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There is a need to revisit rate-distortion

theory to take network access into account.
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Sensor Networks

Smart Grids
Internet of Things

Many applications require:
Sequential transmission of data
Zero- (or inite-) delay reconstruction

Salient features:
Sensing is cheap
Transmission is expensive
Size of data-packet is not critical

Analyze a stylized model and evaluate fundamental trade-ofs
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Communication system

Source model {X } ≥ , X , is a irst-order Markov process.
For some results, we restrict to autoregressive model: X = aX ∉W , X ℤ/ℝ.

Channel model Gilbert-Elliot channel (at the packet level). Transition matrix Q.
When S = − (Channel is ON) When S = ∑ (Channel is OFF)
channel output = channel input channel output = noise

Formal definition Input alphabet ¯ = ∪ {�} Output alphabet = ∪ {� , � }.
Channel input/output relationship

ℙ(Y | X̄ : , S : ) = ℙ(Y | X̄ , S ).
= � , if X̄ = � and S = − (No received energy)� , if S = ∑ (Received energy)X̄ , if X̄ and S = − (Packet can be decoded)� ��S = − � ��S = ∑
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Markov
Process

Transmitter
Erasure
Channel
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X U Y X̂

ACK/NACK and channel state

Feedback The receiver sends two bits of feedback: ACK/NACK and channel state.
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Communication system (cont.)

Markov
Process

Transmitter
Erasure
Channel

Receiver
X U Y X̂

ACK/NACK and channel state

Feedback The receiver sends two bits of feedback: ACK/NACK and channel state.

Transmitter Decides whether to transmit or not. Denoted by U {∑, −}.
If U = ∑, X̄ = �. If U = −, X̄ = X .U = f (X : , Y : − , S : − )

Receiver Chooses an estimate X̂
X̂ = g (Y : , S : )
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An illustration

Transmitter Receiver

U = f (X ) X̂ = g (Y , S )
U = f (X : , Y , S ) X̂ = g (Y : , S : )
U = f (X : , Y : , S : ) X̂ = g (Y : , S : )
⋮ ⋮
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Performance metrics

Performance metrics Distortion D and Number of transmissions N

1. Discounted setup, β (∑, −)
D (f, g) = (− β)� [

∞∑
=

β d(X , X̂ )]; N (f, g) = (− β)� [
∞∑
=

β U ]
2. Average cost setup, β = −

D (f, g) = lim sup
T→∞

−T � [
T−∑
=

d(X , X̂ )]; N (f, g) = lim sup
T→∞

−T � [
T−∑
=

U ]
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Optimization problems

Constrained communication

For α (∑, −), D∗ (α) ∶= inf {D (f, g) : N (f, g) α}

Costly communication (Lagrange relaxation)

For λ ℝ> , C∗ (λ) = C (f∗, g∗; λ) ∶= inf {D (f, g) ∉ λN (f, g)}

λ

C∗

C∗ is cts, inc, and concave

α

D∗

D∗ is cts, dec, and convex

Our result: Provide computable expressions for these
trade-ofs and identify optimal strategies that achieve them.
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Costly communication is analogous to communication under power constraint.
Constrained communication is analogous to distortion-rate function.
So, we call it distortion-transmission function.

Due to zero-delay reconstruction, information theoretic approaches do not apply.

Previous work on remote-state estimation
[Marshak 1954] Static (one-shot) problem with arbitrary source distribution
[Kushner 1964] Off-line choice of measurement times
[Åstrom Bernhardsson 2002] Lebesque sampling (or event-based sampling)
many others . . .

Other related work
Event-based estimation . . .
Censoring sensors . . .

Sensor sleep scheduling . . .
Age of Information . . .



A networked control motivation
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Networked control system

Plant Sensor
Erasure
Channel
with ACK

Controller
X X̄ Y U

Model X = AX ∉ BU ∉W , X̄ {X , �}, U = g (Y : ). Min. quadratic cost

Separation of estimation and control
Consider the innovation process: Z = X X̃ , where X̃ = −

= A − − BU
There is no loss of optimality in deciding to transmit based on Z .
Certainty equivalent controller is optimal: U = K (Ẑ ∉ X̃ )
Innovations do not depend on control Z = AZ ∉W

Yüksel, Jointly Optimal LQG Quantization and Control Policies for Multi-Dimensional Systems, TAC 2014
Rabi, Ramesh, and Johansson, Separated design of encoder and controller for networked linear quadratic optimal control, SICON 2016



Why bother?

