σ2
wTr(Sθ).

Learning setup

• True parameter θ⋆ is unknown
• Regret of any learningbased policy π:

R(T ; π) = 𝔼π

[

T
∑
t=1

c(xt, ut)− TJ(π⋆
θ⋆
, θ⋆)

]
.

Key research question

How does regret scale with horizon T?

Learning in unknown linear systems
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Bayesian RL algorithm
Generalization on Thompson sampling (or posterior sampling) for bandits

Very simple algorithm which requires no hyperparameter tuning and works well in practice

Assumptions on the true parameter

θ⋆ lies in a compact set.
Independent truncated Gaussian
prior on each row of θ⊺⋆ :

μ̄1(θ) =
[

n
∏
i=1

N(θ̂1(i), Σ1)
]|Ω

Thompson sampling with dynamic episodes (TSDE)
[Ouyang, Gagrani, Jain 2020]

θ⊺⋆ = ∈ Ω
Compact set
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Properties of the posterior

Posterior μt is also truncated Gaussian with μt(θ) =
[

n
∏
i=1

N(θ̂t(i), Σt)
]|Ω

where

θ̂t+1(i) = θ̂t(i) +
Σtzt(xt+1(i)− θ̂t(i)⊺ zt)

σ2
w + z⊺t Σtzt

Σ−1
t+1 = Σ−1

t + 1
σ2
w
ztz⊺t .

where zt = vec(xt, ut).

Thompson sampling with dynamic episodes (TSDE)
[Ouyang, Gagrani, Jain 2020]
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TSDE Algorithm

At start of episode: Sample θ̃k ∼ μtk

During the episode: Use ut = G(θ̃k)xt

Terminate episode if: (t− tk > Tk−1) or (detΣt < 1
2 detΣtk)

Thompson sampling with dynamic episodes (TSDE)
[Ouyang, Gagrani, Jain 2020]

Episode k− 1 Episode k Episode k + 1

tk tk+1

Tk

Intuition: detΣt < 1
2 detΣtk implies that current posterior is much better than the

posterior at the start of the episode. Resample to exploit this knowledge
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Thompson sampling with dynamic episodes (TSDE)

Assumption A1 There exists an δ ∈ (0, 1) such that for any θ, ϕ ∈ Ω, ||Aθ + BθG(ϕ) || ≤ δ.

[Ouyang, Gagrani, Jain 2020]
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Requires that close loop system dynamics
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spectral norm less than one.

Discussion on the results

The regret is Bayesian regret, i.e., includes an
expectation over the prior.

Different from frequentist regret, which
provides a highprobability bound on regret
for the true parameter.

Thompson sampling with dynamic episodes (TSDE)

Assumption A1 There exists an δ ∈ (0, 1) such that for any θ, ϕ ∈ Ω, ||Aθ + BθG(ϕ) || ≤ δ.

Theorem Under A1, R(T ; TSDE) ≤ C√T (log T)q

[Ouyang, Gagrani, Jain 2020]

Why bother with TSDE

Works very well in practice. Requires no parameter tuning.

Continues to work well when A1 is violated.



The strong assumption appears to be a limitation
of the proof technique (and not the algorithm).

Can we relax it?
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ℙ(θ ∈ Ω : θ is stabilizable) = 1
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How should the stability assumption be relaxed?

Ideally, should only require the true θ⋆ to be stabilizable
Bayesian equivalent:

ℙ(θ ∈ Ω : θ is stabilizable) = 1

. . . and be able to construct a stabilizing controller in finite time
Don't know how to do that in Bayesian setting
Guaranteeing stability with high probability is not sufficient

First step in weakening the stability assumption
Assumption A1 is defined in terms of spectral norm
A natural relaxation is to replace spectral norm by spectral radius.
. . . which is what we do in this paper
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This paper: Natural relaxation of Assumption A1

Assumption A2 There exists an δ ∈ (0, 1) such that for any θ, ϕ ∈ Ω, ρ(Aθ + BθG(ϕ)) ≤ δ.

Controller for system ϕ stabilizes system θ

Still a strong assumption, but weaker (and more natural) than A1.
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Proof of regret bound of TSDE breaks down

Proof relies on showing that there is some constant α0 such that

(⋆) 𝔼[ max
1≤t≤T

||xt||] ≤ σw + α0𝔼[ max
1≤t≤T

||wt||]

Under (A1), 𝔼[||xt+1||] ≤ δ𝔼[||xt||] + 𝔼[||wt||], which implies α0 = 1/(1− δ).
Such a bound does not work under (A2).

This paper: Natural relaxation of Assumption A1

Assumption A2 There exists an δ ∈ (0, 1) such that for any θ, ϕ ∈ Ω, ρ(Aθ + BθG(ϕ)) ≤ δ.

Controller for system ϕ stabilizes system θ

Still a strong assumption, but weaker (and more natural) than A1.
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Intuition

Under (A2), in each episode the system is asymptotically stable.

Asymptotic stability implies exponential stability.

So, if the episode is sufficiently large, we can show that

𝔼[||xtk+1||] ≤ β𝔼[||xtk||] + ᾱ𝔼[ max
tk≤t≤tk+1

||wt||]

which implies (⋆).

Modified TSDE
Episode k− 1 Episode k Episode k + 1

tk tk+1

Tk
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Under (A2), in each episode the system is asymptotically stable.

Asymptotic stability implies exponential stability.

So, if the episode is sufficiently large, we can show that

𝔼[||xtk+1||] ≤ β𝔼[||xtk||] + ᾱ𝔼[ max
tk≤t≤tk+1

||wt||]

which implies (⋆).

Proposed modification

To ensure that each episode is sufficiently
large, do not stop in the first Tmin steps of an
episode

See paper for choice of Tmin.

Implication

The second stopping condition is not
triggered for the Tmin steps of each episode.

Requires other changes in the proof
argument. See paper for details.

Modified TSDE
TminEpisode k− 1 Episode k Episode k + 1

tk tk+1

Tk
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Main results

Assumption A2 There exists an δ ∈ (0, 1) such that for any θ, ϕ ∈ Ω, ρ(Aθ + BθG(ϕ)) ≤ δ.

Theorem Under A2, R(T ;m-TSDE) ≤ C√T (log T)q
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Conclusion

Relaxed a technical assumption for TSDE.

Although A2 is weaker than A1, it still a strong assumption.

Numerical experiments suggest that regret scales Õ(√T) even when A2 is not satisfied.

Open question: How to further relax the stability assumption?

Main results

Assumption A2 There exists an δ ∈ (0, 1) such that for any θ, ϕ ∈ Ω, ρ(Aθ + BθG(ϕ)) ≤ δ.

Theorem Under A2, R(T ;m-TSDE) ≤ C√T (log T)q
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