
INV ITED

P A P E R

Measurement Scheduling for
Soil Moisture Sensing:
From Physical Models to
Optimal Control
Scheduling and estimation methods are compared in this paper, and a method

that sharply reduces energy consumption is presented; the paper is
grounded in the physics of soil moisture.

By David I Shuman, Member IEEE, Ashutosh Nayyar, Student Member IEEE,

Aditya Mahajan, Member IEEE, Yuriy Goykhman, Student Member IEEE, Ke Li,

Mingyan Liu, Member IEEE, Demosthenis Teneketzis, Fellow IEEE,

Mahta Moghaddam, Fellow IEEE, and Dara Entekhabi, Senior Member IEEE

ABSTRACT | In this paper, we consider the problem of

monitoring soil moisture evolution using a wireless network

of in situ sensors. Continuously sampling moisture levels with

these sensors incurs high-maintenance and energy consump-

tion costs, which are particularly undesirable for wireless

networks. Our main hypothesis is that a sparser set of mea-

surements can meet the monitoring objectives in an energy-

efficient manner. The underlying idea is that we can trade off

some inaccuracy in estimating soil moisture evolution for a

significant reduction in energy consumption. We investigate

how to dynamically schedule the sensor measurements so as to

balance this tradeoff. Unlike many prior studies on sensor

scheduling that make generic assumptions on the statistics of

the observed phenomenon, we obtain statistics of soil moisture

evolution from a physical model. We formulate the optimal

measurement scheduling and estimation problem as a partially

observable Markov decision problem (POMDP). We then utilize

special features of the problem to approximate the POMDP by a

computationally simpler finite-state Markov decision problem

(MDP). The result is a scalable, implementable technology that

we have tested and validated numerically and in the field.

KEYWORDS | Dynamic programming; energy conservation;

Markov decision process; scheduling; soil moisture sensing;

stochastic optimal control; wireless sensor networks

I . INTRODUCTION

Spatial and temporal variations of soil moisture are key

factors in several scientific areas. For example, soil

moisture is a measurement need in four (climate, carbon,

weather, and water) out of the six National Aeronautics and

Space Administration (NASA) Earth Science strategic focus

areas [1]. It is used in all land surface models, water and

energy balance models, weather prediction models, general
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circulation models, and ecosystem process simulation

models. Therefore, it is important to develop technologies

to enable the monitoring of soil moisture evolution.

A number of current systems achieve this by deploying

dense sensor networks over the region of interest, and

using the sensors to continuously sample soil moisture

levels (see, e.g., [2] and [3]). However, deploying a large

number of sensors that sample continuously incurs high

installation, maintenance, and energy consumption costs.

Energy efficiency is particularly important in wireless
sensor networks, which are often expected to run for long

periods of time without human intervention, while relying

on limited battery power or renewable energy resources. A

wireless sensor node’s radio is the biggest consumer of

energy. For example, the current draw for the XBee PRO

ZB module by Digi International, Minnetonka, MN, is on

the order of 100 mA when the radio is transmitting and

10 mAwhen the radio is receiving or idling. When the radio

is powered off in sleep mode, however, the current draw is

less than 10 �A [4].

Our main hypothesis in this paper is that a sparser set

of measurements can meet the monitoring objectives in an

energy-efficient manner. The underlying idea is that we

can trade off some inaccuracy in estimating soil moisture

evolution for a significant reduction in energy consump-

tion. The main research question we address is how to

dynamically schedule the sensor measurements so as to

balance this tradeoff. The premise is that an intelligent

scheduling strategy should utilize statistical models of soil

moisture evolution and sensor noise, as well as the out-

comes of past sensor measurements, in order to schedule

measurements when they are expected to yield the most

information.

This problem belongs to the larger class of sensor

scheduling problems. In some sensor scheduling problems,

such as those introduced in [5] and [6], the underlying

system being monitored is time invariant. Because soil

moisture evolves with time, techniques developed for

sensor scheduling problems with a time-invariant under-

lying system are not directly applicable to our problem.

Techniques developed to monitor time-varying linear

Gaussian systems under a quadratic estimation criterion

(e.g., [7]–[11]) are also not directly applicable, as empirical

data show that such a linear Gaussian model is not

appropriate for soil moisture evolution (see, e.g., [12]).

Instead, we model soil moisture evolution as a discrete-

time Markov process and use Markov decision theory to

determine the sensor scheduling policy. Similar ap-

proaches have been investigated in [13]–[20], where

sensor scheduling problems with cost considerations are

formulated as instances of the partially observable Markov

decision problem (POMDP) of the standard stochastic

control literature (see, e.g., [21] and [22]). Modeling the

sensor scheduling problem as a POMDP enables one to

write down a dynamic programming decomposition and

use a standard set of numerical techniques to solve the

problem. However, these numerical techniques, which are

discussed in detail in Section III-A, do not always scale

well with the size of the problem. For the application

under consideration, a wireless sensor network typically

requires a large number of sensors, on the order of 10s.

Exactly solving the POMDP for a network of this size is

computationally challenging.

We circumvent these computational difficulties by uti-

lizing special features of the system to make the scheduling

problem tractable for a larger number of sensors. These

features are: 1) the control actions do not affect the

underlying state dynamics; 2) the in situ sensors we use to
measure soil moisture levels are effectively noiseless (see

Section II-A2 for further justification); and 3) the sensors

have only two modes of operation, namely, active and

sleeping. These features are a result of the facts that the

in situ sensors are passive measuring devices with low

observation noise and calibration errors, and the sensors

can be turned either on or off by an actuator.

We leverage these three properties by introducing two

justifiable assumptions in Section III-B that allow us to

reduce the POMDP formulation to a computationally

simpler finite-state Markov decision problem (MDP).

The solution to the resulting MDP gives us an easily

implementable sensor scheduling policy that achieves the

objective of monitoring soil moisture evolution in an

energy-efficient manner. Moreover, due to the computa-

tional savings, this approach scales with the size of the

problem better than standard POMDP techniques. Finally,

this approach is not restricted to sensing soil moisture; it is

also potentially applicable to a number of other sensing

applications with these same features, such as tempera-

ture, air quality, and water quality monitoring.

The remainder of this paper is organized as follows. In

the next section, we describe the control architecture,

physics-based model of soil moisture evolution, and sensor

measurement model. We also formulate the scheduling

problem as a POMDP. In Section III, we focus on the

special case of sensors at multiple depths at a single lateral

location. We introduce our modeling assumptions, and

formulate an equivalent MDP to solve the scheduling

problem. We then discuss the scheduling and estimation

problem with sensors at multiple lateral locations. We

present a numerical example in Section IV, and discuss

how to incorporate meteorological observations in

Section V. Section VI concludes the paper.

