A modified Thompson sampling-based learning algorithm for unknown linear systems

Mukul Gagrani^a, Sagar Sudhakara^b, Aditya Mahajan^c, Ashutosh Nayyar^b, Ouyang Yi^d ^aQualcomm, ^bUSC, ^cMcGill, ^dPreferred Networks

> IEEE Conference on Decision and Control 9 December 2022

Robotics

1

Self driving cars

1

Simplest setting: Linear quadratic regulation

- Different classes of RL algorithms
- Provide different performance guarantees under different assumptions on the uncertainty

Simplest setting: Linear quadratic regulation

- Different classes of RL algorithms
- Provide different performance guarantees under different assumptions on the uncertainty

Relax the assumptions on uncertainty for a specific class of RL algorithms

Linear Quadratic Regulation

$$\begin{split} & x_{t+1} = A_{\theta} x_t + B_{\theta} u_t + w_t, \quad w_t \sim \mathsf{N}(0, \sigma_w^2 I) \\ & c(x_t, u_t) = x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} \mathsf{R} u_t. \end{split}$$

Given $\theta^{\mathsf{T}} = [A_{\theta}, B_{\theta}]$, choose a policy π to minimize $J(\pi; \theta) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} c(x_t, w_t) \right].$

Linear Quadratic Regulation

$$\begin{aligned} x_{t+1} &= A_{\theta} x_t + B_{\theta} u_t + w_t, \quad w_t \sim N(0, \sigma_w^2 I) \\ c(x_t, u_t) &= x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t. \end{aligned}$$

Given $\theta^{\mathsf{T}} = [A_{\theta}, B_{\theta}]$, choose a policy π to minimize $J(\pi; \theta) = \limsup_{\mathsf{T} \to \infty} \frac{1}{\mathsf{T}} \mathbb{E} \left[\sum_{\mathsf{t}=1}^{\mathsf{T}} c(x_{\mathsf{t}}, w_{\mathsf{t}}) \right].$

Optimal solution

When θ is known and (A_{θ},B_{θ}) is stabilizable, optimal policy π^{\star} is given by

 $u_t = G(\theta) x_t$

where

- $G(\theta) = -(R + B_{\theta}^{\mathsf{T}} S_{\theta} B_{\theta})^{-1} B_{\theta}^{\mathsf{T}} S_{\theta} A_{\theta}$
- S_{θ} is the solution of the algebraic Riccati eqn Moreover: $J(\pi_{\theta}^{\star}; \theta) = \sigma_{w}^{2} \text{Tr}(S_{\theta}).$

Linear Quadratic Regulation

$$\begin{aligned} x_{t+1} &= A_{\theta} x_t + B_{\theta} u_t + w_t, \quad w_t \sim N(0, \sigma_w^2 I) \\ c(x_t, u_t) &= x_t^\top Q x_t + u_t^\top R u_t. \end{aligned}$$

Given $\theta^{\mathsf{T}} = [A_{\theta}, B_{\theta}]$, choose a policy π to minimize $J(\pi; \theta) = \limsup_{\mathsf{T} \to \infty} \frac{1}{\mathsf{T}} \mathbb{E} \left[\sum_{t=1}^{\mathsf{T}} c(x_t, w_t) \right].$

Learning setup

- True parameter θ_{\star} is unknown
- Regret of any learning-based policy π :

$$R(T; \pi) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{T} c(x_t, u_t) - TJ(\pi_{\theta_{\star}}^{\star}, \theta_{\star}) \right].$$

Thompson sampling for LQ-(Gagrani et. al.)

Optimal solution

When θ is known and (A_θ,B_θ) is stabilizable, optimal policy π^\star is given by

 $u_t = G(\theta) x_t$

where

- $G(\theta) = -(R + B_{\theta}^{\mathsf{T}} S_{\theta} B_{\theta})^{-1} B_{\theta}^{\mathsf{T}} S_{\theta} A_{\theta}$
- S_{θ} is the solution of the algebraic Riccati eqn Moreover: $J(\pi_{\theta}^{\star}; \theta) = \sigma_{w}^{2} \text{Tr}(S_{\theta}).$

Linear Quadratic Regulation

$$\begin{aligned} \mathbf{x}_{t+1} &= \mathbf{A}_{\theta} \mathbf{x}_{t} + \mathbf{B}_{\theta} \mathbf{u}_{t} + \mathbf{w}_{t}, \quad \mathbf{w}_{t} \sim \mathbf{N}(\mathbf{0}, \sigma_{w}^{2}\mathbf{I}) \\ \mathbf{c}(\mathbf{x}_{t}, \mathbf{u}_{t}) &= \mathbf{x}_{t}^{\mathsf{T}} \mathbf{Q} \mathbf{x}_{t} + \mathbf{u}_{t}^{\mathsf{T}} \mathbf{R} \mathbf{u}_{t}. \end{aligned}$$