How much do we gain compared to simple strategies?
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� = � ∉ �, � ∼ �( , ). Perfect channel

Periodic
Transmission
Strategy

D = ∑.67N ≈ −/3

Randomized
Transmission
Strategy

D = 2.∑∑N ≈ −/3

Optimal
Transmission
Strategy

D = ∑.24N ≈ −/3
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Distortion-transmission trade-off: Perfect channel
D
is
to
rt
io
n

α∑ ∑.25 ∑.5 ∑.75 −∑
∑.25

∑.5
∑.75

−
−.25

Randomized transmission strategy
Periodic transmission strategy
Optimal strategy

Illustrative values
Periodic strategy D(∑.5 ) = ∑.5
Optimal strategy D(∑.5 ) = ∑.∑75 (85” less dist.)D(∑.2−) = ∑.5 (58” less rate)



What’s the conceptual difficulty?
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Static (one-shot) problem

� ⊂ is the silence setx̂ is the estimate when no packet is received

Cost when x �λ ∉ εd(x x̂)Cost when x �d(x x̂)

Total expected cost≥(x̂, �) ∶= λℙ(X �) ∉ ε∑
�

ℙ(X = x)d(x x̂) ∉∑
�

ℙ(X = x)d(x x̂)

Choose (x̂, �) to minimize ≥(x̂, �).
Set-valued (or combinatorial) optimization problem.
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Dynamic problem

� ⊂ is the silence setx̂ is the estimate when no packet is received

If a packet is received

� (x ) ⊂ is the silence setx̂ is the estimate when no packet is received

If a packet is not received

� (� ) ⊂ is the silence setx̂ (� ) is the estimate when no packet is received

Sequential optimization problemwhere the optimization problem
at each step is a set-valued optimization problem that depends
on a history of previously chosen sets!.

Exhaustive search complexity: | |2|�|
|�| T



Main results
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Source model X = aX ∉W , whereW has symmetric and unimodal distribution. X ℤ/ℝ.

Distortion d(x, x̂) = d(x x̂) where d(⋅) is symmetric and quasi-convex.

Optimal estimation strategy

X̂ = {
aX̂ − , if Y {� , � }Y , if Y

Optimal transmission strategy

U = {
−, if |X aX̂ − | k(S − )∑, otherwise

Salient features
Optimal strategies are simple and intuitive

The transmitter does not try to send information through timing events
(or length of silence intervals).

The estimation strategy does not depend on the value of the threshold
When the estimator does not receive a packet, it behaves as if the packet
was dropped by the channel, even when the channel is perfect!
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Source model X = aX ∉W , whereW has symmetric and unimodal distribution. X ℤ/ℝ.

Distortion d(x, x̂) = d(x x̂) where d(⋅) is symmetric and quasi-convex.

Optimal estimation strategy

X̂ = {
aX̂ − , if Y {� , � }Y , if Y

Optimal transmission strategy

U = {
−, if |X aX̂ − | k(S − )∑, otherwise

Performance of threshold based strategiesK : Expected discounted number of transmissions until irst successful reception.L : Expected discounted distortion until irst successful reception.M : Expected discounted time until irst successful reception.

Then, D = L
M and N = K

M . (Renewal Relationships)
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Optimal trade-offs for discrete sources

Assume i.i.d. packet drops (i.e., transition matrix [
ε − εε − ε ]).

For i.i.d. packet drops k∗(∑) = k∗(−).
For every k ℤ> , compute D and N . Deine λ = D D / N N .

Costly communicationC∗ (λ) ∶= inf {D (f, g) ∉ λN (f, g)}

∑ −∑∑λ

C∗

(λ , C (λ ))

(λ , C (λ ))

Constrained communicationD∗ (α) ∶= inf {D (f, g) : N (f, g) α}

∑ −α

D∗

αc

(N ,D )
(N ,D )



Remote state estimation–(Mahajan)
15

Optimal trade-offs for continuous sources

Again assume i.i.d. packet drops.



