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Abstract— In this paper, we investigate the problem of system
identification for autonomous Markov jump linear systems
(MJS) with complete state observations. We propose switched
least squares method for identification of MJS, show that this
method is strongly consistent, and derive data-dependent and
data-independent rates of convergence. In particular, our data-
dependent rate of convergence shows that, almost surely, the
system identification error is O

(√
log(T )/T

)
where T is the

time horizon. These results show that switched least squares
method for MJS has the same rate of convergence as least
squares method for autonomous linear systems. We compare
our results with those in the literature and present numerical
examples to illustrate the performance of the proposed system
identification method.

I. INTRODUCTION

Markov jump linear systems (MJS) are a good approxi-
mation of non-linear time-varying systems arising in various
applications including networked control systems [1] and
cyber-physical systems [2], [3]. There is a rich literature on
the stability analysis (e.g., [4], [5], [6]) and optimal control
(e.g., [7]) of MJS. However, most of the literature assumes
that the system model is known. The problem of system
identification, i.e., identifying the dynamics from data, has
not received much attention in this setup.

The problem of identifying the system model from data is
a key component for control synthesis for both offline con-
trol methods and online control methods including adaptive
control and reinforcement learning [8]. A commonly used
method for system identification is the least squares method.
Asymptotic rates of convergence and strong consistency of
least squares method for regression are provided in [9]. These
results are extended to autonomous linear systems by [10]
and ARMAX systems in [11], [12], [13]. See Chapter 6 of
[14] for a unified overview.

These classical results provide asymptotic convergence
guarantees. In recent years, there has been a significant
interest in the machine learning community to establish
finite-time convergence guarantees for system identification
under a variety of assumptions [15], [16], [17], [18], [19],
[20], [21], [22].

System identification of MJS and switched linear systems
(SLS) has received less attention in the literature. There is
some work on designing asymptotically stable controllers
for unknown SLS [23], [24], [25] but these papers do not
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established rates of convergence for system identification.
The problem of identification of SLSs using set membership
identification has been investigated in [26], [27]. There are
few recent results which establish high probability rates of
converge for different models of SLS and MJS for subspace
methods [28] and least-square methods [29]. We provide a
detailed comparison with these papers in Sec. V.

A. Contribution

We investigate the problem of identifying an unknown (au-
tonomous) MJS. We propose a switched least squares method
for system identification and provide data-dependent and
data-independent rates of convergence for this method. Using
these bounds, we establish strong consistency of the switched
least squares method and establish a O(

√
log(T )/T ) rate of

convergence, which matches with the rate of convergence of
non-switched linear systems established in [10]. In contrast
to the existing high-probability convergence guarantees in the
literature, our results show that the estimation error converges
to zero almost surely. To the best of our knowledge, this
is the first result in the literature which establishes strong
consistency and almost sure rates of convergence for MJS.

B. Organization

The rest of the paper is organized as follows. In Sec II, we
state the system model, assumptions, and the main results. In
Sec. III, we prove the main results. We present an illustrative
example in Sec. IV and compare our assumptions and results
with the existing literature in Sec. V. Finally, we conclude
in Sec. VI.

C. Notation

Given a matrix A, A(i, j) denotes its (i, j)-th element,
λmax(A) and λmin(A) denote the largest and smallest mag-
nitudes of right eigenvalues, σmax(A) =

√
λmax(AᵀA)

denotes the spectral norm. For a square matrix Q, tr(Q)
denotes the trace. When Q is symmetric, Q � 0 and Q � 0
denotes that Q is positive semi-definite and positive definite,
respectively. For two square matrices, Q1 and Q2 of the same
dimension, Q1 � Q2 means Q1 −Q2 � 0.

Given a sequence of positive numbers {at}t≥0, aT =
O(T ) means that lim supT→∞ aT /T <∞, and aT = o(T )
means that lim supT→∞ aT /T = 0. Given a sequence of
vectors {xt}t∈T , vec(xt)t∈T denotes the vector formed by
vertically stacking {xt}t∈T . Given a sequence of random
variables {xt}t≥0, x0:t is a short hand for (x0, · · · , xt)
and σ(x0:t) denotes the sigma field generated by random
variables x0:t.