Given $\theta^{\mathsf{T}} = [A_{\theta}, B_{\theta}]$, choose a policy π to minimize $J(\pi; \theta) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} c(x_t, w_t) \right].$

Learning setup

- True parameter θ_{\star} is unknown
- Regret of any learning-based policy π :

$$R(T; \pi) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{T} c(x_t, u_t) - TJ(\pi_{\theta_{\star}}^{\star}, \theta_{\star}) \right].$$

$\sim N(0, \sigma_w^2 I) \qquad \qquad \text{When } \theta \text{ is known and } (A_{\theta}, B_{\theta}) \text{ is stabilizable,} \\ \text{optimal policy } \pi^* \text{ is given by}$

 $u_t = G(\theta) x_t$

Optimal solution

where

- $G(\theta) = -(R + B_{\theta}^{\mathsf{T}} S_{\theta} B_{\theta})^{-1} B_{\theta}^{\mathsf{T}} S_{\theta} A_{\theta}$
- S_{θ} is the solution of the algebraic Riccati eqn Moreover: $J(\pi_{\theta}^{\star}; \theta) = \sigma_{w}^{2} \text{Tr}(S_{\theta}).$

Key research question

▶ How does regret scale with horizon T?

Explore vs Exploit

Explore vs Exploit

Certainty equivalence

- \blacktriangleright Generate estimate $\widehat{\theta}_t$ based on past observations
- ▶ Use controller: $u_t = G(\hat{\theta}_t) x_t + \varepsilon_t$ (exploration noise)

Explore vs Exploit

Certainty equivalence

- \blacktriangleright Generate estimate $\widehat{\theta}_t$ based on past observations
- ▶ Use controller: $u_t = G(\hat{\theta}_t) x_t + \varepsilon_t$ (exploration noise)

Upper Confidence Bound (UCB)

- Senerate UCB estimate $\bar{\theta}_t$ based on past observations.
- ▶ Use controller: $u_t = G(\bar{\theta}_t) x_t$

Explore vs Exploit

Certainty equivalence

- \blacktriangleright Generate estimate $\widehat{\theta}_t$ based on past observations
- ▶ Use controller: $u_t = G(\hat{\theta}_t) x_t + \varepsilon_t$ (exploration noise)

Upper Confidence Bound (UCB)

- Generate UCB estimate $\bar{\theta}_t$ based on past observations.
- ▷ Use controller: $u_t = G(\bar{\theta}_t) x_t$

Posterior/Thompson sampling

- Maintain posterior μ_t on θ_*
- Sample $\tilde{\theta}_t \sim \mu_t$
- ▷ Use controller: $u_t = G(\tilde{\theta}_t) x_t$

Explore vs Exploit

Certainty equivalence

- \blacktriangleright Generate estimate $\widehat{\theta}_t$ based on past observations
- ▶ Use controller: $u_t = G(\hat{\theta}_t) x_t + \varepsilon_t$ (exploration noise)

Upper Confidence Bound (UCB)

- Generate UCB estimate $\bar{\theta}_t$ based on past observations.
- ▷ Use controller: $u_t = G(\bar{\theta}_t) x_t$

Posterior/Thompson sampling

- Maintain posterior μ_t on θ_*
- \blacktriangleright Sample $\tilde{\theta}_t \sim \mu_t$
- ▷ Use controller: $u_t = G(\tilde{\theta}_t) x_t$

[Ouyang, Gagrani, Jain 2020]

- Bayesian RL algorithm
- Generalization on Thompson sampling (or posterior sampling) for bandits
- > Very simple algorithm which requires no hyper-parameter tuning and works well in practice

[Ouyang, Gagrani, Jain 2020]

- Bayesian RL algorithm
- Generalization on Thompson sampling (or posterior sampling) for bandits
- > Very simple algorithm which requires no hyper-parameter tuning and works well in practice

Assumptions on the true parameter

 \triangleright θ_* lies in a compact set.

$$\boldsymbol{\theta}_{\star}^{\mathsf{T}} = \begin{bmatrix} & \boldsymbol{A}_{\star} & & \boldsymbol{B}_{\star} \end{bmatrix} \underset{\text{Compact set}}{\in \Omega}$$

[Ouyang, Gagrani, Jain 2020]

- Bayesian RL algorithm
- Generalization on Thompson sampling (or posterior sampling) for bandits
- Very simple algorithm which requires no hyper-parameter tuning and works well in practice