Remote state estimation–(Mahajan)
15

Optimal trade-offs for continuous sources

Again assume i.i.d. packet drops.

Costly communicationC∗ (λ) ∶= inf {D (f, g) ∉ λN (f, g)}

∑ −∑∑λ

C∗

(λ, C (λ ))

where (λ, k) satisfy ∂ C (λ) = ∑
or, equivalently, λ = ∂ D

∂ N



Remote state estimation–(Mahajan)
15

Optimal trade-offs for continuous sources

Again assume i.i.d. packet drops.

Costly communicationC∗ (λ) ∶= inf {D (f, g) ∉ λN (f, g)}

∑ −∑∑λ

C∗

(λ, C (λ ))

where (λ, k) satisfy ∂ C (λ) = ∑
or, equivalently, λ = ∂ D

∂ N

Constrained communicationD∗ (α) ∶= inf {D (f, g) : N (f, g) α}

∑ −α

D∗

(N ,D )



Proof outline
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How to prove the optimality of a coding scheme?

Information theory
approach

Achievability: Identify a good strategy and evaluate its performance.
Converse: Determine a lower bound on distortion.
Hope: The two curves match

Converse bounds are hard! Especially for sequential models.

Stochastic control
approach

Dynamic program: Identify suicient statistics dynamic program
Structural results: Determine qualitative properties of optimal solutions

Structural results are hard! Especially for multi-agent systems.

Related results (real-time comm.): [Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis
2006, Mahajan-Teneketzis 2009, Kaspi-Merhav 2012, Asnani-Weissman 2013, Yüksel 2013 . . . ]



So how do we start?

Decentralized stochastic control
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The common information approach

Nayyar, Mahajan and Teneketzis, Decentralized stochastic control with partial history sharing: A common information approach, IEEE TAC 2013.
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The common information approach

The coordinated system is equivalent to the original system.f (x, y : − , s : − ) = h (y : − , s : − )(x).
The coordinated system is centralized. Belief state ℙ(X | Y : − , S : − ).

Nayyar, Mahajan and Teneketzis, Decentralized stochastic control with partial history sharing: A common information approach, IEEE TAC 2013.
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Information states or sufficient statistics

Notation For any π ⎪( ) and φ∶ � {∑, −}B (φ) = {x : φ(x) = i}, i {∑, −} ξ = π|φ means ξ(x) = � {φ(x)}π(x)π(B (φ)
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Notation For any π ⎪( ) and φ∶ � {∑, −}B (φ) = {x : φ(x) = i}, i {∑, −} ξ = π|φ means ξ(x) = � {φ(x)}π(x)π(B (φ)
π ξ

Pre-transmission belief π (x) = ℙ(X = x|S : − = s : − , Y : − = y : − ).
Post-transmission belief π (x) = ℙ(X = x|S : = s : , Y : = y : ).

Belief update π = π P
� ��S = −

� ��S = ∑

π = F (π ,φ , y ) = δ
t
, if yπ |φt
, if y = �π , if y = �
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Dynamic program

VT (s, π ) = ∑
and for t {T , . . . , ∑}V (s, π ) = min

φ:�→{ }
{λπ (B (φ)) ∉ π (B (φ))W (π ,φ) ∉ ∑

B φ

π (x)W (π ,φ, x)}

V (s, π ) = min
^ �

∑
�

π (x)d(x, x̂) ∉ V (s, π P)

whereW (π ,φ) = Q V (∑, π ) ∉ Q V (−, π |φ)
W (π ,φ, x) = Q V (∑, π ) ∉ Q V (−, δ )
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Salient features
Minimization over functions φ
Similar to DP for POMDPs. Can be solved using
similar numerical techniques.