R and N denote the set of real and natural numbers. For
a set T , |T | denotes its cardinality. For a vector x, ‖x‖
denotes the Euclidean norm. For a matrix A, ‖A‖ denotes
the spectral norm and ‖A‖∞ denotes the element with the
largest absolute value. Convergence in almost sure sense is
abbreviated as a.s.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a discrete-time (autonomous) MJS. The state of
the system has two components: a discrete component st ∈
{1, . . . , k} and a continuous component xt ∈ Rn. There
is a finite set A = {A1, . . . , Ak} of system matrices, where
Ai ∈ Rn×n. The continuous component xt of the state starts
at a fixed value x0 and the initial discrete state st starts
according to a prior distribution π0. The continuous state
evolves according to:

xt+1 = Astxt + wt, t ≥ 0, (1)

where {wt}t≥0, wt ∈ Rn, is a noise process. The discrete
component evolves in a Markovian manner according to
a time-homogeneous irreducible and aperiodic transition
matrix P , i.e. P(st+1 = j|st = i) = Pij . Let πt =
(πt(1), . . . , πt(k)) denote the distribution of the discrete state
at time t and π∞ denote the stationary distribution. Let
Ft−1 = σ(x0:t, s0:t) denote the sigma-algebra generated by
the history of the complete state. Furthermore, let σi denote
the maximum singular value of Ai, i ∈ {1, . . . , k}. It is
assumed that the model satisfies the following assumptions:

Assumption 1. The noise process {wt}t≥0 is a martingale
difference sequence with respect to {Ft}≥0, i.e., E[|wt|] <
∞ and E[wt | Ft−1] = 0. Furthermore, there exists a
constant α > 2 such that supt≥0E[‖wt‖α | Ft−1] < ∞
a.s. and there exists a symmetric and positive definite matrix
C ∈ Rn×n such that lim infT→∞

1
T

∑T−1
t=0 wtw

ᵀ
t = C a.s.

Assumption 2. The stationary distribution π∞ =
(π∞(1), . . . , π∞(k)) satisfies π∞(i) 6= 0 for all i and∏k
i=1 σ

π∞(i)
i < 1.

Assumption 1 is a standard assumption in the asymptotic
analysis of system identification of linear systems [14], [9],
[10], [11], [12] and allows the noise process to be non-
stationary and have heavy tails (as long as moment condition
is satisfied).

Assumption 2 is a standard assumption for almost sure
exponential stability of noise-free switched linear system i.e.,
when wt = 0 [4]. Some of the recent results on system
identification of Markov jump linear systems impose slightly
different assumptions and we compare with those in Sec. V.

A. System identification and switched least squares estimates

We are interested in the setting where the system dynamics
A and the switching transition matrix P are unknown. Let
θᵀ = [A1, . . . , Ak] ∈ Rn×nk denote the unknown parameters
of the system dynamics matrices. We consider an agent that
observes the complete state (xt, st) of the system at each
time and generates an estimate θ̂T of θ as a function of the

observation history (x0:T , s0:T ). A commonly used estimate
in such settings is the least squares estimate:

θ̂
ᵀ
T = arg min

θᵀ=[A1,...,Ak]

T−1∑
t=0

‖xt+1 −Astxt‖2. (2)

The components [Â1,T , . . . , Âk,T ] = θ̂ᵀT of the least
squares estimate can be computed in a switched manner. Let
Ti,T = {t ≤ T | st = i} denote the time indices until time T
when the discrete state of the system equals i. Note that for
each t ∈ Ti,T , Ast = Ai. Therefore, we have

Âi,T = arg min
Ai∈Rn×n

∑
t∈Ti,T

‖xt+1 −Aixt‖2, ∀i ∈ {1, · · · , k}.

(3)
Let Xi,T =

∑
t∈Ti,T xtx

ᵀ
t denote the unnormalized empiri-

cal covariance of the continuous component of the state at
time instant T when the discrete component equals i. Then,
Âi,T can be computed recursively as follows:

Âi,T+1 = Âi,T

+

[
X−1
i,TxT (xT+1 − Âi,TxT )ᵀ

1 + xᵀTX
−1
i,TxT

]
1{sT+1 = 1} (4)

where Xi,T may be updated as Xi,T+1 = Xi,T +[
xT+1x

ᵀ
T+1

]
1{sT+1 = 1}. Due to the switched nature of

the least squares estimate, we refer to above estimation
procedure as switched least squares system identification.

B. The main results

A fundamental property of any sequential parameter esti-
mation method is strong consistency, which we define below.

Definition 1. An estimator θ̂T of parameter θ is called
strongly consistent if limT→∞ θ̂T = θ, a.s.

Our main result is to establish that the switched least
squares estimator is strongly consistent. We do so by provid-
ing two different characterization of the rate of convergence.
We first provide a data-dependent rate of convergence which
depends on the spectral properties of the unnormalized
empirical covariance. We then present a data-independent
characterization of rate of convergence which only depends
on T . All proofs are presented in Sec. III.