II . PROBLEM DESCRIPTION

The overall system objective is to use in situ sensors to track
the random evolution of soil moisture over time, while

limiting the energy consumed in taking measurements. The

physical setup consists of a sensor network deployed over

the field of interest. The sensors are placed at multiple

lateral locations. At each lateral location, multiple sensors

at different depths are wired to a local actuator. The
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actuator is capable of wirelessly communicating with a

central coordinator, and actuating the colocated in situ
sensors. The central coordinator dynamically schedules the

measurements at each location, transmits the scheduling

commands to each local actuator, and subsequently receives

the sensor measurement readings back from the actuators.

The coordinator uses all of the measurement readings to

estimate the soil moisture at all locations and depths, and to

schedule future measurements. The coordinator’s task is to

leverage the spatial and temporal correlations of soil

moisture, in order to make the best estimates of its evolution

with as few measurements as possible. A diagram of this

control architecture is shown in Fig. 1. The physical

implementation of this wireless communication and actua-

tion system is discussed further in [23].

A. Modeling Components
In order to determine a scheduling and estimation

strategy to be used by the coordinator, we need statistical

models of soil moisture evolution and of the sensors. We

describe those here.

1) Physical Model of Soil Moisture Evolution: Soil moisture

varies as a function of time and 3-D space in response to

variable exogenous forcings such as rainfall, temperature,

cloud cover, and solar radiation. It is also influenced by

landscape parameters such as vegetation cover, soil type,

and topography. The soil moisture variations in time and

depth, or infiltration, can be modeled as a pair of partial

differential equations (the so-called Richards equations

[24]) in the case of a flat horizontal surface, subject to

constraints such as soil heat flow (represented by another

space-time partial differential equation involving soil mois-

ture and temperature), vegetation growth, and solute flow

[25]. For a homogeneous and flat landscape, the spatial

variations can be assumed to be limited to one dimension

(depth only). In the presence of topography, the 1-D infil-

tration in the direction of the surface normal is redis-

tributed, dominated by gravity, by the lateral fluxes in the

vadose (unsaturated) zone as well as the boundary values

imposed by the phreatic (saturated) zone at depth.

Triangulated irregular network (TIN) surface models, which

discretize the surface topography into triangle-shaped mesh

elements (also called Voronoi cells) for subsequent numer-

ical analyses, efficiently model local topography for the

purpose of this lateral distribution process.

Proper modeling of the soil moisture evolution pro-

cess has to take into account the water flow mechanisms

and the energy balance of the entire landscape, including

the surface–atmosphere interactions. It therefore has to

include mechanisms such as rainfall, groundwater flow,

evapotranspiration demand, and runoff. Among the most

sophisticated numerical models capable of predicting the

time-space soil moisture evolutions is the TIN-based

real-time integrated basin simulator (tRIBS) [26]–[29].

The mesh-generation algorithm within tRIBS is an

adaptive discretization scheme that resembles the spatial

pattern of the landscape with variable resolution to ensure

the impact of the basin response is properly represented.

The tRIBS model can be initialized and further driven

with distributed and spatially explicit terrain data such as

digital elevation models (DEMs) for topography, satellite-

or field-derived vegetation cover information, soil type,

precipitation estimates from satellite or ground-based

radar sources, temperature measurements, and various

other sources of meteorological and landscape data. The

sources of uncertainty in the predictions of tRIBS

include modeling and discretization errors, as well as

the errors in the landscape parameters and time-varying

forcing factors such as precipitation and temperature.

We use this model to simulate long time-series reali-

zations of the soil moisture over a basin. We then quantize

these realizations and use them to generate a joint spatial–

temporal statistical model of soil moisture. Fig. 2 shows a

sample basin and the simulated soil moisture evolution for

two locations in this basin.

2) Sensor Model: The in situ sensors are localized probes,
whose measurements are related to soil moisture values

via simple empirical models. Several standard methods of

in situ sensing exist, such as time-domain reflectometer

(TDR) probes, neutron probes, capacitance probes, and

ring resonators. We use capacitance probes from Decagon,

model ECH2O EC-5, which make highly localized mea-

surements. Specifically, these probes have �1%–2% accu-

racy if calibrated according to soil type [30]. Such a probe

is shown in Fig. 3(a). We calibrate the probes through a

standard procedure: we use a local soil sample, dry it, and

add water in known proportions. With each addition of

Fig. 1. The control architecture.
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water (which results in a known value of moisture con-

tent), probe measurements are taken. This produces a

graph of probe voltage versus water content, which is

subsequently used to fit a third-order polynomial. This

polynomial is shown in Fig. 3(b), along with experimental

data points. This simple soil moisture retrieval model (the

polynomial) represents a calibration accuracy of about 1%.

Because the desired quantization intervals are typically

3%–4%, we believe modeling these in situ sensors as

noiseless is a reasonable starting assumption. While

incorporating the calibration noise into the sensor model

increases the accuracy of the model, it also significantly

increases the complexity of the problem. Note that, unlike

the observation noise typically modeled in POMDPs, the

calibration noise is not an independently and identically

distributed (i.i.d.) process, and it cannot be directly

incorporated into the POMDP framework. Given the

small magnitude of the noise, we believe a noiseless

assumption provides a computationally tractable approx-

imation to a difficult problem.

B. Problem Formulation
We consider a sensor network consisting of sensors at

L lateral locations, with sensors at D different depths at

each lateral location. We model the quantized soil mois-

ture evolution as a discrete-time, discrete-valued stochas-

tic process fXtgt¼0;1;2;..., where

Xt ¼

X1;1
t X1;2

t � � � X1;D
t

X2;1
t X2;2

t � � � X2;D
t

..

. ..
. . .

. ..
.

XL;1
t XL;2

t � � � XL;D
t

2

6

6

6

6

6

4

3

7

7

7

7

7

5

and Xl;d
t denotes the soil moisture quantile at time t at

location l and depth d. We denote the finite sample space

of Xt by X , which represents all possible quantized

moisture levels. The statistics of the process fXtgt¼0;1;2;...

are inferred from the physical models, as described in

Section II-A1. We assume that the coordinator observes

perfectly the initial soil moisture levels. This observation is

given by Y0 ¼ X0. At each time t ¼ 1; 2; . . ., the central

coordinator chooses which sensors should take a measure-

ment. Its decision is denoted by the matrix

Ut ¼

U1;1
t U1;2

t � � � U1;D
t

U2;1
t U2;2

t � � � U2;D
t

..

