Approximate planning and learning in partially observed systems

Aditya Mahajan McGill University

Joint work with Jayakumar Subramanian, Amit Sinha, and Raihan Seraj

Communication and Signal Processing Seminar University of Michigan 3rd December 2020

email: aditya.mahajan@mcgill.ca
 web: http://cim.mcgill.ca/~adityam

> Algorithms based on comprehensive theory

Algorithms based on comprehensive theory

Algorithms based on comprehensive theory

> Algorithms based on comprehensive theory

Approx. planning and learning–(Mahajan)

Recent successes of RL

13d32

Algorithms based on comprehensive theory
 The theory is restricted almost exclusively to systems with perfect state observations.

Most real world systems are partially observed

Why is it difficult to learn in partially observable environments?

POMDP: PARTIALLY OBSERVABLE MARKOV DECISION PROCESS Dynamics: $\mathbb{P}(S_{t+1} | S_t, A_t)$ Observations: $\mathbb{P}(Y_t | S_t)$ Reward $R_t = r(S_t, A_t)$. ^Y Action: $A_t = \pi_t(Y_{1:t}, A_{1:t-1})$. $\pi = (\pi_t)_{t \ge 1}$ is called a policy.

The objective is to choose a policy π to maximize:

2

$$J(\pi) \coloneqq \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right]$$

POMDP: PARTIALLY OBSERVABLE MARKOV DECISION PROCESS Dynamics: $\mathbb{P}(S_{t+1} | S_t, A_t)$ Observations: $\mathbb{P}(Y_t | S_t)$ Reward $R_{+} = r(S_{+}, A_{+})$. Obs. $Y_t \in \mathcal{Y}$ Action: $A_t = \pi_t(Y_{1:t}, A_{1:t-1}).$ $\pi = (\pi_t)_{t \ge 1}$ is called a policy. The objective is to choose a policy π to maximize: $\mathbf{J}(\pi) \coloneqq \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} \mathbf{R}_{t} \right]$

Conceptual challenge

- Action is a function of the history of observations and actions.
- > The history is increasing in time. So, the search complexity increases exponentially in time.

Key simplifying idea

Define belief state $B_t \in \Delta(S)$ as $B_t(s) = \mathbb{P}(S_t = s \mid Y_{1:t}, A_{1:t-1})$.

- ▷ Belief state updates in a state-like manner $B_{t+1} = function(B_t, Y_{t+1}, A_t).$
- ▶ Belief state is sufficient to evaluate rewards $\mathbb{E}[R_t | Y_{1:t}, A_{1:t}] = \hat{r}(B_t, A_t).$
- Thus, $\{B_t\}_{t \ge 1}$ is a perfectly observed controlled Markov process.

Key simplifying idea

Define belief state $B_t \in \Delta(S)$ as $B_t(s) = \mathbb{P}(S_t = s \mid Y_{1:t}, A_{1:t-1})$.

- ▷ Belief state updates in a state-like manner $B_{t+1} = function(B_t, Y_{t+1}, A_t).$
- ▷ Belief state is sufficient to evaluate rewards $\mathbb{E}[R_+ | Y_{1:+}, A_{1:+}] = \hat{r}(B_+, A_+).$
- Thus, $\{B_t\}_{t \ge 1}$ is a perfectly observed controlled Markov process.

Therefore, we get the following results:

Dynamic Program

The optimal control policy is given by the solution of the following DP: $V_t(b_t) = \max_{a_t \in \mathcal{A}} \Big\{ \hat{r}(S_t, A_t) + \mathbb{E}[V_{t+1}(B_{t+1}) \mid B_t = b_t, A_t = a_t] \Big\}$

Implications for planning

- Allows to use the entire machinery of fully observed Markov decision processes for partially observed systems.
- Various exact and approximate algorithms can efficiently solve the DP. Exact: incremental pruning, witness algorithm, linear support algo Approximate: QMDP, point based methods, SARSOP, DESPOT, ...

