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Abstract - We have developed a new concept for a smart 

sensor web technology for measurements of soil moisture 
that include spaceborne and in-situ assets. The objective of 
the technology is to enable a guided/adaptive sampling 
strategy for the in-situ sensor network to meet the 
measurement validation objectives of the spaceborne sensors, 
with respect to resolution and accuracy. One potential 
application is the Soil Moisture Active/Passive (SMAP) 
mission, The sensor nodes are guided to perform as a macro-
instrument measuring processes at the scale of the satellite 
footprint, hence meeting the requirements for the difficult 
problem of validation of satellite measurements. The science 
measurements considered are the surface-to-depth profiles of 
soil moisture estimated from satellite radars and radiometers, 
with calibration and validation using in-situ sensors. 
Satellites allow global mapping but with coarse footprints. 
The total variability in soil-moisture fields comes from 
variability in processes on various scales. Installing an in-
situ network to sample the field for all ranges of variability 
is impractical. However, a sparser but smarter network can 
provide the validation estimates by operating in a guided 
fashion with guidance from its own sparse measurements. 
The feedback and control take place in the context of a 
dynamic data assimilation system. The overall design of the 
smart sensor web - including the control architecture, 
assimilation framework, and actuation hardware - will be 
presented in this paper. We also present results of initial 
numerical and laboratory demonstrations of the sensor web 
concept, which includes a small number of soil moisture 
sensors and their measurement model, a dynamic soil 
moisture time-evolution model (SWAP), and an optimal 
control strategy. Based on these results, the TRL has been 
advanced to 3 from the initial level of 2. 

 

I. INTRODUCTION 

The long-term vision of Earth Science measurements 

involves sensor webs that can provide information at 

conforming spatial and temporal sampling scales, and at 

selectable times and locations, depending on the phenomena 

under observation. Each of the six strategic focus areas of 

NASA Earth Science (climate, carbon, surface, atmosphere, 

weather, and water) has a number of measurement needs, 

many of which will ultimately need to be measured via such 

a sensor web architecture. Here, we develop technologies 

that enable key components of a sensor web for an example 

measurement need, namely, soil moisture. Soil moisture is a 

measurement need in four out of the six strategic focus area 

roadmaps (it appears in climate, carbon, weather, and water 

roadmaps). It is used in all land surface models, all water 

and energy balance models, general circulation models, 

weather prediction models, and ecosystem process 

simulation models. Depending on the particular application 

area, this quantity may need to be measured with a number 

of different sampling characteristics. It is therefore necessary 

to develop sensor web capabilities to enable flexible and 

guided sampling scenarios, as well as calibration and 

validation strategies to support them. 

 

This project seeks to develop and demonstrate, via numerical 

and laboratory experiments, the architecture and algorithms 

for a sensor web control system that interconnects the 

elements of the web and enables “smart sensing” through the 

integration of a data assimilation framework. The sensor 

nodes will be guided to serve as a macro-instrument 

compatible with the large-scale effective measurements by 

satellite sensors. 

 

II. THE SENSOR WEB CONCEPT 

The ground footprints of remote sensors are often coarser 

than the scale of variations of the variables. As a result, the 

remote sensing estimate is only a coarse-resolution estimate 

of a field mean. In-situ sensors often sample a point location 

in the heterogeneous field. Statistics of errors of retrieval are 

indicative of errors in measurements,  and errors in 

representativeness of in-situ samples.  These two errors 

cannot be separated using existing sampling networks. 

 

For soil moisture profile fields, for example, the total 

variability is derived from variability in processes that 

influence it on a wide spectrum of scales ranging from 

meters to several kilometers.  This broad spectrum of 

variability and multiple causes is not unique to soil moisture, 

but is a characteristic of many Earth system variables. A key 

challenge is how to calibrate and validate the satellite 

footprint estimate, for example from SMAP, which is an 
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average of the field that may be 10s or 100s of km2 for the 

radar and radiometer, resepectively. To install an in-situ 

sensor network that samples the field across all ranges of 

variability is impractical and cost-prohibitive.  Our 

hypothesis is that a much smaller but smarter network can 

provide the needed validation estimates for satellite 

measurements.  