Assumptions on the true parameter

- \triangleright θ_{\star} lies in a compact set.
- Independent truncated Gaussian
 prior on each row of θ^T_{*}:

$$\bar{\mu}_1(\boldsymbol{\theta}) = \left[\prod_{i=1}^n N(\hat{\theta}_1(i), \boldsymbol{\Sigma}_1) \right] \bigg|_{\boldsymbol{\Omega}}$$

Properties of the posterior

Posterior μ_t is also truncated Gaussian with $\mu_t(\theta) = \left[\prod_{i=1}^n N(\hat{\theta}_t(i), \Sigma_t)\right]_{\Omega}$ where $\hat{\theta}_{t+1}(i) = \hat{\theta}_t(i) + \frac{\Sigma_t z_t(x_{t+1}(i) - \hat{\theta}_t(i)^\top z_t)}{\sigma_w^2 + z_t^\top \Sigma_t z_t}$ $\Sigma_{t+1}^{-1} = \Sigma_t^{-1} + \frac{1}{\sigma_w^2} z_t z_t^\top.$

where $z_t = \operatorname{vec}(x_t, u_t)$.

- At start of episode: Sample $\tilde{\theta}_k \sim \mu_{t_k}$
- ▶ During the episode: Use $u_t = G(\tilde{\theta}_k) x_t$
- ► Terminate episode if: $(t t_k > T_{k-1})$ or $(\det \Sigma_t < \frac{1}{2} \det \Sigma_{t_k})$

- ▶ At start of episode: Sample $\tilde{\theta}_k \sim \mu_{t_k}$
- During the episode: Use $u_t = G(\tilde{\theta}_k) x_t$
- Terminate episode if: $(t t_k > T_{k-1})$ or $(\det \Sigma_t < \frac{1}{2} \det \Sigma_{t_k})$

Intuition: det $\Sigma_t < \frac{1}{2}$ det Σ_{t_k} implies that current posterior is much better than the posterior at the start of the episode. Resample to exploit this knowledge

[Ouyang, Gagrani, Jain 2020]

	ntion /	
ASSILL		
7.550111		_

There exists an $\delta \in (0, 1)$ such that for any $\theta, \phi \in \Omega$, $\|A_{\theta} + B_{\theta}G(\phi)\| \leq \delta$.

[Ouyang, Gagrani, Jain 2020]

Assumption A1

There exists an $\delta \in (0, 1)$ such that for any $\theta, \phi \in \Omega$, $||A_{\theta} + B_{\theta}G(\phi)|| \leq \delta$.

Discussion on assumptions

- A1 is a strong assumption.
- Requires that close loop system dynamics under any mismatched controller should have spectral norm less than one.

[Ouyang, Gagrani, Jain 2020]

Assumption A1	There exists an $\delta \in (0, 1)$ such that for any $\theta, \varphi \in \Omega$, $\ A_{\theta} + B_{\theta}G(\varphi)\ \leq \delta$.	
Theorem	Under A1, $R(T; TSDE) \le C\sqrt{T} (\log T)^q$	

Discussion on assumptions

- A1 is a strong assumption.
- Requires that close loop system dynamics under any mismatched controller should have spectral norm less than one.

[Ouyang, Gagrani, Jain 2020]

Assumption A1	There exists an $\delta \in (0, 1)$ such that for any $\theta, \varphi \in \Omega$, $\ A_{\theta} + B_{\theta}G(\varphi)\ \leq \delta$.	
Theorem	Under A1, $R(T; TSDE) \le C\sqrt{T} (\log T)^q$	

Discussion on assumptions

- A1 is a strong assumption.
- Requires that close loop system dynamics under any mismatched controller should have spectral norm less than one.

Discussion on the results

- The regret is Bayesian regret, i.e., includes an expectation over the prior.
- Different from frequentist regret, which provides a high-probability bound on regret for the true parameter.

[Ouyang, Gagrani, Jain 2020]

Discussion on assumptions

- A1 is a strong assumption.
- Requires that close loop system dynamics under any mismatched controller should have spectral norm less than one.

Discussion on the results

- The regret is Bayesian regret, i.e., includes an expectation over the prior.
- Different from frequentist regret, which provides a high-probability bound on regret for the true parameter.

The strong assumption appears to be a limitation of the proof technique (and not the algorithm).

Can we relax it?

How should the stability assumption be relaxed?

Ideally, should only require the true θ_\star to be stabilizable

Bayesian equivalent:

 $\mathbb{P}(\theta \in \Omega: \theta \text{ is stabilizable}) = 1$

How should the stability assumption be relaxed?

Ideally, should only require the true θ_{\star} to be stabilizable

Bayesian equivalent:

 $\mathbb{P}(\theta \in \Omega : \theta \text{ is stabilizable}) = 1$

... and be able to construct a stabilizing controller in finite time

- Don't know how to do that in Bayesian setting
- Guaranteeing stability with high probability is not sufficient

How should the stability assumption be relaxed?