. ..
. . .

. ..
.

UL;1
t UL;2

t � � � UL;D
t

2

6

6

6

6

6

4

3

7

7

7

7

7

5

where Ul;d
t 2 f0; 1g indicates whether the sensor at loca-

tion l and depth d should take a measurement ðUl;d
t ¼ 1Þ or

not take a measurement ðUl;d
t ¼ 0Þ at time t. The coordinator

then communicates the vectorUl
t :¼ ðUl;1

t ; Ul;2
t ; . . . ;Ul;D

t Þ to
the actuator at lateral location l. The actuator switches on

the colocated sensors corresponding to Ul
t, collects the

Fig. 2. (a) Nominal 2 km � 2 km basin used for tRIBS simulations.

The location in this example has climatology consistent with

Oklahoma. (b) Example of temporal evolution of soil moisture at

two different depths (25 and 67 mm) at the same lateral position.

(c) Example of temporal evolution of soil moisture at the same

depth (67 mm), but at two different lateral locations.
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observations Yl
t :¼ ðY l;1

t ; Y l;2
t . . . ; Y l;D

t Þ of the colocated

sensors, and transmits this vector back to the central

coordinator. These observations are given by

Y l;dt ¼
Xl;d
t ; if Ul;d

t ¼ 1

b; if Ul;d
t ¼ 0

(

(1)

where b represents a blank measurement. The central

coordinator receives the observations from all L actuators,
which collectively form the matrix of observations

Yt ¼

Y1;1
t Y1;2

t � � � Y1;D
t

Y2;1
t Y2;2t � � � Y2;D

t

..

. ..
. . .

. ..
.

YL;1
t YL;2

t � � � YL;D
t

2

6

6

6

6

4

3

7

7

7

7

5

:

After receiving these observations, the coordinator

forms an estimate of the soil moisture field, and decides

which sensors to activate next. The matrix of estimates

X̂t ¼

X̂
1;1

t X̂
1;2

t � � � X̂
1;D

t

X̂
2;1

t X̂
2;2

t � � � X̂
2;D

t

..

. ..
. . .

. ..
.

X̂
L;1

t X̂
L;2

t � � � X̂
L;D

t

2

6

6

6

6

4

3

7

7

7

7

5

of the soil moisture levels at all locations and all depths is

selected as a function of all past observations and

scheduling decisions as follows:

X̂t ¼ htðY0;Y1; . . . ;Yt;U1;U2; . . . ;UtÞ: (2)

The sequence h :¼ ðh1; h2; . . .Þ constitutes an estimation
policy.

The coordinator then selects the next scheduling de-

cision matrix Utþ1 as a function of all prior observations

and scheduling decisions, as follows:

Utþ1 ¼ gtðY0;Y1; . . . ;Yt;U1;U2; . . . ;UtÞ: (3)

The sequence g :¼ ðg1; g2; . . .Þ constitutes a scheduling
policy.

There are two objectives in determining good sched-

uling and estimation policies. The first is to conserve

energy by limiting the number of sensor measurements.

The second is to accurately estimate the soil moisture

evolution. Accordingly, we impose energy costs cðUtÞ,
which are proportional to the number of sensors scheduled

to take a measurement at each time t. Additionally, we
assess estimation costs �ðXt; X̂tÞ, which quantify the

accuracy of the soil moisture estimates at each time t. We

wish to find scheduling and estimation policies g and h,

respectively, that minimize the infinite-horizon expected

discounted cost criterion

Jg;h :¼ E
g;h

X

1

t¼1

�t�1 � cðUtÞ þ �ðXt; X̂tÞ
� �

( )

(4)

where � 2 ð0; 1Þ is the discount rate.

C. Markovian Assumption
The optimization problem formulated above is, in

general, nontractable. One reason for this difficulty is that

up to this point, we have not assumed any structure on the

statistics of the underlying soil moisture process

fXtgt¼0;1;2;.... In order to identify solvable approximations

of the original problem, we need to impose additional

Fig. 3. (a) The Decagon ECH2O EC-5 soil moisture probe. (b) The calibration curve derived from experimental data.
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statistical structure on the soil moisture process. Motivat-

ed by the heuristic reasoning that the current soil moisture

is more correlated with the recent past values of the

moisture than with moisture values from the distant past,

we assume that the soil moisture process is a kth-order
Markov process. That is, for all t ¼ 1; 2; . . .

PrðXtjXt�1; . . . ;X0Þ ¼ PrðXtjXt�1; . . . ;Xt�kÞ: (5)

As k increases, the statistical behavior described by (5)

becomes a better approximation of the statistical behavior

of the soil moisture process fXtgt¼0;1;2;.... Under the kth-
order Markovian assumption, one can think of Vt :¼ ðXt;

Xt�1; . . . ;Xt�kþ1Þ as the state that completely describes

the future statistical behavior of the soil moisture process.

A consequence of (5) is that the process fVtgt¼0;1;2;... is

first-order Markovian. The Markovian nature of the pro-

cess fVtgt¼0;1;2;... allows the optimization problem to be

viewed as a POMDP. Note that despite the fact that the

sensors are noiseless [i.e., when measurements are taken,

they are always correct, as shown in (1)], the process

fVtgt¼0;1;2;... is still not perfectly observed. This is because

the coordinator receives no observations of the soil

moisture when a measurement is not scheduled.

As a first approximation, we assume the soil moisture

process fXtgt¼0;1;2;... to be first-order Markovian, resulting

in the following POMDP.

Problem (P1): Given the statistics of the Markov process

fXtgt¼0;1;2;... and the observation model of (1) find a

scheduling policy g :¼ ðg1; g2; . . .Þ of the form in (3) and

an estimation policy h :¼ ðh1; h2; . . .Þ of the form in (2) to

minimize the objective

Jg;h :¼ E
g;h

X

1

t¼1

�t�1 � cðUtÞ þ �ðXt; X̂tÞ
� �

( )

where � 2 ð0; 1Þ is the discount rate.

The statistics of a Markov process fXtgt¼0;1;2;... consist

of a probability distribution on the initial state X0 and a

transition matrix P such that

PrðXt ¼ x0jXt�1 ¼ xÞ ¼ Pðx;x0Þ (6)

for x;x0 2 X .