Theorem 1. Under Assumptions 1 and 2, the switched least
squares estimates {Âi,T }ki=1 are strongly consistent, i.e., for
each i ∈ {1, . . . , k}, we have: limT→∞

∥∥Âi,T −Ai∥∥∞ = 0,
a.s.

Furthermore, the rate of convergence is upper bounded by
the following expression:

∥∥Âi,T −Ai∥∥∞ ≤ O(
√

log
[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

Remark 1. Theorem 1 is not a direct consequence of the
decoupling procedure in switched least squares method. The
k least squares problems have a common covariate process.
Therefore, the convergence of the switched least squares
method and the stability of the switched linear systems



are interconnected problems. Our proof techniques leverage
this connection to establish the consistency of the system
identification method.

We simplify the result in Theorem 1 and characterize the
data dependent result found in Theorem 1 in terms of horizon
T and the cardinality of the set Ti,T .

Corollary 1. Under Assumptions 1 and 2, for each i ∈
{1, . . . , k}, we have:∥∥Âi,T −Ai∥∥∞ ≤ O(√( log(T )

)
/|Ti,T |

)
, a.s.

Remark 2. The assumption that π∞(i) 6= 0 implies that for
sufficiently large T , |Ti,T | 6= 0 almost surely, therefore the
expressions in above bounds are well defined.

The result of Corollary 1 still depends on the data.
When system identification results are used for adaptive
control or reinforcement learning, it is useful to have a data-
independent characterization of the rate of convergence. We
present this characterization in the next theorem.

Theorem 2. Under Assumptions 1 and 2, the rate of conver-
gence of the switched least squares estimator Âi,T is upper
bounded by:∥∥Âi,T −Ai∥∥∞ ≤ O(√log(T )/π∞(i)T

)
, a.s.

where the constants in the O(·) notation do not depend
on Markov chain {st}t≥0 and horizon T . Therefore, the
estimation process is strongly consistent, i.e., limT→∞

∥∥θ̂T −
θ
∥∥
∞ = 0 a.s. with the convergence rate given by:∥∥θ̂T − θ∥∥∞ ≤ O(√log(T )/π∗T

)
, a.s.

where π∗ = minj π∞(j).

Theorem 2 shows that Assumptions 1 and 2 guarantee
that the switched least squares method for MJS has the same
rate of convergence of O(

√
log(T )/T ) as non-switched case

established in [10]. Moreover, the constants show that the
estimation error of i-th least squares problem is proportional
to 1/

√
π∞(i); therefore, the rate of convergence of θ̂t is

proportional to 1/
√
π∗, where π∗ is the smallest probability

in the stationary distribution π∞.

Remark 3. SLS is a special case of MJS in which the discrete
state evolves in an i.i.d. manner. The presented results in
this section are valid for the SLS with substituting stationary
distribution π∞ with the i.i.d. PMF defined over discrete
state.

III. PROOF OF THE MAIN RESULTS

In this section, we present the proof of Theorems 1 and 2
and Corollary 1. In Section III-B, we review the background
on the rate of convergence for least squares regression. In
Section III-B, we characterize the asymptotic behaviors of
continuous state of the system and covariates of the i-th
least squares problem. The proof the of main theorems are
presented in Section III-C.

A. Background on least square estimator

Given a filtration {Gt}t≥0, consider the following regres-
sion model:

yt = β
ᵀ
zt + wt, t ≥ 0, (5)

where β ∈ Rn is an unknown parameter, zt ∈ Rn is Gt−1-
measurable covariate process, yt is the observation process,
and wt ∈ R is a noise process satisfying Assumption 1 with
Ft replaced by Gt. Then the least squares estimate β̂T of β
is given by:

β̂T = arg min
βᵀ

T∑
τ=0

‖yτ − β
ᵀ
zτ‖2. (6)

The following result by [9] characterizes the rate of conver-
gence of β̂T to β in terms of unnormalized covariance matrix
of covariates ZT :=

∑T
τ=0 zτz

ᵀ
τ .

Theorem 3 (Theorem 1 of [9]). Suppose the following
conditions are satisfied: (C1) λmin(ZT ) → ∞, a.s. and
(C2) log(λmax(ZT )) = o(λmin(ZT )), a.s. Then the least
squares estimate in (6) is strongly consistent with the rate of
convergence:

‖β̂T − β‖∞ = O
(√

log
[
λmax(ZT )

]
λmin(ZT )

)
a.s.

