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. . . or how stochastic programmers can stop
worrying and use state space models.



Let’s revisit the notion of state
in stochastic dynamical systems



Approx. info state–(Mahajan)
2

Dynamical
System

Input: Ut Output: Yt

Yt = ft(U1:t).

Notion of state in deterministic dynamical systems



Approx. info state–(Mahajan)
2

Dynamical
System

Input: Ut Output: Yt

Yt = ft(U1:t).

U1 U2 Ut

Y1 Y2 Yt

Timing diagram

Notion of state in deterministic dynamical systems



Approx. info state–(Mahajan)
2

Dynamical
System

Input: Ut Output: Yt

Yt = ft(U1:t).

U1 U2 Ut

Y1 Y2 Yt

Timing diagram Decision tree

Notion of state in deterministic dynamical systems



Approx. info state–(Mahajan)
2

Dynamical
System
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Yt = ft(U1:t).
EQUIVALENCE RELATIONSHIP

Let Ht = U1:t−1 denote the history of inputs
until time t.

H(1)t ∼ H(2)t if for all future inputs Ut:T, the
future outputs Y(1)t:T and Y(2)t:T are the same:

ft:T(H(1)t , Ut:T) = ft:T(H(2)t , Ut:T)

U1 U2 Ut

Y1 Y2 Yt

Timing diagram Decision tree

Notion of state in deterministic dynamical systems

Nerode, “Linear Automaton Transformation”, 1958. Minsky, “Computation: Finite and Infinite Machines”, 1967.
Witsenhausen, “Some remarks on the concept of state”, 1976.
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Dynamical
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Input: Ut Output: Yt

Yt = ft(U1:t).
EQUIVALENCE RELATIONSHIP

Let Ht = U1:t−1 denote the history of inputs
until time t.

H(1)t ∼ H(2)t if for all future inputs Ut:T, the
future outputs Y(1)t:T and Y(2)t:T are the same:

ft:T(H(1)t , Ut:T) = ft:T(H(2)t , Ut:T)

STATE SUFFICIENT FOR I/O MAPPING

Let ℋt denote the space of all histories at
time t. Then, the state space at time t is the
quotient space ℋt/∼.

PROPERTIES OF STATE

The state Xt at time t is a “compression”
of past inputs that satisfies the following:

UPDATES IN A RECURSIVE MANNER:

Xt+1 = function(Xt, Ut).

SUFFICIENTTO PREDICT OUTPUT:

Yt = function(Xt, Ut).
(Ignore: measurability and minimality)

Notion of state in deterministic dynamical systems
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Notion of state in stochastic dynamical systems
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Balakrishnan, “Foundations of state-space theory of cts systems”, 1967.
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Stochastic
System

Controlled input: Ut

Stochastic input: Wt

Output: Yt

Yt = ft(U1:t,W1:t).

STOCHASTIC INPUT IS NOT OBSERVED

Let Ht = (U1:t−1, Y1:t−1) denote the history
of inputs and OUTPUTS until time t.

TRADITIONAL SOLUTION: BELIEF STATES

Step 1 Identify a state {St}t≥0 for predicting output assuming that
the stochastic inputs are observed.

Step 2 Define a BELIEF STATE Bt ∈ Δ(𝒮):
Bt(s) = ℙ(St = s | Y1:t−1 = y1:t−1, U1:t−1 = u1:t−1), s ∈ 𝒮.

Notion of state in partially observed stochastic dynamical systems

Astrom, “Optimal control of Markov decision processes with incomplete state information,” 1965. Striebel, “Sufficient statistics in the optimal control of

stochastic systems,” 1965. Baum and Petrie, “Statistical inference for probabilistic functions of finite state Markov chains,” 1966.
Stratonovich, “Conditional Markov processes,” 1960.
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Value function is piecewise linear and convex.

Is exploited by various efficient algorithms.

Partially observed Markov decision processes (POMDPs):
Pros and Cons of belief state representation

Smallwood and Sondik, “The optimal control of partially observable Markov process over a finite horizon,” 1973.
Chen, “Algorithms for partially observable Markov decision processes,” 1988.
Kaelbling, Littmam, Cassandra, “Planning and acting in partially observable stochastic domains,” 1998.
Pineau, Gordon, Thrun, “Point-based value iteration: an anytime algorithm for POMDPs,” 2003.
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Is exploited by various efficient algorithms.

When the state space model is not known
analytically (as is the case for black-box
models and simulators as well as some
real world application such as healthcare),
belief states are difficult to construct and
difficult to approximate from data.