 

The sensor web has to operate in a guided fashion. The 

guidance comes from the sparse measurements themselves, 

which, through a control system, guide the sensor web to 

modify the sampling rate and other parameters such that 

their observations yield the most representative picture of 

the satellite footprint conditions.  The control and feedback 

take place in the context of a data assimilation system that 

merges data from forecast models, sensors, and relevant 

auxiliary information to produce the best estimate of the 

variable field and its anticipated evolution, balanced against 

measurement costs. This means that even if a measurement 

may improve the value of the soil moisture estimate, if it is 

too costly in term of power usage, the optimal decision could 

be not to take that measurement. 

 

Here, we develop and demonstrate this control system for 

guided sampling by a sensor web.  The guidance is towards 

producing representative and statistically unbiased estimates 

of the remote sensing footprint variable estimate based on a 

finite-size sensor web with dynamic operations.  The duty 

cycle and sampling at the network nodes will be driven by a 

data assimilation system that can provide guidance on the 

worth of each measurement at different sampling intervals. 

Uncertainty in the model and current estimates can form the 

basis for the quantitative evaluation of the worth of data at 

each sensor web node. Dynamic commanding and data 

ingestion from those nodes optimize the value of the sparse 

ground-truth network in validating the remote sensing-based 

coarse-resolution retrieval.  Here, we build a prototype of the 

semiclosed control system for the sensor web, coupled with 

a data assimilation system, for the case of soil moisture 

remote sensing as an example. The remote sensing 

instruments could produce observations at km-scale. The 

instruments operating at an in situ node could include 

meteorological sensors (temperature, precipitation, wind, 

solar radiation, etc.), soil moisture probes installed on 

surface and at varying depths, and multifrequency tower-

mounted radars for O(100)m observations of soil moisture 

profile fields. Ancillary data such as topography, vegetation 

cover, and soil texture could also be provided at the spatial 

scale of in situ observations. There are specific challenges 

with validating remote sensing estimates using these point 

and/or small-footprint (O(100m)) in situ samples.  These 

challenges will allow the demonstration of the advantages of 

the proposed approach. 

 

The real-time data assimilation will track the conditions for 

variability in soil moisture and guide the sensor web to 

modulate its measurement duty-cycle and other parameters 

across the network.  This is an adaptive sampling network 

guided by the data assimilation system that can feed back the 

value of each additional measurement. A block diagram 

depicting the interrelationships of the elements of the 

proposed system is shown in Figure 1. 

 

The in-situ sensor web data, fed to the coupled assimilation-

control system, will be used to determine the parameters 

required for the next set of sensor web measurements. 

Depending on the meteorological and other physical scene 

variations that are judged to influence the soil moisture 

profiles between the remote sensing measurement intervals, 

the sensors could be commanded to turn on or off, and 

depending on sensor type, to modify their sampling 
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Figure 1. Elements of the sensor web technology and their interrelationships. The semi-closed system generates guidance to the sensor web, 

through actuators, for modifying its sampling characteristics using a coupled data assimilation and control system, antecedent sensor data, and 
ancillary data (e.g., topography and soil texture). User command can also be incorporated. 
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parameters. For a tower-mounted radar, for example, 

parameters to control are the frequencies for different depths 

of observation or vegetation conditions, bandwidth for 

variable spatial resolutions, and number of samples to 

average depending on expected measurement noise levels. 

An actuator will transmit a data packet containing the 

control signals to each relevant node. The nodes will decode 

the received signals and set their sampling parameters 

accordingly. 

 

III. APPROACH 

 

A. Data Assimilation 

 

Data assimilation is a statistical estimation framework that 

combines physics-based model forecasts with observations 

[1]-[3].  In data assimilation it is assumed that models have 

uncertainty.  It is also assumed that observations have errors.  

The relevant measures of the probability density function of 

the model forecasts are propagated in time until 

measurements are available. The probability density function 

or measures of it are updated based on the relative 

uncertainty of model forecasts and observations. The data 

assimilation and the sensor web will be coupled through an 

optimal control system.  The duty cycle and weight given to 

each node measurement is evaluated against the value of that 

measurement in the data assimilation system.  Reduction in 

resulting covariance will determine which observation will 

have the most value. This information is passed on to the 

control system to dynamically adjust the sample averaging 

and data collection.  Since the model in the data assimilation 

will incorporate and integrate auxiliary information on 

vegetation, terrain drainage, soil texture, precipitation, etc., 

the possibility of fixing sensor positions representative of 

larger area will be explored. Data assimilation and sensor 

web-guided identification of station locations is beneficial 

since it allows long-term (multi-year) monitoring of a 

satellite footprint-scale estimate based on a sparse in-situ 

network. 