Theorem 3 is valid as long as the covariate process {zt}t≥0

is Gt−1-measurable. For the switched least squares system
identification if we take Gt to be equal to Ft and verify
conditions (C1) and (C2) in Theorem 3, then we can use
Theorem 3 to establish the strong consistency and rate of
convergence. As mentioned earlier in Remark 1, the empiri-
cal covariances are coupled across different components due
to the system dynamics. For this reason, establishing (C1)
and (C2) is non-trivial. In the next section, we establish
properties of the system that enable us to prove (C1) and
(C2) for the switched least squares system identification.

B. Asymptotic Behavior of Continuous Component

To simplify the notation, we assume that x0 = 0 which
does not entail any loss of generality. Let Φ(t− 1, τ + 1) =
Ast−1 · · ·Asτ+1 denote the state transition matrix where we
follow the convention that Φ(t, τ) = I , for t < τ . Then
we can write the dynamics in Eq. (1) of the continuous
component of the state in convolutional form as:

xt =

t−1∑
τ=0

Φ(t− 1, τ + 1)wτ . (7)

In the following lemma, we show that Assumption 2 implies
that the sum of norms of the state-transition matrices are
uniformly bounded.

Lemma 1 (Uniform Boundedness). Under Assumption 2,
there exists a constant Γ̄ < ∞ such that for all T > 1,∑T−1
τ=0 ‖Φ(T − 1, τ + 1)‖ ≤ Γ̄, a.s.

See Appendix I for proof.
Next, we characterize the asymptotic behavior of state of

the system xτ and the matrix Xi,τ .



Proposition 1. Under Assumptions 1 and 2, the following
hold a.s. for each i ∈ {1, · · · , k}:
(P1)

∑
τ∈Ti,T ‖xτ‖

2 = O(T ),
(P2) λmax(Xi,T ) = O(T ), and
(P3) lim infT→∞ λmin(Xi,T )/|Ti,T | > 0.

See Appendix II for proof.

Corollary 2. Proposition 1 implies that the system is stable
in the average sense. i.e.

lim sup
T→∞

1

T

T−1∑
τ=0

‖xτ‖2 <∞.

See Appendix III for proof.

C. Proof of the Main Results

Using the results established in the previous section, we
present a proof of the main results

1) Proof of Theorem 1 : To prove this theorem, we check
the sufficient conditions in Theorem 3. First notice that Xi,T

is FT−1 measurable. Also we have:
(C1) By Proposition 1-(P3), we see that λmin(Xi,T ) → ∞

a.s.; therefore, (C1) in Theorem 3 is satisfied.
(C2) Proposition 1-(P2) and (P3) imply that there exist

positive constants C1, C2, such that :

lim sup
T→∞

log(λmax(Xi,T ))

λmin(Xi,T )
≤

lim sup
T→∞

log(C1) + log(T )

C2|Ti,T |
= 0 a.s. (8)

where the last inequality uses the fact that π∞(i) >
0 implies |Ti,T | = O(T ), a.s. Therefore, the second
condition of Theorem 3 is satisfied.

Therefore, by Theorem 3, for each i ∈ {1, · · · , k}, we have:

∥∥Âi,T −Ai∥∥∞ ≤ O(
√

log
[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

which proves the claim in Theorem 1.

D. Proof of Corollary 1

Corollary 1 is the direct consequence of Theorem 1.
The right hand side of Eq. (8) implies that for each i,
the estimation error ‖Âi,T − Ai

∥∥
∞ is upper-bounded by

O
(√

log(T )/|Ti,T |
)
, a.s.

E. Proof of Theorem 2

We first establish the strong consistency of the parameter
θ̂T . By Theorem 1 and the fact that k <∞, we get:

∥∥θ̂T − θ∥∥∞ ≤ max
i∈{1,··· ,k}

O
(√

log
[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

Therefore the result follows by applying Theorem 1 to the
argmax of above equation. For the second part notice that
since {st}t≥0 is aperiodic and irreducible Markov chain,
by the Ergodic Theorem (Theorem 4.1 in [31]) we know,

limT→∞ |Ti,T |/T = π∞(i), a.s. Now, by Corollary 1, we
get:

∥∥Âi,T −Ai∥∥∞ ≤ O(
√

log(T )

|Ti,T |

)
= O

(√
log T

π∞(i)T

)
a.s.

which is the claim of Theorem 2.

IV. NUMERICAL SIMULATION

In this section, we illustrate the result of Theorem 1 via an
example. Consider a MJS with n = 2, k = 2, A1 = [ 1.5 0

0 0.2 ],
and A2 = [ 0.01 0.1

0.1 0.1 ], transition matrix P =
[

1/12 11/12
3/4 1/4

]
with

π∞ = [0.45, 0.55] and i.i.d. {wt}t≥0 with wt ∼ N (0, I).
Note that the example satisfies Assumptions 1 and 2, but it
is not mean square stable (see the next section). We run the
switched least squares for the horizon of T = 8 × 105 and
repeat the experiment for 20 independent runs. We plot the
estimation error ei,T = ‖Âi,t−A1‖∞ versus time in Fig. 1.
The plot shows that the estimation error is converging almost
surely even though the system is not mean square stable.