Partially observed Markov decision processes (POMDPs):
Pros and Cons of belief state representation

Smallwood and Sondik, “The optimal control of partially observable Markov process over a finite horizon,” 1973.
Chen, “Algorithms for partially observable Markov decision processes,” 1988.
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Are there other ways to model
partially observed systems which is
more amenable to approximations?

Let’s go back to first principles.
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The info state Zt at time t is a “compression”
of past inputs that satisfies the following:

SUFFICIENTTO PREDICT ITSELF:

ℙ(Zt+1 | Ht, Ut) = ℙ(Zt+1 | Zt, Ut).

SUFFICIENTTO PREDICT OUTPUT:

ℙ(Yt | Ht, Ut) = ℙ(Yt | Zt, Ut).

Same complexity as identifying the state
sufficient for forecasting outputs for the
case of perfect observations (which was
Step 1 for belief state formulations)

KEY QUESTIONS

Can this be used for dynamic
programming?

What is the right notion of approx-
imations in this framework?

Now let’s consturct the state space



An information state for dynamic programming
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Yt = ft(U1:t,W1:t),
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Choose Ut = gt(Y1:t−1, U1:t−1) to

max𝔼
[

T

∑
t=1

Rt]

Predicting output vs optimizing expected rewards over time
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If {Zt}t≥1 is any information state process. Then:
There is no loss of optimality in restricting attention
to policies of the form

Ut = g̃t(Zt).

Dynamic programming using information state

There is a hint about this result in Kumar and Varaiya, “Stochastic Systems: estimation, identification, and adaptive control,” 1986.
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PROPERTIES OF INFORMATION STATE

(SUFFICIENT FOR DYNAMIC PROGRAMMING)

The info state Zt at time t is a “compression”
of past inputs that satisfies the following:

SUFFICIENTTO PREDICT ITSELF:

ℙ(Zt+1 | Ht, Ut) = ℙ(Zt+1 | Zt, Ut).

SUFFICIENTTO ESTIMATE EXPECTED REWARD:

𝔼[Rt | Ht, Ut] = 𝔼[Rt | Zt, Ut].

PRELIMINARY THEOREM

If {Zt}t≥1 is any information state process. Then:
There is no loss of optimality in restricting attention
to policies of the form

Ut = g̃t(Zt).

Let {Vt}T+1t=1 denote the solution to the following
dynamic program: VT+1(zT+1) = 0

and for t ∈ {T , . . . , 1},
Qt(zt, ut) = 𝔼[Rt + Vt+1(Zt+1) | Zt = zt, Ut = ut],

Vt(zt) = max
ut∈𝒰

Qt(zt, ut).

A policy {g̃t}Tt=1, g̃t∶ 𝒵t → 𝒰, is optimal if it satisfies
g̃t(zt) ∈ arg max

ut∈𝒰
Qt(zt, ut).

Dynamic programming using information state

There is a hint about this result in Kumar and Varaiya, “Stochastic Systems: estimation, identification, and adaptive control,” 1986.



What about approximations?
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INTEGRAL PROBABILITY METRIC (IPM)

Let 𝒫 denote the set of probability measures
on a measurable space (𝒳,𝔊). Given a class 𝔉
of real-valued bounded measureable functions
on (𝒳,𝔊), the integral probability metric (IPM)
between two probability distributions μ, ν ∈ 𝒫
is given by:

d𝔉(μ, ν) = sup
f∈𝔉 |∫𝒳

fdμ − ∫𝒳
fdν

|
.

Preliminary: A family of pseudometrics on probability distributions

Müller, “Integral probability metrics and their generating classes of functions,” 1997.
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INTEGRAL PROBABILITY METRIC (IPM)

Let 𝒫 denote the set of probability measures
on a measurable space (𝒳,𝔊). Given a class 𝔉
of real-valued bounded measureable functions
on (𝒳,𝔊), the integral probability metric (IPM)
between two probability distributions μ, ν ∈ 𝒫
is given by:

d𝔉(μ, ν) = sup
f∈𝔉 |∫𝒳

fdμ − ∫𝒳
fdν

|
.

EXAMPLES

If 𝔉 = {f : ‖f‖∞ ≤ 1},
d𝔉 = Total variation distance.

If 𝔉 = {f : |f|L ≤ 1},
d𝔉 =Wasserstein distance.

If 𝔉 = {f : ‖f‖∞ + |f|L ≤ 1},
d𝔉 = Dudley metric.

. . .

Preliminary: A family of pseudometrics on probability distributions

Müller, “Integral probability metrics and their generating classes of functions,” 1997.