 

Data assimilation has to take place in the context of a time-

evolution model describing the physical process of soil 

moisture variations. The time and depth evolution of soil 

moisture fields can be expressed via a pair of coupled partial 

different equations (PDE) in space and time. This model has 

a number of parameters associated with terrain and 

meteorological conditions. The solution to the coupled 

differential equation is an estimate of future states of soil 

moisture fields with the knowledge of the current state and 

the model parameters. 

 

 The Soil-Water-Atmosphere-Plant (SWAP) model [4] is a 

community standard solver for such a model. SWAP 

incorporates surface energy balance by including 

micrometeorological data such as precipitation, winds, air 

temperature, and humidity. It also incorporates soil physics 

properties such as amplitude and phase characteristics of 

flow dynamics. It then solves the coupled differential 

equations numerically. We have used SWAP to develop a 

time-series of soil moisture variations using actual values of 

rainfall measurements for sample areas. 

 

B. Control Architecture  

 

The physics-based models have uncertainty and observations 

have errors.  Thus, we model soil moisture at any point 
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Figure 2. Control architecture. Each sensor measures variables over a finite period of time. Variables are 

correlated with the soil moisture field. Data are compressed at each sensor node and transmitted to the 

coordinating center, which derives an optimal control instruction set for the sensors, as well as an unbiased 
estimate of the soil moisture field at the remote sensor resolution, guided by data assimilation. 
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location in a spatial field as a discrete time stochastic 

process {X
t
,t = 0,1,2,...}, the evolution of which is 

described by a stochastically forced hydrologic model. At 

specified times that maximize the information content of a 

measurement, each sensor can be activated to sense and 

transmit information.  The data gathered by each sensor is 

encoded/compressed and transmitted in real-time through 

noisy channels to the coordinating center.  At any time t  the 

coordinating center utilizes the information it has gathered 

up to t  to estimate field mean  and to specify the mode each 

sensor will employ at time t +1, so as to gather additional 

data. Thus, the objective is to determine: (i) a sensor mode 

selection strategy for the coordinating center; (ii) an 

estimation strategy for the coordinating center; and (iii) real-

time encoding strategies for the sensors, so as to minimize 

the expected value of the sum of a function of the difference 

of the estimate ˆ X 
t
 and field mean from t = 0 up to time 

horizon T . The control system architecture is shown in 

Figure 2. 

 

The above-described interdependence of sensor mode 

selection and real-time encoding strategies results in a 

challenging optimization/control problem [5]-[13]. We have 

established a common mathematical framework and 

terminology for the different elements of the project as 

shown in Figure 3. 

 
 

The data assimilation component consists of a physical 

dynamic evolution model ft, which, given the knowledge of 

values of the variable soil moisture Xt (up to time t), 

parametric uncertainties Wt (such as uncertainties in 

topography or temperature), and exogenous forcings at at 

time t (such as rain), predicts the value of variable soil 

moisture at the next point in time (t+1). This predicted value 

is Xt+1. The vector of all soil moisture measurements Xt is 

also called the state vector. The dynamic model ft is also 

called the state transition operator. The state transition 

operator describes the evolutions of soil moisture in space 

and time. Both variations are functions of scene parameters 

such as topography, soil type and texture, vegetation. They 

are also functions of external forcings such as rain, cloud 

cover, solar radiation, and temperature. The evolution of the 

soil moisture state vector is generally a dissipative process, 

but one that is forced with these exogenous discontinuities. 

The discontinuities, could pose barriers to information if the 

sensor network does not adapt its sampling strategy to 

capture the rapidly varying nature of the discontinuities. 

 
We also include the sensor measurement model as part of 

the assimilation system, since it provides the sensor data as 

an input to the time-evolution model. For the ith sensor, the 

measured value Yt
i is related to the value of the variable soil 

moisture Xt via a physical model ht
i and sensor parameter 

configuration Ut
i. These parameters could be frequency, 

polarization, power level, etc. Measurement noise is added 

to the true signal and denoted as Vt
i. Sensors make 

observations that can be translated into estimates of 

unknown variables. Sensor models do not include any time 

evolution or dynamic nature.  They can, however, include 

the probabilistic nature of the unknowns at time t.  The 

models and unknowns could be scalar (1-D) or vector (N-D), 

depending on how many variables are being measured and 

how many sensors there are. Different sensors allow 

estimates of the unknowns at different spatial scales. Sensors 

could be in-situ (moisture probes) or remote (tower-based, 

airborne, or spaceborne SARs and radiometers). In general, 

the estimation of unknowns is a complex task, depending on 

the degree of model nonlinearity, measurement noise, and 

sensor calibration. It is assumed that each sensor is 

Figure 3. Overall problem formulation and mathematical notation, showing the relationship between the different project components. 
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calibrated independently of the rest of the sensors in the 

web, but potentially in coordination with the entire web in 

terms of scheduling and resource usage. 