Fig. 1. Performance of switched least squares method for the example
of Sec. IV. The solid line shows the mean across 20 runs and the shaded
region shows the 25% to 75% quantile bound.

Fig. 2. Logarithm of the estimation error versus logarithm of the horizon
is plotted. The linearity of the graph along with approximate slope of −0.5
shows that ei,T = Õ(1/

√
T ).

V. RELATED WORK

As mentioned in the introduction, there are two papers
which analyze models similar to ours: [28] and [29]. In this
section, we compare our model, assumptions and results with
these papers.



The results in [28] investigate the problem of learning
the parameters of an unknown SLS of unknown order
from input-output data using subspace methods. Under the
assumption that the system is mean-square stable, the noise
processes are i.i.d. subgaussian, and the system matrices
satisfy some technical conditions, they propose an algo-
rithm to estimate an SLS version of the Henkel matrix and
obtain parameter estimated by balanced truncation. They
show that when the number of samples Ns is sufficiently
large, then with high probability the estimation error is
Õ(N

−∆s/2
s ), where ∆s = log(1/ρmax)/ log(k/ρmax) and

ρmax = λmax(
∑k
i=1 piAi ⊗Ai).

The results in [28] analyze a subspace-based algorithm,
while we analyze a switched least squares algorithm. Both of
subspace methods and least squares methods are fundamental
methods for system identification of linear systems. The
results are derived under different assumptions: we impose
a slightly weaker assumption on the noise process and our
assumption on the stability of the models are different. More-
over, the nature of the results are different: high probability
rates of convergence are provided in [28] while we provide
almost sure ones. We discuss the differences between the
stability assumptions and the nature of convergence below.
Finally, we note that the rate of convergence Õ(N

−∆/2
s )

depends on the number of subsystems, while our rate of
Õ(T−1/2) does not.

The model analyzed in [29] is an MJS system. Under the
assumption that the system is mean square stable, the switch-
ing distribution is ergodic and the noise is i.i.d. subgaussian,
they propose a system identification procedure where random
Gaussian noise is injected as control input and system param-
eters are estimated using least squares. It is shown in [29] that
when T is sufficiently large, then with high probability the
estimation error is O((

√
k log T +

√
log(1/δ))/

√
T ). Then

a certainty equivalent control algorithm is proposed and its
regret is analyzed.

The assumptions and the nature of the result in [29] differ
in a manner similar to those for [28]. We impose weaker
assumptions on the noise process, our assumption on the
stability of the models are different, and we provide almost
sure rate of convergence. We discuss the difference between
the stability assumptions and the nature of the convergence
below.

A. Discussion on nature of the convergence

Both [28] and [29] establish high probability rates of
convergence. In particular, they show that for any δ > 0
and sufficiently large T , ‖Âi − Ai‖ ≤ Õ(f(δ, T )) with
probability 1 − δ, where rate of convergence of f(δ, T ) is
o(T ) but differs in the two papers. In contrast, our results
establish an almost sure rate of convergence. Thus our results
imply strong consistency of the system identification while
the results of [28] and [29] do not. This is because strong
consistency is defined in terms of almost sure convergence,
which is a stronger notion of convergence than convergence
in probability implied by the high probability bounds.

On the other hand, the results of [28] and [29] are finite-
time bounds, i.e., they provide an explicit lower bound on
the number of samples needed for the rate of convergence
bounds to be valid. In contrast, our result bounds are asymp-
totic and hold in the limit but do not provide finite time
guarantees.

B. Discussion on Stability Assumption
Both [29] and [28] assume that the switched system is

mean square stable, i.e., there exist a deterministic vector
x∞ ∈ Rn and a deterministic positive definite matrix Q∞ ∈
Rn×n such that for any deterministic initial state x0 ∈ R,
we have

lim
τ→∞

∥∥E[xτ ]−x∞
∥∥→ 0 and lim

τ→∞

∥∥E[xτx
ᵀ
τ ]−Q∞

∥∥→ 0.

As shown in Theorem 3.9 of [6], mean square stability
is equivalent λmax(

∑k
i=1 piAi ⊗ Ai) < 1. Corollary 2

shows that our assumption on stability implies stability in
the average sense (see [30]), i.e,

lim sup
T→∞

1

T

T−1∑
τ=0

‖xτ‖2 <∞.