Approx. info state–(Mahajan)
11

(ε, δ)-APPROXIMATE INFORMATION STATE (AIS)

Given a function class 𝔉, a compression {Zt}t≥1 of
history (i.e., Zt = φt(Ht)) is called an {(εt, δt)}t≥1 AIS
if it satisfies:

|𝔼[Rt|Ht = ht, Ut = ut]
− 𝔼[Rt|Zt = φt(ht), Ut = ut]| < εt

For any Borel set A of 𝒵t, define
μt(A) = ℙ(Zt+1 ∈ A | Ht = ht, Ut = ut)

and
νt(A) = ℙ(Zt+1 ∈ A | Zt = φt(ht), Ut = ut).

Then,
d𝔉(μt, νt) ≤ δt.

Approximate information state
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In the definition of AIS, we can replace
d𝔉(ℙ(Zt+1|Ht = ht, Ut = ut),ℙ(Zt+1|Zt = φt(ht), Ut = ut)) ≤ δt

by
Zt+1 = function(Zt, Yt+1, Ut)
d𝔉(ℙ(Yt|Ht = ht, Ut = ut),ℙ(Yt|Zt = φt(ht), Ut = ut)) ≤ δt.

AIS: Some remarks
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Consider an MDP with state space 𝒳 and per-step reward Rt = r(Xt, Ut).

Suppose 𝒳 is quantized to a discrete set 𝒵 using φ∶𝒳 → 𝒵.

Let z = φ(x) denote the label for x.
Then φ−1(z) denote all states which have label z.

Analytic example: Error bounds on state discretization
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Stochastic
System

Controlled input: Ut

Stochastic input: Wt

Output: Yt

Yt = ft(U1:t,W1:t).

STOCHASTIC INPUT IS NOT OBSERVED

Let Ht = (U1:t−1, Y1:t−1) denote the history
of inputs and OUTPUTS until time t.

TRADITIONAL SOLUTION: BELIEF STATES

Step 1 Identify a state {St}t≥0 for predicting output assuming that
the stochastic inputs are observed.

Step 2 Define a BELIEF STATE Bt ∈ Δ(𝒮):
Bt(s) = ℙ(St = s | Y1:t−1 = y1:t−1, U1:t−1 = u1:t−1), s ∈ 𝒮.

Notion of state in partially observed stochastic dynamical systems

Astrom, “Optimal control of Markov decision processes with incomplete state information,” 1965. Striebel, “Sufficient statistics in the optimal control of

stochastic systems,” 1965. Baum and Petrie, “Statistical inference for probabilistic functions of finite state Markov chains,” 1966.
Stratonovich, “Conditional Markov processes,” 1960.
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PROPERTIES OF INFORMATION STATE

The info state Zt at time t is a “compression”
of past inputs that satisfies the following:

SUFFICIENTTO PREDICT ITSELF:

ℙ(Zt+1 | Ht, Ut) = ℙ(Zt+1 | Zt, Ut).

SUFFICIENTTO PREDICT OUTPUT:

ℙ(Yt | Ht, Ut) = ℙ(Yt | Zt, Ut).

Same complexity as identifying the state
sufficient for forecasting outputs for the
case of perfect observations (which was
Step 1 for belief state formulations)

KEY QUESTIONS

Can this be used for dynamic
programming?

What is the right notion of approx-
imations in this framework?

Now let’s consturct the state space
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PREDICTING OUTPUTS ALMOST SURELY

H(1)t ∼ H(2)t if for all future inputs (Ut:T,Wt:T),
Y(1)t:T = Y

(2)
t:T , a.s.

PROPERTIES OF STATE

The state Xt at time t is a “compression” of
past inputs that satisfies the following:

UPDATES IN A RECURSIVE MANNER:

Xt+1 = function(Xt, Ut,Wt).

SUFFICIENTTO PREDICT OUTPUT:

Yt = function(Xt, Ut,Wt).

FORECASTING OUTPUTS IN DISTRIBUTION

H(1)t ∼ H(2)t if for all future CONTROL inputs Ut:T,
ℙ(Y(1)t:T | H

(1)
t , Ut:T) = ℙ(Y(2)t:T | H

(2)
t , Ut:T)

PROPERTIES OF STATE

The state Xt at time t is a “compression” of
past inputs that satisfies the following:

SUFFICIENTTO PREDICT ITSELF:

ℙ(Xt+1 | Ht, Ut) = ℙ(Xt+1 | Xt, Ut).

SUFFICIENTTO PREDICT OUTPUT:

ℙ(Yt | Ht, Ut) = ℙ(Yt | Xt, Ut).