Dynamic program

VT (s, π ) = ∑
and for t {T , . . . , ∑}V (s, π ) = min

φ:�→{ }
{λπ (B (φ)) ∉ π (B (φ))W (π ,φ) ∉ ∑

B φ

π (x)W (π ,φ, x)}

V (s, π ) = min
^ �

∑
�

π (x)d(x, x̂) ∉ V (s, π P)

whereW (π ,φ) = Q V (∑, π ) ∉ Q V (−, π |φ)
W (π ,φ, x) = Q V (∑, π ) ∉ Q V (−, δ )



Can we use the DP to say something

more about the optimal strategy?
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Simplifying modeling assumptions

Markov process X = aX ∉W
Discrete state process: X , a,W ℤ

Continuous state process: X , a,W ℝ

Noise Distribution Unimodal and symmetric

Distortion function Symmetric and quasi-convex
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Step 1 A change of variables

Define Z = ∑ and Z = {
aZ − , if Y {� , � }Y , if Y (Observable at both Tx and Rx)

E = X aZ − , E = X Z , Ê = X̂ Z
Thus, these are related as

E = {
E , if Y {� , � }∑, if Y and E = aE ∉W

Note X X̂ = E Ê and hence d(X X̂ ) = d(E Ê ).
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Implication of change of variables

Pre-transmission belief π (e) = ℙ(E = e|S : − = s : − , Y : − = y : − ).
Post-transmission belief π (e) = ℙ(E = e|S : = s : , Y : = y : ).
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Dynamic program

VT (s, π ) = ∑
and for t {T , . . . , ∑}V (s, π ) = min
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Almost uniform and
unimodal (ASU)

distribution about ≥ ≥
πc πc πc− πc ⋅ ⋅ ⋅

ASU Rearrangement

π π
Majorization ξ ⪰ π if ∑

=−

ξ ∑
=−

π and ∑
=−

ξ ∑
=−

π
Invariant to permutations.

ASU Majorization ξ ⪰a π if ξ is ASU and ξ ⪰ π

[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

⪰
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Step 1 Implication of Majorization

Recall DP V (s, π ) = min
φ:�→{ }

{λπ (B (φ)) ∉ π (B (φ))W (π ,φ) ∉ π (B (φ))W (π ,φ)}
V (s, π ) = min

^ �
∑

�

π (x)d(x, x̂) ∉ V (s, π P)
Proposition V and V satisfy the following property:

For any s {∑, −} and π ⪰a ξ, then V (s, π) V (s, ξ)
(Similar to Schur convexity, so we call it ASU Schur convexity)
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Step 1 Implication of Majorization

Recall DP V (s, π ) = min
φ:�→{ }

{λπ (B (φ)) ∉ π (B (φ))W (π ,φ) ∉ π (B (φ))W (π ,φ)}
V (s, π ) = min

^ �
∑

�

π (x)d(x, x̂) ∉ V (s, π P)
Proposition V and V satisfy the following property:

For any s {∑, −} and π ⪰a ξ, then V (s, π) V (s, ξ)
(Similar to Schur convexity, so we call it ASU Schur convexity)

Definition A prescription φ is called threshold based if there exists a k such thatφ(e) = − if |e| > − and ∑ otherwise.
Theorem There is no loss optimality in restricting attention to threshold based

transmission strategies and using estimation strategies of form

Ê = {
∑, if YaE − , if Y {� , � }
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Structure of optimal strategies

Theorem For the ininite horizon costly communication problem, we have the following:
Structure of optimal estimation strategies: The optimal estimation strategy isX̂ = ∑ and for t > ∑

X̂ = {
Y , if YaX̂ − , if Y {� , � }

Structure of optimal transmission strategy: There exist time-invariant thresholdsk(∑), k(−) such that the strategy

U = {
−, if |X aX − | k(S − )∑, otherwise
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(starting at E = ∑).

τ t
k(−)

k(−)
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Proposition {E }∞= is a regenerative process. By renewal relationships, we have:

D ∶= D (f , g∗) = L (∑)
M (∑)

N ∶= N (f , g∗) = K (∑)
M (∑)

Computing L ,M , K is suicient to compute the

performance of f (i.e., to compute D and N ).

These can be computed using standard Markov chain formulas.
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For simplicity, we present the results for i.i.d. packet drops.