Implications for planning

- Allows to use the entire machinery of fully observed Markov decision processes for partially observed systems.
- Various exact and approximate algorithms can efficiently solve the DP. Exact: incremental pruning, witness algorithm, linear support algo Approximate: QMDP, point based methods, SARSOP, DESPOT, ...
- > The construction of the belief state depends on the system model.
- So, when the system model is unknown, we cannot construct the belief state and therefore cannot use standard RL algorithms.

Implications for learning

Implications for planning

- Allows to use the entire machinery of fully observed Markov decision processes for partially observed systems.
- Various exact and approximate algorithms can efficiently solve the DP. Exact: incremental pruning, witness algorithm, linear support algo Approximate: QMDP, point based methods, SARSOP, DESPOT, ...
- > The construction of the belief state depends on the system model.
- So, when the system model is unknown, we cannot construct the belief state and therefore cannot use standard RL algorithms.
- On the theoretical side:
 - Propose alternative methods: PSRs (predictive state representations), bisimulation metrics, ...
 - Good theoretical guarantees, but difficult to scale.

Implications for learning

Implications for planning

- Allows to use the entire machinery of fully observed Markov decision processes for partially observed systems.
- Various exact and approximate algorithms can efficiently solve the DP. Exact: incremental pruning, witness algorithm, linear support algo Approximate: QMDP, point based methods, SARSOP, DESPOT, ...
- > The construction of the belief state depends on the system model.
- So, when the system model is unknown, we cannot construct the belief state and therefore cannot use standard RL algorithms.

On the theoretical side:

- Propose alternative methods: PSRs (predictive state representations), bisimulation metrics, ...
- **b** Good theoretical guarantees, but difficult to scale.

On the practical side:

- \triangleright Simply stack the previous k observations and treat it as a "state".
- ▶ Instead of a CNN, use an RNN to model policy and action-value fn.
- Can be made to work but lose theoretical guarantees and insights.

Implications for learning

This talk: A <u>theoretically grounded</u> method for RL in partially observable models which has <u>strong empirical performance</u> for high-dimensioanl environments.

paper: https://arxiv.org/abs/2010.08843
 code: https://github.com/info-structures/ais

The high-level view

Information state	A classical (but perhaps not well known) concept in stochastic control.
	Informally, an information state is a sufficient statistic which can be
	recursively updated.
	Always leads to a dynamic programming decomposition.
	N Information state is defined in terms of two properties
	Information state is defined in terms of two properties.
Approximate information state	An AIS is a process which approximtely satisfies these properties.
	We show tht an AIS always leads to a approximate dynamic program.
	Recover (and improve up on) many existing results in the literature.
	There are two approximation errors in the definition of AIS
AIS based RL	There are two approximation errors in the demittion of Alb.
	Use these approximation errors as a surrogate loss
	Performs better than SOTA RL algorithms for POMDPs.
	5
Approx. planning and lea	arning–(Mahajan)

Preliminaries: Input/output modeling

Preliminaries: Input/output modeling

Let $H_t = (Y_{1:t-1}, A_{1:t-1})$ denote the history of all observations and actions available to the agent before taking action at time t.

Assume that the agent chooses an A_t ~ π_t(H_t).
 Let π = (π₁, π₂,...) denote the control policy.

The objective is to choose a policy π to maximize: $J(\pi) \coloneqq \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right]$

Outline

Information state	 A classical (but perhaps not well known) concept in stochastic control. Informally, an information state is a sufficient statistic which can be recursively updated. Always leads to a dynamic programming decomposition.
Approximate information state	
AIS based RL	
	7

From sufficient statistics to information state

Sufficient Statistics	S	Y	A		
	State	Obs.	Action		
	$Z=\sigma(Y)$ is a sufficient statistic for (the purpose of) evaluating the reward $R=r(S,A)$ if				
	(P1) E[R	Y = y	$A = a] = \underbrace{\mathbb{E}[\mathbb{R} \mid Z = \sigma(y), A = a]}_{\mathbb{E}[\mathbb{R} \mid Z = \sigma(y), A = a]}$		
			$=:\hat{r}(\sigma(y),a)$		