Problem (P1) is an approximation to the original

problem. Better approximations can be obtained by model-

ing the soil moisture process as a higher order Markov

process. In that case, fVtgt¼0;1;2;... becomes the underlying

Markov process in the POMDP. While the underlying

theory is the same, the additional gain in approximation

from using a higher order Markov process comes at the

cost of increased computational complexity.

III . ANALYSIS

A. Exact Solution of the POMDP
POMDPs have been well studied in the literature. Such

problems can be transformed into fully observed MDPs by

taking the MDP state to be the conditional probability

distribution of the partially observed POMDP state, given

all the past observations and actions. This conditional

probability distribution is commonly referred to as a belief
state. For this resulting fully observed MDP, it is known

(see, e.g., [21] and [22]) that the optimal policies are

stationary policies of the form

X̂t ¼ hð�tÞ

Utþ1 ¼ gð�tÞ (7)

where �t is the belief state, a vector with components

�tðxÞ :¼ PrðXt ¼ xjY0;Y1; . . . ;Yt;U1;U2; . . . ;UtÞ;

x 2 X ; t ¼ 1; 2; . . .

At time tþ 1, the belief state is computed from �t, the

belief state at time t;Utþ1, the scheduling decision at time

tþ 1; and Ytþ1, the observation at time tþ 1.

While fully observed MDPs can in principle be solved

via dynamic programming, the fact that the belief state

belongs to a continuous space (the space of all probability

distributions on X) makes standard dynamic programming

intractable. In [31]–[33], Sondik and Smallwood make the

key observation that the value functions involved in each

step of the dynamic program are piecewise linear and

concave, and develop algorithms that utilize this property

to determine optimal policies for finite- and infinite-

horizon POMDPs. Subsequent algorithms for solving

POMDPs include Monahan’s enumeration algorithm

[34], the linear support algorithm [35], the witness algo-

rithm [36]–[38], and the incremental pruning algorithm

[39]. Software implementations of all of these algorithms

have been developed by Anthony Cassandra in the pomdp-

solve package, which is available at www.pomdp.org. For

more on exact solution methods of POMDPs, see the

surveys in [34] and [40]–[43].

The complexity class of infinite-horizon POMDPs is

not known; however, results on complexity of finite-

horizon POMDPs [44] and infinite-horizon MDPs with

uncountable state space (which are a superclass of

POMDPs) [45], [46] are known. These results suggest

that the complexity of the POMDP algorithms increases
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rapidly as the number of states of the underlying Markov

process increases.

In our experiments with Cassandra’s pomdp-solve

package, the convergence time of the standard algorithms

becomes prohibitively large when the number of states

exceeds 100. Note that the number of states is equal to the

number of quantiles raised to the power of the number of

sensors ðL � DÞ, so even with three sensors at different

depths at a single lateral location and a ten-level quan-

tization of soil moisture at each depth, the cardinality of

the state space X is 1000, which is too large for the exact

POMDP algorithms. In light of these computational dif-

ficulties, it becomes important to come up with alternative

formulations of our problem that can be solved more

efficiently than the POMDPs. We present such a for-

mulation in the next section for the case of multiple

sensors at a single location.

B. The Special Case of Sensors at Multiple Depths at
a Single Lateral Location

In this section, we consider a special instance of

Problem (P1) where there is a single lateral location (i.e.,

L ¼ 1). When the number of depths D is small enough, the

pomdp-solve package numerically finds the optimal poli-

cies; however, the computational burden increases quickly

with the number of depths considered.

To simplify the POMDP, we make the following

assumption.

Assumption 1: The action space is restricted to either not

taking any measurements or taking measurements at all

depths; i.e.,

Ut ¼ U1;1
t ;U1;2

t ; . . . ;U1;D
t

� �

2 ð0; 0; . . . ; 0Þ; ð1; 1; . . . ; 1Þf g:

The energy cost associated with action Ut ¼ ð0;
0; . . . ; 0Þ is 0, and the energy cost associated with action

Ut ¼ ð1; 1; . . . ; 1Þ is denoted by � > 0. The justification

for this restricted action space is that the actuators (which

include the radios) consume significantly more energy

than the sensors. Thus, the marginal energy cost of sched-

uling one additional sensor measurement at a lateral

location where the actuator is already powered on is

negligible.

We now describe the nature of optimal estimation and

scheduling policies for Problem (P1) under Assumption 1.

We then show that Problem (P1) is equivalent to an MDP

with countable state space.

1) Nature of the Estimation Policy: With Assumption 1 in

place, the nature of the evolution of the belief state under

any policy of the form in (7) is as follows. When a mea-

surement is taken at all depths at time t [i.e., Ut ¼ ð1;
1; . . . ; 1Þ], the controller observes perfectly the current soil

moisture levels at all depths, and the belief state �t is an

element of the set

C :¼ � 2 �j�ðxÞ ¼ 1; for some x 2 Xf g:

The set C is the set of belief states at which the controller is

certain about the soil moisture at all depths. We refer to

such states as corner states, and for each x 2 X , we denote

the belief state at which �ðxÞ ¼ 1 by ex. Clearly, if the
controller’s belief state is ex, the optimal estimate is x.

Thus

hðexÞ ¼ x:

After taking measurements, the controller does not

schedule more measurements for some number of time

steps (possibly zero). The length of this period of no

measurements depends on the outcome of the previous

measurement. During the period of no measurements, the

belief state is updated based solely on the soil moisture

transition matrix P, according to the update equation

�tþ1 ¼ �tP:

At each time step during this period of no measurements,

it is optimal for the controller to make the state estimate

according to

hð�tÞ 2 argmin
a2X

X

x2X

�tðxÞ � �ðx; aÞ

( )

and the resulting expected distortion is given by

~�ð�tÞ :¼ E � Xt; hð�tÞð Þj�t½ �

¼ min
a2X

X

x2X

�tðxÞ � �ðx; aÞ

( )

:

Eventually, the controller schedules another measure-

ment at all depths, and the belief state returns to some

element of C, depending on the outcome of the sub-

sequent measurements. Fig. 4 shows one such evolution

of the belief state. Note that each time the belief state

returns to an element � 2 C, it traces exactly the same

path of belief states until the next measurements are

scheduled.
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2) Nature of the Scheduling Policy: Using Assumption 1

and the nature of the estimation policy described

above, the standard dynamic program for the POMDP

in Problem (P1) can be written as (see, e.g., [21])

Vð�Þ ¼ min
~�ð�Þ þ ��þ � �

P

x2X ½�P�ðxÞ � VðexÞ;
~�ð�Þ þ �Vð�PÞ

� �

(8)

where ½�P�ðxÞ denotes the component of the vector �P

corresponding to the state x.