The two notions of stability are different as we illustrate via
examples below.

Example 1. Let θᵀ = {A1, 0}, and p = (p1, p2) is an i.i.d.
probability transition, with λmax(p1A1) > 1 and x0 6= 0.
Then:

E[xτ+1] = E[Aστxτ + wt] =

p1A1E[xτ ] = · · · = (p1A1)τE(x0)

Which implies:
lim
τ→∞

E(xτ ) =∞.

Therefore, this system is not mean square stable. However,
this system satisfies Assumption 2 and therefore is stable in
the average sense.

Example 2. Consider non-switched system with matrix A,
with λmax(A) < 1 and σmax(A) > 1. This system is mean
square stable, but it doesn’t satisfy Assumption 2.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we investigated the asymptotic performance
of the switched least squares for system identification of
(autonomous) Markov jump linear systems. We proposed
the switched least squares method and established both data
dependent and data independent rates of convergence. We
showed this method for system identification is strongly
consistent and we derived the almost sure rate of convergence
of O(

√
log(T )/T ). This analysis provide a solid first step

toward establishing almost sure regret bounds for adaptive
control of MJS.

The current results are established for autonomous systems
with i.i.d. switching when the complete state of the system
is observed. Interesting future research directions include
relaxing these modeling assumptions and considering non-
autonomous (i.e. controlled) systems under partial observ-
ability.
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APPENDIX I
PROOF OF LEMMA 1

Recall that σi = σmax(Ai), i ∈ {1, . . . , k}. Define
γt = σst . Then, by sub-multiplicative property of the matrix
norms, we have:

‖Φ(t− 1, τ + 1)‖ = ‖Ast−1
. . . Asτ+1

‖
≤ γt−1 · · · γτ+1 =: Γt−1,τ+1. (9)

Given numbers m1, . . . ,mk, define f(m1, . . . ,mk) =

σm1
1 · · ·σmkk . Let mi(t − 1, τ + 1) =

t−1∑
t′=τ+1

1{sτ=i}
t−τ−1 denote

the number of times the discrete state equals i in [τ+1, t−1].
Then,

Γt−1, τ + 1 = γt−1 · · · γτ+1

= f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))t−τ−1.

Since {st}t≥0 is aperiodic and irreducible Markov chain,
by the Ergodic Theorem (Theorem 4.1 in [31]) we know
for any initial distribution π0, limt→∞mi(t − 1, τ + 1) =
π∞(i), a.s. Therefore, there exists a N(ε, π0) such that for
all t−τ−1 ≥ N(ε, π0), |mi(t−1, τ+1)−π∞(i)| < ε a.s. for
all i. Define N∗(ε) = supπ0∈∆k

N(ε, π0), where ∆k denotes
the k-dimensional simplex. Let π∗ denote the corresponding
arg sup (which lies in ∆k due to compactness). Then, N∗ =
N(ε, π∗) is finite due to the Ergodic Theorem. Therefore, for
t− τ − 1 ≥ N∗(ε), |mi(t− 1, τ + 1)− π∞(i)| < ε.

Furthermore, the rate of convergence of mi(t− 1, τ + 1)
to π∞(i) only depends on τ +1 and t−1 only through their
difference. By the continuity of f(·), for any ε′ > 0, there
exists a N ′(ε′) such that for all t−τ−1 ≥ N ′(ε′), |f(m1(t−
1, τ+1), · · · ,mk(t−1, τ+1))−f(π∞(1), · · · , π∞(k))| < ε′

a.s. Hence, almost surely we have:

f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))

< f(π∞(1), . . . , π∞(k)) + ε′



By Assumption 2, we know f(π∞(1), . . . , π∞(k)) < 1. Now
we can pick ε′ such that f(π∞(1), . . . , π∞(k))+ ε′ =: β∗ <
1. Then for all t ≥ 1,
t−1∑
τ=1

f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))t−τ−1

≤
t−N(ε′)−1∑

τ=1

β∗t−τ−1+

t−1∑
τ=t−N ′(ε′)

f(m1(t− 1, τ + 1), . . . ,mk(t− 1, τ + 1))t−τ−1

<
β∗N

′(ε′)

1− β∗
+

t−1∑
τ=t−N ′(ε′)

F t−τ−1
∗ ,

where F∗ = max
π(1),...,π(k)∈∆k

f(π(1), . . . , π(k)), which is

clearly bounded. As a result, both terms in the right hand
side are bounded which implies the statement in the claim.

APPENDIX II
PROOF OF PROPOSITION 1

We first state the Strong Law of Large Numbers (SLLN)
for Martingale Difference Sequences (MDS).