The results for Markov packet drops are similar (but harder to describe).
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Step 3 Solution to costly comm. for discrete sources

Proposition C (λ) ∶= D ∉ λN is submodular in (k, λ).
Hence, k∗ (λ) ∶= argmin

≥
C (λ) is increasing in λ
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Theorem Strategy f is optimal for λ (λ , λ ] .
C∗ (λ) = min ℤ≥

C is piecewise linear, continuous, concave, and increasing
function of λ.
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Step 4 Solution to constrained comm. for discrete sources

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ ∑ such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.
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Step 3 Solution to costly communication for continuous sources

Proposition As in the case of discrete sources:C (λ) ∶= D ∉ λN is submodular in (k, λ).
Hence, k∗ (λ) ∶= argmin

≥
C (λ) is increasing in λ
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λ = ∂ D

∂ N (i.e., ∂ D ∉ λ∂ N = ∑)
then the strategy (f , g∗) is optimal for the costly communication with cost λ.
The optimal performance C∗ (λ) is continuous, concave and increasing function of λ.

Scaling with variance for Gaussian noise

C∗ (λ) = σ C∗ λσ .
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Step 4 Solution to constrained communication for continuous sources

Theorem For any β (∑, −] and α (∑, −), let k∗ (α) be such that

N ∗
β = α.

Such a k∗ (α) always exists and we have the following:

The strategy (f ∗
β , g∗) is optimal for the constrained optimization problem

with constraint α
(For the Markov packet drop case, we need to check additional KKT conditions)

The distortion transmission functionD∗ (α) is continuous, convex, and decreasing
in α and is given by

D∗ (α) = D ∗
β
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Examples: Birth-death Markov chain

and Gauss-Markov process
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Example Symmetric birth-death Markov chain (perfect channel)

P = p, if |i j| = −;− 2p, if i = j;∑, otherwise,

where p (∑, −2), d(e) = |e|

∑ − 2 ⋅ ⋅ ⋅−2⋅ ⋅ ⋅ p
− 2p

p
− 2p

p
− 2p

p
− 2p

p
− 2p

p
pppppp
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Discounted cost Let K = 2 (− β)/βp and m = cosh− ( K /2).
D = sinh(km ) k sinh(m )

2 sinh (km /2) sinh(m )
N = 2βp sinh (m /2) cosh(km )

sinh (km /2) (− β)

Average cost D = k −3k and N = 2pk
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Example Symmetric birth-death Markov chain (i.i.d. packet drops)
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Example Symmetric birth-death Markov chain (Markov packet drops)
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Gauss-Markov process (� = , σ = )
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Summary

Remote state estimation–(Mahajan)
3

Communication system (cont.)

Markov
Process

Transmitter
Erasure
Channel

Receiver
X U Y X̂

ACK/NACK and channel state

Feedback The receiver sends two bits of feedback: ACK/NACK and channel state.

Transmitter Decides whether to transmit or not. Denoted by U {∑, −}.
If U = ∑, X̄ = �. If U = −, X̄ = X .U = f (X : , Y : − , S : − )
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Optimization problems

Constrained communication

For α (∑, −), D∗ (α) ∶= inf {D (f, g) : N (f, g) α}

Costly communication (Lagrange relaxation)

For λ ℝ> , C∗ (λ) = C (f∗, g∗; λ) ∶= inf {D (f, g) ∉ λN (f, g)}

λ

C∗

C∗ is cts, inc, and concave

α

D∗

D∗ is cts, dec, and convex
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Optimal strategies and their performance

Source model X = aX ∉W , whereW has symmetric and unimodal distribution. X ℤ/ℝ.

Distortion d(x, x̂) = d(x x̂) where d(⋅) is symmetric and quasi-convex.

Optimal estimation strategy

X̂ = {
aX̂ − , if Y {� , � }Y , if Y

Optimal transmission strategy

U = {
−, if |X aX̂ − | k(S − )∑, otherwise

Performance of threshold based strategiesK : Expected discounted number of transmissions until irst successful reception.L : Expected discounted distortion until irst successful reception.M : Expected discounted time until irst successful reception.