The following is a standard result for such dynamic

programs.

Lemma 1 (Smallwood and Sondik, 1973): Vð�Þ is con-
cave in �.

Next, let g� be the optimal scheduling policy for

Problem (P1) obtained from the dynamic program (8). We

have the following result on the convexity of the optimal

measurement region, which is similar in spirit to [47,

Lemma 1].

Theorem 1: Let D ¼ f� : g�ð�Þ ¼ ð1; 1; . . .Þg. Then, D
is a convex subset of �.

Proof: The set D represents the region of the belief

space where the optimal action is to schedule measure-

ments at the next time step. Therefore, the set D is

characterized by the following inequality:

~�ð�Þ þ ��þ � �
X

x2X

½�P�ðxÞ � VðexÞ � ~�ð�Þ þ �Vð�PÞ:

Let �1, �2 2 D be arbitrary. To show that D is convex, we

need to show that for any � 2 ½0; 1�, ��1 þ ð1� �Þ�2 2 D.

Since �1 2 D, we have

~�ð�1Þþ ��þ� �
X

x2X

½�1P�ðxÞ � VðexÞ � ~�ð�1Þ þ �Vð�1PÞ

or, equivalently

��þ � �
X

x2X

½�1P�ðxÞ � VðexÞ � �Vð�1PÞ: (9)

By a similar argument, we have

��þ � �
X

x2X

½�2P�ðxÞ � VðexÞ � �Vð�2PÞ: (10)

Now consider

��þ � �
X

x2X

��1 þ ð1� �Þ�2
� �

P
� �

ðxÞ � VðexÞ

�
ðaÞ

��Vð�1PÞ þ ð1� �Þ�Vð�2PÞ

�
ðbÞ

�V ��1Pþ ð1� �Þ�2P
� �

¼ �V ��1 þ ð1� �Þ�2
� �

P
� �

(11)

where ðaÞ follows from (9) and (10), and ðbÞ follows from
the concavity of V. Equation (11) implies that

~� ��1 þ ð1� �Þ�2
� �

þ ��

þ �
X

x2X

��1 þ ð1� �Þ�2
� �

P
� �

ðxÞ � VðexÞ

� ~� ��1þð1��Þ�2
� �

þ�V ��1þð1��Þ�2
� �

P
� �

and hence ��1 þ ð1� �Þ�2 2 D. Therefore, D is a con-

vex set. h

3) Equivalence of Problem (P1) With a Countable State
MDP: We now present an MDP that is equivalent to

Fig. 4. Evolution of the controller’s belief state. In this diagram,

soil moisture at a single lateral location and single depth is under

observation, and there are three possible soil moisture quantiles,

so X ¼ fQ1;Q2;Q3g. At corner state �i 2 C, �ðQiÞ ¼ 1 and �ðQjÞ ¼ 0

for j 6¼ i. The belief state evolves on the space of probability

distributions on X . The unfilled red and filled green circles represent

belief states at which it is optimal to not take and to take

measurements, respectively.
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Problem (P1). For that matter, we define the following for

t 2 f0; 1; . . .g:

Rt :¼ minf	 	 0 : Yt�	 6¼ bg

St :¼ Xt�Rt ; Rtð Þ

At :¼Utþ1: (12)

Rt represents the time since the most recent measure-

ments. Thus, Yt�Rt ¼ Xt�Rt is the vector of the most

recent measurements.

Remark 1: Note that realizations of ðS0;S1; . . . ;StÞ and
ðA0;A1; . . . ;At�1Þ completely specify the realizations of

the observation and control processes ðY0; . . . ;YtÞ and

ðU1; . . . ;UtÞ, respectively. Hence, any scheduling policy

of the form

Utþ1 ¼ gtþ1ðY0;Y1; . . . ;Yt;U1;U2; . . . ;UtÞ

can also be written as

At ¼ ~gtþ1ðS0;S1; . . . ;St;A0;A1; . . . ;At�1Þ:

We now state the main result of this section.

Theorem 2: Under Assumption 1, Problem (P1) is equi-

valent to an MDP with state St 2 S :¼ X � Zþ, actions

At 2 A ¼ fð0; 0; . . . ; 0Þ; ð1; 1; . . . ; 1Þg, and cost criterion

E

X

1

t¼0

�t � � � 11 At¼ð1;1;...;1Þf gþ
X

1

t¼1

�t�1 � 
ðStÞ

( )

(13)

where for x 2 X and n ¼ 0; 1; 2; . . .


ðx; nÞ :¼ ~�ðexP
nÞ: (14)

We refer to this equivalent MDP as Problem (MDP-1).

Proof: Due to the known form of the optimal esti-

mation policy, as described in Section III-B1, Problem (P1)

amounts to finding a scheduling policy g ¼ ðg; g; . . .Þ to

minimize the discounted expected cost criterion

E

X

1

t¼1

�t�1 � cðUtÞ þ ~�ð�tÞ½ �

( )

: (15)

Because of Remark 1, in order to show this is equivalent to

Problem (MDP-1), it suffices to show that (15) can be

written as (13), and that fStgt¼0;1;... is a controlled Markov

process with actions fAtgt¼0;1;...; i.e.,

PrðStþ1jS0;S1; . . . ;St;A0;A1; . . . ;AtÞ

¼ PrðStþ1jSt;AtÞ: (16)

The energy cost of Problem (P1) can be written as

E

X

1

t¼1

�t�1 � cðUtÞ

( )

¼E

X

1

t¼1

�t�1 � � � 11 Ut¼ð1;1;...;1Þf g

( )

¼ E

X

1

t¼0

�t � � � 11 At¼ð1;1;...;1Þf g

( )

:

The distortion cost of Problem (P1) can be written as

E

X

1

t¼1

�t�1 �~�ð�tÞ

( )

¼E

X

1

t¼1

�t�1 �~� eXt�Rt
PRt

� �

( )

¼E

X

1

t¼1

�t�1 �
ðStÞ

( )

:

Thus, (15) can be written as (13).