Theorem 4 (Theorem 3.3.1 of [32]). Suppose {Xτ}τ≥1is a
martingale difference sequence with respect to the filtration
{Fτ}τ≥1 . Let aτ be Fτ−1 measurable and for each τ ≥ 1
we have aτ →∞ as τ →∞, a.s. If for some p ∈ (0, 2], we
have: ∞∑

τ=0

E
[
|Xτ |p|Fτ−1

]
apτ

<∞,

then:

lim
T→∞

∑T
τ=0Xτ

aT
= 0 a.s.

A. Proof of (P1)
We start by the following Lemma which shows the impli-

cation of Assumption 1 on the growth rate of energy of the
noise process.

Lemma 2 ([10, Eq. (3.1)]). Under Assumption 1
T∑
τ=0

‖wτ‖2 = O(T ), a.s. (10)

Using the convolution formula in Eq. (7), we can bound
the norm of the state ‖xt‖2 as following:

‖xt‖2 =
(∥∥ t−1∑

τ=0

Φ(t− 1, τ + 1)w(τ)
∥∥)2

(a)

≤
( t−1∑
τ=0

‖Φ(t− 1, τ + 1)w(τ)‖
)2

(b)

≤
( t−1∑
τ=0

‖Φ(t− 1, τ + 1)‖‖w(τ)‖
)2

(c)

≤
( t−1∑
τ=0

Γt,τ+1‖w(τ)‖
)2

(11)

where (a) follows from triangle inequality and (b) follow
from sub-multiplicative property of the matrix norm, and (c)
follows from Eq. (9). Now for a fixed i, i ∈ {1, · · · , k}, we
have:∑
t∈Ti,T

‖xt‖2 ≤
∑
t∈Ti,T

( t−1∑
j=0

Γj+1,t−1‖w(j)‖
)2

(d)

≤
∑
t∈Ti,T

( t−1∑
j=0

Γj+1,t−1

)( t−1∑
j=0

Γj+1,t−1‖w(j)‖2
)

(e)

≤ Γ̄
∑
t∈Ti,T

( t−1∑
j=0

Γj+1,t−1‖w(j)‖2
)

(f)

≤ Γ̄

T−1∑
j=0

( ∑
t∈Ti,T ,j≤t

Γj+1,t−1

)
‖w(j)‖2

(g)

≤ Γ̄2
T−1∑
j=0

‖w(j)‖2 = O(T ) a.s.

where (d) follows from Cauchy-Schwarz’s inequality, (e)
follows from Lemma 1, (f) follows from changing the order
of summation, and (g) follows from boundedness of sub-
sums of

∑T−1
τ=0 Γτ+1,T−1, and Lemma 1.

B. Proof of (P2)
First, notice that we have the following lower and upper

bounds for maximum eigenvalue of a matrix:

λmax

( ∑
t∈Ti,T

xtx
ᵀ
t

) (a)

≤ tr
( ∑
t∈Ti,T

xtx
ᵀ
t

)
=
∑
t∈Ti,T

‖xi‖2

where (a) follows from the fact that trace of a matrix is
sum of its eigenvalues and all eigenvalues of xtx

ᵀ
t are non-

negative. Using inequality (a), and Proposition 1-(P1), we
get:

λmax

( ∑
t∈Ti,T

xtx
ᵀ
t

)
=
∑
t∈Ti,T

‖xi‖2 = O(T ) a.s.

which completes the proof.

C. Proof of (P3)
1) Preliminary Results : First we prove the following

preliminary lemma:

Lemma 3. Assumption 1 and 2 imply:
∞∑
τ=1

‖xτ‖2

τ2
<∞ a.s.

Proof. The results is a direct consequence of Abel’s lemma.
Let ST :=

∑T
τ=1 ‖xτ‖2, then we have:

T∑
τ=1

‖xτ‖2

τ2
=

T∑
τ=1

Sτ − Sτ−1

τ2
=

ST
T
− S0

1
+

T∑
τ=2

Sτ−1

( 1

(τ − 1)2
− 1

τ2

)
(a)
=

T∑
τ=2

O
(

1

τ2

)
<∞



where (a) follows from Proposition 1-(P1), which implies
ST = O(T ).

Lemma 4. We have the following:∥∥∥ T∑
τ=1

Asτxτw
ᵀ
τ + wτx

ᵀ
τA

ᵀ
sτ

∥∥∥ = o(T ) a.s.

Proof. We prove the limit element-wise. The (l, p)-th ele-
ment of the matrix Asτxτw

ᵀ
τ is:[ n∑

j=1

Asτ (l, j)xτ (j)
]
wτ (p)

Our goal is to prove:
T∑
τ=1

([ n∑
j=1

Asτ (l, j)xτ (j)
]
wτ (p)

)
= o(T ) a.s.