Ideally, should only require the true θ_{\star} to be stabilizable

Bayesian equivalent:

 $\mathbb{P}(\theta \in \Omega : \theta \text{ is stabilizable}) = 1$

... and be able to construct a stabilizing controller in finite time

Don't know how to do that in Bayesian setting

Guaranteeing stability with high probability is not sufficient

First step in weakening the stability assumption

- Assumption A1 is defined in terms of spectral norm
- > A natural relaxation is to replace spectral norm by **spectral radius**.
- ... which is what we do in this paper

This paper: Natural relaxation of Assumption A1

- \triangleright Controller for system ϕ stabilizes system θ
- Still a strong assumption, but weaker (and more natural) than A1.

This paper: Natural relaxation of Assumption A1

Proof of regret bound of TSDE breaks down

> Proof relies on showing that there is some constant α_0 such that

$$(\star) \qquad \mathbb{E}\left[\max_{1 \le t \le T} \|x_t\|\right] \le \sigma_w + \alpha_0 \mathbb{E}\left[\max_{1 \le t \le T} \|w_t\|\right]$$

- ▶ Under (A1), $\mathbb{E}[||x_{t+1}||] \leq \delta \mathbb{E}[||x_t||] + \mathbb{E}[||w_t||]$, which implies $\alpha_0 = 1/(1-\delta)$.
- Such a bound does not work under (A2).

Need to modify the algorithm

Modified TSDE

Intuition

- Under (A2), in each episode the system is asymptotically stable.
- Asymptotic stability implies exponential stability.
- So, if the episode is sufficiently large, we can show that

 $\mathbb{E}[\|\boldsymbol{x}_{t_{k+1}}\|] \leq \beta \mathbb{E}[\|\boldsymbol{x}_{t_k}\|] + \bar{\alpha} \mathbb{E}\Big[\max_{t_k \leq t \leq t_{k+1}} \|\boldsymbol{w}_t\|\Big]$

which implies (\star) .

Modified TSDE

Intuition

- Under (A2), in each episode the system is asymptotically stable.
- Asymptotic stability implies exponential stability.
- So, if the episode is sufficiently large, we can show that

```
\begin{split} \mathbb{E}[||x_{t_{k+1}}||] &\leq \beta \mathbb{E}[||x_{t_k}||] + \bar{\alpha} \mathbb{E}\Big[\max_{t_k \leq t \leq t_{k+1}} ||w_t||\Big] \\ \text{which implies } (\star). \end{split}
```

Proposed modification

- To ensure that each episode is sufficiently large, do not stop in the first T_{min} steps of an episode
- $\blacktriangleright \quad \text{See paper for choice of } \mathsf{T}_{\min}.$

Modified TSDE

Intuition

- Under (A2), in each episode the system is asymptotically stable.
- > Asymptotic stability implies exponential stability.
- So, if the episode is sufficiently large, we can show that

```
\begin{split} \mathbb{E}[||x_{t_{k+1}}||] &\leq \beta \mathbb{E}[||x_{t_k}||] + \bar{\alpha} \mathbb{E}\Big[\max_{t_k \leq t \leq t_{k+1}} ||w_t||\Big] \\ \text{which implies } (\star). \end{split}
```

Proposed modification

- To ensure that each episode is sufficiently large, do not stop in the first T_{min} steps of an episode
- $\blacktriangleright \quad \text{See paper for choice of } \mathsf{T}_{\min}.$

Thompson sampling for LQ–(Gagrani et. al.)

Implication

- The second stopping condition is not triggered for the T_{min} steps of each episode.
- Requires other changes in the proof argument. See paper for details.

Main results

Assumption A2	There exists an $\delta \in (0, 1)$ such that for any $\theta, \varphi \in \Omega$, $\rho(A_{\theta} + B_{\theta}G(\varphi)) \leq \delta$.	
Theorem	Under A2, $R(T; m-TSDE) \le C\sqrt{T} (\log T)^q$	

Main results

Assumption A2	There exists an $\delta \in (0, 1)$ such that for any $\theta, \varphi \in \Omega$, $\rho(A_{\theta} + B_{\theta}G(\varphi)) \leq \delta$.	
Theorem	Under A2, $R(T; m-TSDE) \le C\sqrt{T} (\log T)^q$	

Conclusion

- Relaxed a technical assumption for TSDE.
- > Although A2 is weaker than A1, it still a **strong assumption**.
- > Numerical experiments suggest that regret scales $\tilde{O}(\sqrt{T})$ even when A2 is not satisfied.
- **Open question**: How to further relax the stability assumption?
- Thompson sampling for LQ-(Gagrani et. al.)

Thank you