Next, we note that at time t, the controller’s belief on
the current state is given by

�tðxÞ :¼ PrðXt ¼ xjY0;Y1; . . . ;Yt;U1;U2; . . . ;UtÞ

¼ Pr Xt ¼ x
Y0;Y1; . . . ;Yt�Rt ;

U1;U2; . . . ;Ut�Rt ; Rt

�

�

�

�

�

 !

(17)

¼ Pr Xt ¼ xjXt�Rt ;Rtð Þ

¼ eXt�Rt
PRt

� �

ðxÞ; x 2 X ; t ¼ 1; 2 . . . (18)

where (17) follows from the fact that the observations after

time t� Rt are blank. Equation (18) follows from the facts

that Yt�Rt completely determines Xt�Rt , and due to the

Markovian nature of fXtgt¼0;1;2;..., Xt is conditionally

independent of observations before time t� Rt given Xt�Rt .

As defined earlier, ex is the belief that assigns probability 1
to the state x, and ½eXt�Rt

PRt �ðxÞ denotes the component of

the vector eXt�Rt
PRt corresponding to state x. To prove

(16), we consider two cases.
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Case 1) At ¼ ð0; 0; . . . ; 0Þ

Pr Stþ1 ¼ ðx0; n0Þ

S0 ¼ s0;S1 ¼ s1; . . . ;St ¼ ðx; nÞ;

A0 ¼ a0;A1 ¼ a1; . . . ;

At ¼ ð0; 0; . . . 0Þ

�

�

�

�

�

�

�

0

B

@

1

C

A

¼ 11fx0¼xg � 11fn0¼nþ1g

¼ Pr Stþ1 ¼ ðx0; n0ÞjSt ¼ ðx; nÞ;At ¼ ð0; 0; . . . ; 0Þð Þ:

(19)

In (19), both equalities follow from the fact that if no

measurements are scheduled at time tþ 1 [i.e.,

At ¼ ð0; 0; . . . ; 0Þ], then the time since the most recent

measurements increases by 1 (i.e., Rtþ1 ¼ Rt þ 1), while

the most recent observation remains the same.

Case 2) At ¼ ð1; 1; . . . ; 1Þ

Pr Stþ1 ¼ ðx0; n0Þ

S0 ¼ s0;S1 ¼ s1; . . . ;St ¼ ðx; nÞ;

A0 ¼ a0;A1 ¼ a1; . . . ;

At ¼ ð1; 1; . . . ; 1Þ

�

�

�

�

�

�

�

0

B

@

1

C

A

¼ 11fn0¼0g � Pr Xtþ1 ¼ x0

S0 ¼ s0;S1 ¼ s1; . . . ;

St ¼ ðx; nÞ;

A0 ¼ a0;A1 ¼ a1; . . . ;

At ¼ ð1; 1; . . . ; 1Þ

�

�

�

�

�

�

�

�

�

0

B

B

B

@

1

C

C

C

A

(20)

¼ 11fn0¼0g �
X

x002X

PrðXtþ1 ¼ x0jXt ¼ x00Þ

� Pr Xt ¼ x00

S0 ¼ s0;S1 ¼ s1; . . . ;St ¼ ðx; nÞ;

A0 ¼ a0;A1 ¼ a1; . . . ;

At ¼ ð1; 1; . . . ; 1Þ

�

�

�

�

�

�

�

0

B

@

1

C

A

¼ 11fn0¼0g �
X

x002X

PrðXtþ1¼x0jXt¼x00Þ � �tðx
00Þ (21)

¼ 11fn0¼0g � ½�tP�ðx0Þ

¼ 11fn0¼0g � ½exP
nþ1�ðx0Þ

where (20) follows from the fact that if measurements

are scheduled at time tþ 1 (i.e., At ¼ ð1; 1; . . . ; 1Þ), then
the time since the most recent measurements becomes 0

(i.e., Rtþ1 ¼ 0), while the most recent observation

becomes the state at time tþ 1. Equation (21) follows

from the fact that realizations of ðS0;S1; . . . ;StÞ and

ðA0;A1; . . . ;AtÞ completely specify the realizations of

the observation and control processes; hence the

probability of Xt conditioned on ðS0;S1; . . . ;StÞ and

ðA0;A1; . . . ;AtÞ is the same as �t. Repeating the above

arguments for

Pr Stþ1 ¼ ðx0; n0ÞjSt ¼ ðx; nÞ;At ¼ ð1; 1; . . . ; 1Þð Þ

we get

Pr Stþ1 ¼ ðx0; n0ÞjSt ¼ ðx; nÞ;At ¼ ð1; 1; . . . ; 1Þð Þ

¼ 11fn0¼0g � ½exP
nþ1�ðx0Þ

¼ Pr Stþ1 ¼ ðx0; n0Þ

S0 ¼ s0;S1 ¼ s1; . . . ;

St ¼ ðx; nÞ;

A0 ¼ a0;A1 ¼ a1; . . . ;

At ¼ ð1; 1; . . . ; 1Þ

�

�

�

�

�

�

�

�

�

0

B

B

B

@

1

C

C

C

A

:

(22)

Equations (19) and (22) imply (16). Thus, we have

established that the process fStgt¼0;1;... is a controlled

Markov process with actions fAtgt¼0;1;..., completing the

proof. h

4) Approximation by Finite MDP: Problem (MDP-1) has

the countably infinite state space X � Zþ. MDPs with

infinite state spaces cannot be easily solved in general [48].

Therefore, we introduce a new MDP by imposing the

following assumption on Problem (MDP-1).

Assumption 2: We restrict the allowable scheduling

policies of Problem (MDP-1) to those policies that ensure

the length of the period of no measurements is no more

than a finite bound M.

We refer to this new MDP as Problem (MDP-2). The

implication of Assumption 2 is that Rt, defined in (12),

is bounded by M. Hence, the finite state space of

Problem (MDP-2) is X � f0; 1; . . . ;Mg, and the only

allowable scheduling decision at states ðx;MÞ;x 2 X is

to schedule measurements (i.e., A ¼ ð1; 1; . . . ; 1Þ). The
solution of the resulting finite-state MDP can be

computed through standard dynamic programming

(see, e.g., [21]).

5) Dynamic Program: Following standard methodology

for MDPs, the dynamic program for Problem (MDP-2) is

given by the following equations:

Vðx; nÞ ¼ min ~�ðexP
nÞ þ �Vðx; nþ 1Þ;Wðx; nÞf g;

8ðx; nÞ 2 X � f0; 1; . . . ;M� 1g

Vðx;MÞ ¼Wðx;MÞ; 8x 2 X (23)

where

Wðx; nÞ :¼ ~�ðexP
nÞ þ ��þ � �

X

x02X

½exP
nþ1�ðx0Þ�Vðx0; 0Þ;

8ðx; nÞ 2 X � f0; 1; . . . ;Mg:
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This dynamic program can be solved by well-known

methods such as the value iteration and policy iteration

algorithms [21].