In order to show the above expression, we use Theorem 4
and by setting at = t and p = 2 we show:

T∑
τ=1

E
[([∑n

j=1Asτ (l, j)xτ (j)
]
wτ (p)

)2∣∣∣Fτ−1

]
τ2

<∞

(12)

We have:

E
[([ n∑

j=1

Asτ (l, j)xτ (j)
]
wτ (p)

)2∣∣∣Fτ−1

]
=

k∑
i=1

PdiE
[( n∑

j=1

Ai(l, j)xτ (j)
)2

w2
τ (p)

∣∣∣Fτ−1

]

where in the last expression, it’s assumed sτ = d. Prob-
abilities Pdi are constant values; therefore, we only prove
the boundedness for the inner expectation term. Let A∗ =
maxi∈{1,...,k} ‖A‖∞. Then, for each fixed i, we have:

E
[( n∑

j=1

Ai(l, j)xτ (j)
)2

w2
τ (p)

∣∣∣Fτ−1

]
(a)

≤ A2
∗ sup

τ
E[w2

τ (p)
∣∣Fτ−1]

( n∑
j=1

xτ (j)
)2

(b)

≤ nA2
∗ sup

τ
E
[
w2
τ (p)

∣∣Fτ−1

] n∑
j=1

x2
τ (j)

= nA2
∗ sup

τ
E
[
w2
τ (p)

∣∣Fτ−1

]
‖xτ‖2

where (a) is because xτ is Fτ−1 measurable, and (b) is
by Cauchy-Schwarz’s inequality. Based on Assumption 1,
E
[
w2
τ (p)

∣∣Fτ−1

]
is uniformly bounded. Therefore the left

hand side of Eq. (12) is bounded by:

nA2
∗ sup

τ

{
E[w2

τ (p)|Fτ−1]
} T∑
τ=1

‖xτ‖2

τ2

(c)

≤ ∞

where (c) follows from Lemma 3 .

2) Proof of Proposition 1-(P3): Finally, we prove the
statement in the proposition. We have:

xτx
ᵀ
τ =(Asτ−1

xτ−1 + wτ−1)(Asτ−1
xτ−1 + wτ−1)

ᵀ

=Asτ−1xτ−1x
ᵀ
τ−1A

ᵀ
sτ−1

+Asτ−1xτ−1w
ᵀ
τ−1 + wτ−1x

ᵀ
τ−1A

ᵀ
sτ−1

+ wτ−1w
ᵀ
τ−1.

Since Asτ−1xτ−1x
ᵀ
τ−1A

ᵀ
sτ−1

is positive semi definite, we
have:

xτx
ᵀ
τ � Asτ−1

xτ−1w
ᵀ
τ−1 + wτ−1x

ᵀ
τ−1A

ᵀ
sτ−1

+ wτ−1w
ᵀ
τ−1,

By summing over τ ∈ Ti,T , we get:∑
τ∈Ti,T

xτx
ᵀ
τ �

∑
τ∈Ti,T

wτ−1w
ᵀ
τ−1

+
∑
τ∈Ti,T

[
Asτ−1

xτ−1w
ᵀ
τ−1 + wτ−1x

ᵀ
τ−1A

ᵀ
sτ−1

]
(a)
=

∑
τ∈Ti,T

wτ−1w
ᵀ
τ−1 + o(T ) a.s.

where (a) follows from Lemma 4. Furthermore, since
|Ti,T | → Tπ∞(i) 6= 0 a.s., we have:

lim inf
|Ti,T |→∞

∑
τ∈Ti,T xτx

ᵀ
τ

|Ti,T |
�

lim inf
|Ti,T |→∞

∑
τ∈Ti,T wτ−1w

ᵀ
τ−1

|Ti,T |
(b)
= C � 0 a.s.

where (b) holds by Assumption 1. Therefore

lim inf
|Ti,T |→∞

∑
τ∈Ti,T xτx

ᵀ
τ

|Ti,T |
� 0

implies that:

λmin

(
lim inf
|Ti,T |→∞

∑
τ∈Ti,T xτx

ᵀ
τ

|Ti,T |

)
> 0, a.s.

which concludes the proof.

APPENDIX III
PROOF OF COROLLARY 2

Using Eq. (11), we have:
T∑
τ=1

‖xτ‖2 =

k∑
i=1

∑
τ∈Ti,T

‖xτ‖2
(a)
= kO(T ) = O(T ) a.s.

where (a) follows from Prop. 1-(P2).