Now let’s construct the state space

Approx. info state–(Mahajan)
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Stochastic
System

Controlled input: Ut

Stochastic input: Wt

Output: Yt

Yt = ft(U1:t,W1:t).

STOCHASTIC INPUT IS NOT OBSERVED

Let Ht = (U1:t−1, Y1:t−1) denote the history
of inputs and OUTPUTS until time t.

TRADITIONAL SOLUTION: BELIEF STATES

Step 1 Identify a state {St}t≥0 for predicting output assuming that
the stochastic inputs are observed.

Step 2 Define a BELIEF STATE Bt ∈ Δ(𝒮):
Bt(s) = ℙ(St = s | Y1:t−1 = y1:t−1, U1:t−1 = u1:t−1), s ∈ 𝒮.

Notion of state in partially observed stochastic dynamical systems

Astrom, “Optimal control of Markov decision processes with incomplete state information,” 1965. Striebel, “Sufficient statistics in the optimal control of

stochastic systems,” 1965. Baum and Petrie, “Statistical inference for probabilistic functions of finite state Markov chains,” 1966.
Stratonovich, “Conditional Markov processes,” 1960.
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FORECASTING OUTPUTS IN DISTRIBUTION

H(1)t ∼ H(2)t if for all future CONTROL inputs Ut:T,
ℙ(Y(1)t:T | H

(1)
t , Ut:T) = ℙ(Y(2)t:T | H

(2)
t , Ut:T)

PROPERTIES OF INFORMATION STATE

The info state Zt at time t is a “compression”
of past inputs that satisfies the following:

SUFFICIENTTO PREDICT ITSELF:

ℙ(Zt+1 | Ht, Ut) = ℙ(Zt+1 | Zt, Ut).

SUFFICIENTTO PREDICT OUTPUT:

ℙ(Yt | Ht, Ut) = ℙ(Yt | Zt, Ut).

Same complexity as identifying the state
sufficient for forecasting outputs for the
case of perfect observations (which was
Step 1 for belief state formulations)

KEY QUESTIONS

Can this be used for dynamic
programming?

What is the right notion of approx-
imations in this framework?

Now let’s consturct the state space
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(ε, δ)-APPROXIMATE INFORMATION STATE (AIS)

Given a function class 𝔉, a compression {Zt}t≥1 of
history (i.e., Zt = φt(Ht)) is called an {(εt, δt)}t≥1 AIS
if it satisfies:

|𝔼[Rt|Ht = ht, Ut = ut]
− 𝔼[Rt|Zt = φt(ht), Ut = ut]| < εt

For any Borel set A of 𝒵t, define
μt(A) = ℙ(Zt+1 ∈ A | Ht = ht, Ut = ut)

and
νt(A) = ℙ(Zt+1 ∈ A | Zt = φt(ht), Ut = ut).

Then,
d𝔉(μt, νt) ≤ δt.

Approximate information state
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(ε, δ)-APPROXIMATE INFORMATION STATE (AIS)

Given a function class 𝔉, a compression
{Zt}t≥1 of history (i.e., Zt = φt(Ht)) is called
an {(εt, δt)}t≥1 AIS if it satisfies:

|𝔼[Rt|Ht = ht, Ut = ut]
− 𝔼[Rt|Zt = φt(ht), Ut = ut]| < εt

For any Borel set A of 𝒵t, define
μt(A) = ℙ(Zt+1 ∈ A | Ht = ht, Ut = ut)

and
νt(A) = ℙ(Zt+1 ∈ A | Zt = φt(ht), Ut = ut).

Then,
d𝔉(μt, νt) ≤ δt.

`

MAIN THEOREM

Given a function class 𝔉, let {Zt}t≥1, where Zt = φt(Ht),
be an {(εt, δt)}t≥1 AIS. Recursively define the following
functions: V̂T+1(zT+1) = 0 and for t ∈ {T , . . . , 1},

Q̂t(zt, ut) = 𝔼[Rt + Vt+1(Zt+1) | Zt = zt, Ut = ut],

V̂t(zt) = max
ut∈𝒰

Qt(zt, ut).

Then, if there exist positive constants {Kt}t≥1 such that
V̂t/Kt ∈ 𝔉, then for any history ht,

|Vt(ht) − V̂t(φt(ht))| ≤ εT +
T

∑
s=t
(εs + Ksδs).

Approximate information state
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In my biased opinion, the notions of information state and approximate information
state provide a conceptually clean framework to think about approximations (and online
reinforcement learning) in sequential decision making.

⇒

Discovering latent space models State aggregation

Environment

Agent

Environment

A1 A2 A3

Online RL in POMDPs Online Multi-agent RL

Conclusion