 

The control strategy is derived for the objective of 

minimizing a cost measure, which is a combination of 

achieving the best possible variable estimate at any given 

time and minimizing resource usage for making the required 

measurements. This means that even if a measurement may 

improve the value of the soil moisture estimate, if it is too 

costly in term of power usage, the optimal decision could be 

not to take that measurement. This strategy holds for a 

centralized stochastic optimization problem with imperfect 

observations, as we have assumed. Fundamental issues in 

selecting a sensor configuration are: 

 Energy consumption cost of current sensor 

configuration 

 Effect on the quality of the current state estimate 

 Effect on future decisions for sensor configurations and 

their effect on quality of future state estimates 

 Trade-off between the first and last two items above 

 

This problem belongs to the class of optimization problems 

known as Partially Observable Markov Decision Processes 

(POMDP). To solve such problems, backward induction is 

typically used to determine optimal sensor selection and 

estimation strategies sequentially in time, by moving 

backwards in time. The solution method has the following 

features: 

• Compute conditional probability pt of current state 

Xt using all previous measurements (and all 

previous sensor configurations) 

• Choose optimal sensor configuration Ut and 

optimal estimate using pt 

• Sensor selection strategy gt and estimation strategy 

lt are determined by specifying the optimal sensor 

configuration and optimal state estimate for every 

possible realization of pt 

The above off-line computations are numerically very 

expensive. The complexity increases with increasing number 

of sensors and increasing number of sensor modes. The 

number of sensor data quantization levels is also a factor in 

increasing the complexity. Once the off-line computations 

are performed, the on-line implementation of the control 

strategy is rather straightforward. We have successfully 

applied this strategy to a 1-D problem and with varying 

levels of success to a 2-D problem. In each case, a control 

policy table has been generated. The results will be shown at 

the presentation. 

 

C. Sensor Models 

 

We envision a sensor web that will ultimately comprise of 

different varieties of sensors. In particular, the soil moisture 

sensors could be localized, such as probes, or could be 

remote, such as tower-mounted or aircraft-based radars or 

radiometers. Deriving physics-based remote sensor models 

to relate their measurements to estimates of soil moisture is 

generally rather complicated. The in-situ sensors, on the 

other hand, offer an opportunity for accurate measurements 

that are related to soil moisture values via simple empirical 

models. Several standard methods of in-situ sensing exist, 

such as time-domain reflectometer (TDR) probes, neutron 

probes, capacitance probes, and ring resonators. We have 

chosen an in-situ soil moisture probe making highly 

localized measurements. We selected and procured 

capacitance probes from Decagon, model ECH2O EC-5, and 

developed its calibration curve in form of a third-order 

Figure 4. Left: the Decagon ECH2O EC-5 soil moisture probe. 

Right: calibration curve (or “sensor model”) derived from 

experimental data and used in the control algorithm. 

Figure 5. Top: a realistic soil moisture profile from surface to a 

depth of d1+d2. Middle: remote sensor could be a low-frequency 

radar (tower-mounted, airborne, or spaceborne) which can produce 

measurements related to soil moisture profiles at varying depths. 

Bottom: Example of backscattered co-pol phase dependence on 
moisture profile, to be used in developing inversion algorithms. 
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polynomial. This polynomial, shown in Figure 4 along with 

the probe and experimental data points, was used as the 

initial sensor model input to the control system.  The model 

generated with the empirical data represents a calibration 

accuracy of about 1%. 