6) Sufficient Condition for Equivalence of Problem (MDP-1)
and Problem (MDP-2): One natural question that arises is

when an optimal policy for Problem (MDP-2) [computed

from the dynamic program (23)] is also optimal for

Problem (MDP-1).

Conjecture 1: If i) ~�ðexP
nÞ is nondecreasing in n for

every x 2 X , and ii) there exists an optimal policy for

Problem (MDP-2) and a sequence fn�xgx2X with n�x G M
for all x 2 X , such that the optimal control action at state

ðx; n�xÞ is given by

U� x; n�x
� �

¼ ð1; 1; . . . ; 1Þ; 8x 2 X

then Assumption 2 is without loss of optimality; i.e.,

Problem (MDP-1) and Problem (MDP-2) are equivalent, and

both are equivalent to Problem (P1) under Assumption 1.

C. Independent Scheduling and Joint Estimation
In the case of sensors at a single location, Assumptions 1

and 2 allowed us to formulate the scheduling and

estimation problem as a finite-state MDP. A key element

in obtaining this reduction was that the belief state always

returns to a corner state after a bounded number of time

steps. In the case of sensors at multiple lateral locations

ðL > 1Þ, we can still assume that at each location, the

length of a no measurement phase cannot exceed a bound

M. However, since measurements at different locations

may not be synchronized, the belief state (on the moisture

levels at all locations and all depths) may not necessarily

return to a corner state withinM steps. Thus, we cannot in

general model this problem as an MDP with state space

X � f0; 1; . . . ;Mg [like Problem (MDP-2)].

One simple approximation for the multiple location

scheduling problem is to obtain a scheduling policy for

each location independently, by solving an instance of

Problem (MDP-2) for each location via the dynamic

program (23). The central coordinator then employs these

polices to schedule measurements at the respective loca-

tions. Since the soil moisture values at different locations

are correlated, the coordinator can then use the measure-

ments received from all locations to form a joint belief �t

on the current soil moisture levels at all locations and

depths. It is then optimal for it to produce estimates

according to

hð�tÞ 2 argmin
a2X

X

x2X

�tðxÞ � �ðx; aÞ

( )

:

Note that this approach represents a compromise

between jointly scheduling measurements and jointly
estimating the soil moisture levels at all locations and

depths, and independently scheduling measurements and

independently estimating the soil moisture levels at each

lateral location. Namely, independently scheduling mea-

surements allows us to avoid the additional computational

complexity that would be required to jointly schedule the

sensor measurements at all locations. At the same time,

jointly estimating the soil moisture levels enables the

coordinator to leverage the soil moisture correlations

across space to make better estimates.

D. Discussion
For the scheduling problem with sensors at multiple

depths at the same lateral location (and hence sharing the

same actuator), the energy cost of communication between

the actuator and the coordinator far exceeds the energy

cost of taking a measurement. If the actuator is powered on

and instructed to activate the sensor at any one depth,

activating the rest of the sensors to collect additional data

does not add significant additional cost to the system. This

reasoning forms the basis of our Assumption 1. Moreover,

under any realistic statistical model, one does not expect a

scheduling policy with arbitrarily long periods of no

measurement to perform well. In other words, it is

reasonable to expect that all good scheduling policies take

at least one measurement in any consecutive M time

periods (for some choice of M). This motivates our

Assumption 2. Under these two assumptions, the dynamic

program (23) provides the optimal scheduling policy for

the problem with multiple sensors at different depths at

the same lateral location.

For the scheduling problem with sensors at multiple
lateral locations, an additional benefit of the independent

scheduling and joint estimation approach is that the

central coordinator communicates to each node the dura-

tion of its next sleep cycle immediately after it receives the

measurements from that node. Thus, the local nodes do

not need to keep their radios powered on to listen for

further instructions from the coordinator while they are

asleep.

IV. NUMERICAL EXAMPLE

In this section, we present a numerical example to il-

lustrate our methodology. We use the tRIBS simulations to

generate the matrix of transition probabilities describing

the soil moisture evolution, and use these dynamics as a

basis to evaluate the three policies. In practice, to evaluate

the method and compare it to other scheduling heuristics,

we do the following.

1) Either collect field data or use the tRIBS model

to generate realizations of soil moisture evolution

across time and space.
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2) Use the data from 1) to generate the matrix of

transition probabilities.

3) Generate scheduling and estimation policies based

on the system dynamics from 2) using the meth-

odology discussed in Section III.

4) Evaluate the policies by testing them on new field

data.

One example of this process using field data collected at

the University of Michigan Matthaei Botanical Gardens is

discussed in [23].

We consider an arrangement of sensors at two different

locations, and three depths (25, 67, and 123 mm) at each

location. We use the tRIBS physical model described in

Section II-A1 to generate soil moisture realizations at all

sensor locations for a time horizon of 2209 time steps. We

then quantize the soil moisture realizations into eight

quantization levels (0%–12%, 12%–14%, 14%–16%, 16%–

18%, 18%–20%, 20%–22%, 22%–24%, and 24%–30%).

Next, we count the frequency of transitions between all

possible pairs of soil moisture matrices. For example, one

such frequency is the number of transitions from the joint

quantile matrix

qi ¼

16%� 18% 18%� 20%

14%� 16% 16%� 18%

12%� 14% 16%� 18%

2

6

4

3

7

5

to the joint quantile matrix

qj ¼

18%� 20% 20%� 22%

16%� 18% 16%� 18%

12%� 14% 16%� 18%

2

6

4

3

7

5
:

We then normalize these frequencies to compute a

Markovian transition matrix for the soil moisture

process.

The objectives are to conserve energy and estimate the

soil moisture at all three depths at both locations. At each

location and depth, we penalize estimation errors by the

absolute difference between the quantile index of the true

moisture and the estimated quantile index. Relative to one

unit of estimation error, the energy cost of taking

measurements at all depths at a given location is 1.5. We

assume that these measurements are noiseless. We use a

discount factor of 0.95, and a time horizon of 200 steps to

approximate an infinite horizon.