Then, D = L
M and N = K

M . (Renewal Relationships)
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Dynamic program

VT (s, π ) = ∑
and for t {T , . . . , ∑}V (s, π ) = min

φ:�→{ }
{λπ (B (φ)) ∉ π (B (φ))W (π ,φ) ∉ ∑

B φ

π (x)W (π ,φ, x)}

V (s, π ) = min
^ �

∑
�

π (x)d(x, x̂) ∉ V (s, π P)

whereW (π ,φ) = Q V (∑, π ) ∉ Q V (−, π |φ)
W (π ,φ, x) = Q V (∑, π ) ∉ Q V (−, δ )
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Dynamic program

VT (s, π ) = ∑
and for t {T , . . . , ∑}V (s, π ) = min

φ:�→{ }
{λπ (B (φ)) ∉ π (B (φ))W (π ,φ) ∉ ∑

B φ

π (x)W (π ,φ, x)}

V (s, π ) = min
^ �

∑
�

π (x)d(x, x̂) ∉ V (s, π P)

whereW (π ,φ) = Q V (∑, π ) ∉ Q V (−, π |φ)
W (π ,φ, x) = Q V (∑, π ) ∉ Q V (−, δ )

Step 1 Threshold strategies are optimal

Search space of
strategies (f, g)

Step 2 Performance of threshold strategies

τ t
k(−)

k(−)

k(∑)

k(∑)
E

Step 3 Optimal costly communication

λ λ λD
D
D

Step 4 Optimal constrained communication

∑ −αcα

D∗ (α)
(N ,D )

(N ,D )
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Communication system (cont.)

Markov
Process

Transmitter
Erasure
Channel

Receiver
X U Y X̂

ACK/NACK and channel state

Feedback The receiver sends two bits of feedback: ACK/NACK and channel state.

Transmitter Decides whether to transmit or not. Denoted by U {∑, −}.
If U = ∑, X̄ = �. If U = −, X̄ = X .U = f (X : , Y : − , S : − )

Remote state estimation–(Mahajan)
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Optimization problems

Constrained communication

For α (∑, −), D∗ (α) ∶= inf {D (f, g) : N (f, g) α}

Costly communication (Lagrange relaxation)

For λ ℝ> , C∗ (λ) = C (f∗, g∗; λ) ∶= inf {D (f, g) ∉ λN (f, g)}

λ

C∗

C∗ is cts, inc, and concave

α

D∗

D∗ is cts, dec, and convex
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Optimal strategies and their performance

Source model X = aX ∉W , whereW has symmetric and unimodal distribution. X ℤ/ℝ.

Distortion d(x, x̂) = d(x x̂) where d(⋅) is symmetric and quasi-convex.

Optimal estimation strategy

X̂ = {
aX̂ − , if Y {� , � }Y , if Y

Optimal transmission strategy

U = {
−, if |X aX̂ − | k(S − )∑, otherwise

Performance of threshold based strategiesK : Expected discounted number of transmissions until irst successful reception.L : Expected discounted distortion until irst successful reception.M : Expected discounted time until irst successful reception.

Then, D = L
M and N = K

M . (Renewal Relationships)
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π (x)W (π ,φ, x)}

V (s, π ) = min
^ �

∑
�

π (x)d(x, x̂) ∉ V (s, π P)

whereW (π ,φ) = Q V (∑, π ) ∉ Q V (−, π |φ)
W (π ,φ, x) = Q V (∑, π ) ∉ Q V (−, δ )

Step 1 Threshold strategies are optimal

Search space of
strategies (f, g)

Step 2 Performance of threshold strategies

τ t
k(−)

k(−)

k(∑)

k(∑)
E

Step 3 Optimal costly communication

λ λ λD
D
D

Step 4 Optimal constrained communication

∑ −αcα

D∗ (α)
(N ,D )

(N ,D )
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Computation of optimal thresholds

Costly communication Given λ, ind k such that ∂ (D ∉ λN ) = ∑.
Constrained

communication
Given α, ind k such that N = α.

Main idea Pick a threshold k and use strategy f until irst successful reception.
The sample path values of L,M, and K may be viewed as a noisy observation
of true L ,M , and K .

Use stochastic approximation to ind optimal thresholds.

Kiefer-Wolfowitz Algorithm

Robbins-Monro Algorithm
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Concluding Remarks

Generalization to vector sources
Diiculty: If X is ASU, is AX ∉W also ASU?

Even if threshold policies are not optimal, the tools developed may be useful to identify
best threshold-based strategy.
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Future directions
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Power control . . .