 

For remote sensors, which could be tower-mounted, 

airborne, or spaceborne, the physics-based retrieval models 

of soil moisture involve solutions to nonlinear optimization 

problems. Considering a low-frequency radar as an example 

(Figure 5), its measured backscattering coefficients could be 

related to the profiles of soil moisture via models derived 

from Maxwell’s equations. A number of models that relate 

radar backscattering coefficients to soil moisture have 

recently been developed (the “forward” problem). The 

models could be numerical or analytical. The “inverse” 

problem, or the retrieval problem, has also been addressed in 

our previous works, but needs further advancement. The 

basic strategy is to derive multi-dimensional polynomial 

expressions that are derived from the more complicated 

numerical models in several unknowns. The closed-form 

nature of the fitted model allows us to apply a number of 

optimization techniques, both local and global. The 

statistical nature of the unknowns (e.g., soil moisture and 

surface roughness) can be systematically included in  

development of the optimization algorithm. 

 

D. Actuation hardware  

 

A key enabling technology in the proposed system is the 

proper actuation of the sensors using output computed by the 

control algorithms.  Actuation allows the measurement 

parameters to be dynamically adjusted according to the data 

collected so far, the inferred soil condition, as well as the 

overall objective of the sensing task.  This process involves 

the sensor radio transceiver receiving the control message 

from the coordinating center, decoding the message into a 

set of parameter values associated with the measurement 

device modes, and issuing the actuation command that leads 

to the parameter adjustment of the measurement device.  

Commonly available sensor platforms for R&D purposes, 

e.g., the MICA2 motes [16], often lack sophisticated 

actuation capabilities.  The typical actuation on these 

platforms is limited to setting data sampling rate and 

specifying the duty cycling rate of the sensors.   The 

proposed system involves the dynamic tuning of a wide 

range of parameters representing various modes of each 

instrument. For example, for the tower radar, a number of 

parameters such as frequencies, power levels, and 

polarizations could be controlled.   This requires the 

development of a customized actuator for the proposed 

system that will become part of the sensor board and is 

connected to the measurement device. For this development, 

we will leverage the existing Narada board already 

developed by a colleague at the University of Michigan.

  

IV. LABORATORY TEST-BED 

 

The control signals generated by the central coordinator 

need to be conveyed to the sensors via wireless links and 

actuators at the sensor locations. The objective of the 

laboratory test-bed is to provide experimental proof-of-

concept for the actuation of sensors, given the control signal 

and antecedent sensor data that are available to the 

coordinator via wireless links. 

 

We have planned two major phases for the actuation 

experiments (phases A and B). In Phase A, recently 

completed, COTS devices were used for actuation and 

wireless communication. The control feedback loop was 

Figure 6. Field measurement conceptual setup: both remote and in-situ sensors are present, and send data to the coordinator. The coordinator issues 

command signals via the wireless link to actuators at sensor locations, which in turn set sensor measurement parameters. 
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implemented to command a single sensor at a single location 

via an actuation device. The control policy for the 1-D 

problem was successfully integrated with the lab set up and 

used to actuate the sensor at intervals prescribed by the 

control algorithm. 

In Phase B, custom actuation and communication devices 

will be built (possibly using some COTS components). 

Furthermore, in parallel with the control algorithm progress, 

multiple sensors will be included in the demonstration, each 

of which can be controlled by the coordinator. Phase B will 

also include optimization criteria for power management. 

Phase A experiments were in the laboratory only. In Phase 

B, we plan to set up a field-analog experiment. Figure 6 

shows the field experiment concept, where both in-situ and 

remote sensors may be used, each of which will receive 

commands from the coordinator and actuated accordingly. 

Each sensor can in turn send its data back to the coordinator. 

  

V. SUMMARY 

 

The proposed technology for coupling a data assimilation 

framework into a sensor web control system to achieve an 

optimal dynamic sampling strategy is fundamentally new. 

Previous studies related to this topic exist, but have used an 

empirical approach to search for temporal stability of 

network nodes for capturing the mean conditions of the 

observed field [18]-[19]. No previous work has been done to 

implement such dependencies within a control system to 

guide the sampling of a sensor web. 

The novel aspects and benefits of this technology are: 

o It uses a physics-based approach to relate the variations 

of soil moisture to soil texture, terrain, vegetation, and 

meteorological conditions, and hence the decisions on 

weighting the node measurements are solidly tractable, 

regardless of geographic location. 

o It enables, for the first time, a dynamically guided 

sampling strategy for the sensor web by integrating in 

situ data, real-time processing, data assimilation, and an 

optimal control algorithm. The new sampling strategy 

enables representative estimates of the time-varying field 

mean provided by space-based remote sensing assets. 

 

The methodology for data collection and data processing 

described here is also applicable to several other 

technological areas including transportation systems, 

wireless sensor networks, and Mobile Ad hoc Networks. 
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