We use both Assumptions 1 and 2, with M ¼ 30 for

Assumption 2. To find a scheduling policy for each

location, we solve the dynamic program (23). If measure-

ments at all depths are scheduled at the current time, the

scheduling policy table tells the coordinator the number of

time steps after which the next measurements must be

taken. This number of time steps depends on the outcomes

of the current measurements. The system operation can

therefore be described as follows: at time t ¼ 0, the

actuator takes measurements and transmits them to the

central coordinator. Given these measurements, the coor-

dinator commands the actuator to sleep for the number of

time steps specified by the scheduling policy table. After

the specified duration of the sleep mode, the actuator

wakes up and takes new measurements, which it

communicates back to the central coordinator. The process

is then repeated.

For the purpose of comparison, we consider three

different scheduling and estimation strategies. The first

strategy is to take measurements with all sensors at every

time step. The second is to independently schedule the sen-

sor measurements at each location according to the solution

of Problem (MDP-2) for that location, and independently

estimate the soil moisture levels at a given location based

only on the measurement readings at that specific location.

The third strategy is to independently schedule the sensor

measurements at each location according to the solution of

Problem (MDP-2) for that location, but to have the

coordinator jointly estimate all soil moisture quantiles using

the measurements from all locations. The resulting expected

costs are shown in Table 1.

Table 1 demonstrates that using the scheduling policy

to take fewer measurements results in significant savings

in measurement costs, at the expense of some estimation

cost. The second strategy of independent scheduling and

independent estimation uses the correlations in the soil

moisture process across time and depth to produce good

Table 1 Performance Comparison of Different Control and Estimation Policies
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estimates without taking measurements all the time. The

third strategy of independent scheduling and joint

estimation effectively exploits spatial correlations as

well, in order to reduce the expected estimation cost.

V. INCORPORATING METEOROLOGICAL
OBSERVATIONS

So far we have assumed that the coordinator does not

observe any meteorological data such as rainfall, ambient

temperature, or solar radiation. In this section, we show

how to adapt the scheduling and estimation policies when

the coordinator observes rainfall. Other types of meteo-

rological observations can be handled in a similar

manner.

Let Zt ¼ ðZ1t ; Z
2
t ; � � � ; Z

L
t Þ denote the rainfall at the L

lateral sensor locations at time t, where Zlt 2 f0; 1g. Here,
Zlt ¼ 0 indicates that rainfall at location l is below a fixed

threshold, and Zlt ¼ 1 indicates that rainfall at location l is
above the threshold. The coordinator forms an estimate of

the soil moisture field as

X̂t ¼ htðY0; . . . ;Yt;U1; . . . ;Ut;Z0; . . . ;ZtÞ

and selects the scheduling decision as

Utþ1 ¼ gtðY0; . . . ;Yt;U1; . . . ;Ut;Z0; . . . ;Ztþ1Þ:

As before, we wish to find scheduling and estimation

policies g and h, respectively, that minimize the infinite-

horizon discounted cost criterion in (4).

In general, finding optimal scheduling and estimation

policies is intractable without any structure on the sta-

tistics of the rainfall and soil moisture processes. Similar to

Section II-C, we approximate rainfall evolution with a kth-
order Markov process, i.e.,

PrðZtjZt�1; . . . ;Z0Þ ¼ PrðZtjZt�1; . . . ;Zt�kÞ

and soil moisture evolution with a kth-order Markov pro-

cess, i.e.,

PrðXtjXt�1; . . . ;X0;Zt�1; . . . ;Z0Þ

¼ PrðXtjXt�1; . . . ;Xt�k;Zt�1; . . . ;Zt�kÞ:

As a first approximation, we assume that these processes

are first-order Markovian, resulting in a POMDP similar to

Problem (P1). We refer to this POMDP as Problem (R1).

The statistics of fZtgt¼0;1;2;... consist of a transition matrix

Q such that

PrðZt ¼ z0jZt�1 ¼ zÞ ¼ Qðz; z0Þ

for z; z0 2 f0; 1gL, and the statistics of fXtgt¼0;1;2;... consist

of a transition matrix P such that

PrðXt ¼ x0jXt�1 ¼ x;Zt�1 ¼ zÞ ¼ Pðz;x;x0Þ

for x;x0 2 X and z 2 f0; 1gL.
As with Problem (P1), Problem (R1) is an approxima-

tion of the original problem, and better approximations

can be obtained by modeling the rainfall and soil moisture

processes by higher order Markov processes.

An exact solution of Problem (R1) can be found by

solving a dynamic program, but the solution has a high

computational complexity. We therefore consider an ap-

proximate solution for the case of multiple sensors at a

single location. Under Assumption 1, Problem (R1) is equi-

valent to a countable state MDP similar to the one defined

in Theorem 2, with Rt and At defined as before, and

St :¼ Zt; . . . ;Zt�Rt ;Xt�Rt ;Rtð Þ: (24)

We call this Problem (MDP-R1).

Under Assumption 2, Problem (MDP-R1) reduces to a

finite-state MDP, Problem (MDP-R2), with state space

f0; 1gM � X � f0; 1; . . . ;Mg. This state space, although

finite, increases exponentially with M, making a compu-

tational solution intractable. Therefore, we introduce a

third MDP by imposing the following assumption.

Assumption 3: We restrict the allowable scheduling

policies of Problem (MDP-R2) to those that always take a

measurement if rainfall is high ðZ1tþ1 ¼ 1Þ.
We refer to this new MDP as problem (MDP-R3).

Assumption 3 restricts the possible values that St,

defined in (24), can take, thereby restricting the state

space to X � f0; 1; . . . ;Mg. The solution of the resulting

MDP can be computed through a dynamic program similar

to the one given by (23). Therefore, meteorological

observations such as rainfall can be incorporated without

significantly increasing the complexity of the computational

solution procedure.

VI. CONCLUSION

In this paper, we considered the problem of monitoring

soil moisture evolution using a wireless network of in situ
sensors. The key idea was that, at the cost of some
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inaccuracy in estimating the soil moisture evolution, we

can significantly reduce energy consumption by taking a

sparser set of measurements. The physical model of soil

moisture evolution allows us to leverage soil moisture

correlations across time, depth, and space to both schedule

measurements when they are expected to yield the most

information, and generate estimates based on the sparser

set of measurements. After formulating the problem as a

POMDP, we took advantage of the problem structure to

approximate the original problem by a computationally

simpler MDP. The resulting measurement scheduling and

estimation policies represent a scalable and implementable

technology that we have tested and validated numerically

and in the field. h
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