Scheduling multiple sources . . .
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Communication system (cont.)

Markov
Process

Transmitter
Erasure
Channel

Receiver
X U Y X̂

ACK/NACK and channel state

Feedback The receiver sends two bits of feedback: ACK/NACK and channel state.

Transmitter Decides whether to transmit or not. Denoted by U {∑, −}.
If U = ∑, X̄ = �. If U = −, X̄ = X .U = f (X : , Y : − , S : − )
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Optimization problems

Constrained communication

For α (∑, −), D∗ (α) ∶= inf {D (f, g) : N (f, g) α}

Costly communication (Lagrange relaxation)

For λ ℝ> , C∗ (λ) = C (f∗, g∗; λ) ∶= inf {D (f, g) ∉ λN (f, g)}

λ

C∗

C∗ is cts, inc, and concave

α
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D∗ is cts, dec, and convex
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Optimal strategies and their performance

Source model X = aX ∉W , whereW has symmetric and unimodal distribution. X ℤ/ℝ.

Distortion d(x, x̂) = d(x x̂) where d(⋅) is symmetric and quasi-convex.

Optimal estimation strategy

X̂ = {
aX̂ − , if Y {� , � }Y , if Y

Optimal transmission strategy

U = {
−, if |X aX̂ − | k(S − )∑, otherwise

Performance of threshold based strategiesK : Expected discounted number of transmissions until irst successful reception.L : Expected discounted distortion until irst successful reception.M : Expected discounted time until irst successful reception.

Then, D = L
M and N = K
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Dynamic program

VT (s, π ) = ∑
and for t {T , . . . , ∑}V (s, π ) = min

φ:�→{ }
{λπ (B (φ)) ∉ π (B (φ))W (π ,φ) ∉ ∑

B φ

π (x)W (π ,φ, x)}

V (s, π ) = min
^ �

∑
�

π (x)d(x, x̂) ∉ V (s, π P)

whereW (π ,φ) = Q V (∑, π ) ∉ Q V (−, π |φ)
W (π ,φ, x) = Q V (∑, π ) ∉ Q V (−, δ )
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Step 1 A change of variables

Define Z = ∑ and Z = {
aZ − , if Y {� , � }Y , if Y (Observable at both Tx and Rx)

E = X aZ − , E = X Z , Ê = X̂ Z
Thus, these are related as

E = {
E , if Y {� , � }∑, if Y and E = aE ∉W

Note X X̂ = E Ê and hence d(X X̂ ) = d(E Ê ).
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Step 2 Performance of threshold-based strategies

Define L (e) = � [
k −∑
=

β d(E )|E = e]. (Distortion until irst reception)

M (e) = � [
k −∑
=

β |E = e]. (Time until the irst reception)

K (e) = � [
k

∑
=

β U |E = e]. (Transmissions until the irst reception)

Consider a threshold-based strategy

f (e, s) = {
− if |e| k(s)∑ otherwise

Let τ denote the stopping time of irst reception
(starting at E = ∑).

τ t
k(−)

k(−)

k(∑)

k(∑)
E
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λ

k∗ (λ)

λ − λ

Deine Λ ∶= {λ ℝ≥ : k∗ (λ) = k}= [λ − , λ ].
C (λ ) = C (λ )λ = D D / N N .

Step 3 Solution to costly comm. for discrete sources

C (λ) C (λ)

λ λΛ λ
D

D

D (λ ,D ∉ λ N )
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Let k∗ be such that

N ∗
β > α > N ∗

β

Step 4 Solution to constrained comm. for discrete sources

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ ∑ such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.

λ
f optimal

f optimal

λ
D

D
D

Randomized strategy (θ∗, f , f ) is optimal where

θ∗N ∉ (− θ∗)N = α
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Computation of optimal thresholds

Costly communication Given λ, ind k such that ∂ (D ∉ λN ) = ∑.
Constrained

communication
Given α, ind k such that N = α.

Main idea Pick a threshold k and use strategy f until irst successful reception.
The sample path values of L,M, and K may be viewed as a noisy observation
of true L ,M , and K .

Use stochastic approximation to ind optimal thresholds.

Kiefer-Wolfowitz Algorithm

Robbins-Monro Algorithm