8

From sufficient statistics to information state

S Y A State Obs. Action					
$Z=\sigma(Y)$ is a sufficient statistic for (the purpose of) evaluating the reward $R=r(S,A)$ if					
(P1) $\mathbb{E}[R Y = y, A = a] = \underbrace{\mathbb{E}[R Z = \sigma(y), A = a]}_{=:\hat{r}(\sigma(y), a)}$					
Consider a POMDP. Suppose: $Z_t = \sigma_t(H_t)$ is a sufficient statistic for evaluating the reward R_t , and $Z_{t+1} = \sigma_{t+1}(H_{t+1})$ is a sufficient statistic for evaluating the reward R_{t+1} Is Z_t sufficient for dynamic programming?					

From sufficient statistics to information state

S Y A State Obs. Action				
$Z=\sigma(Y)$ is a sufficient statistic for (the purpose of) evaluating the reward $R=r(S,A)$ if				
(P1) $\mathbb{E}[R Y = y, A = a] = \mathbb{E}[R Z = \sigma(y), A = a]$				
$=:\hat{r}(\sigma(y), a)$				
Consider a POMDP. Suppose: $Z_t = \sigma_t(H_t)$ is a sufficient statistic for evaluating the reward R_t , and $Z_{t+1} = \sigma_{t+1}(H_{t+1})$ is a sufficient statistic for evaluating the reward R_{t+1} .				
Is Z_t sufficient for dynamic programming?				
In general, no. To solve a DP, we need to be able to compute:				
$R_t + \gamma \mathbb{E}[V_{t+1}(Z_{t+1}) H_t = h_t, A_t = a_t]$				
So, in addition to (P1), we need:				
(P2) $\mathbb{P}(Z_{t+1} = z_{t+1} H_t = h_t, A_t = a_t) = \mathbb{P}(Z_{t+1} = z_{t+1} Z_t = \sigma_t(H_t), A_t = a_t)$				

0

Informally, an information state is a compression of the history which is sufficient for performance evaluation and predicting itself.

Formal definition of information state

Given a Banach space \mathcal{Z} , a collection $\{\sigma_t: \mathcal{H}_t \to \mathcal{Z}\}_{t \ge 1}$ is called an information state generator if there exist a reward function \hat{r} and a transition kernel \hat{P} such that they are:

Information State

(P1) Sufficient for performance evaluation:

$$\mathbb{E}[\mathsf{R}_t \mid \mathsf{H}_t = \mathsf{h}_t, \mathsf{A}_t = \mathfrak{a}_t] = \hat{r}(\sigma_t(\mathsf{h}_t), \mathfrak{a}_t).$$

(P2) Sufficient for predicting itself:

 $\mathbb{P}(\mathsf{Z}_{t+1} = z_{t+1} \mid \mathsf{H}_t = \mathsf{h}_t, \mathsf{A}_t = \mathfrak{a}_t) = \widehat{\mathsf{P}}(z_{t+1} | \sigma_t(\mathsf{h}_t), \mathfrak{a}_t).$

Formal definition of information state

Given a Banach space \mathcal{Z} , a collection $\{\sigma_t: \mathcal{H}_t \to \mathcal{Z}\}_{t \ge 1}$ is called an information state generator if there exist a reward function \hat{r} and a transition kernel \hat{P} such that they are:

Information State

(P1) Sufficient for performance evaluation:

$$\mathbb{E}[\mathsf{R}_t \mid \mathsf{H}_t = \mathsf{h}_t, \mathsf{A}_t = \mathfrak{a}_t] = \hat{r}(\sigma_t(\mathsf{h}_t), \mathfrak{a}_t).$$

(P2) Sufficient for predicting itself:

 $\mathbb{P}(\mathsf{Z}_{t+1} = z_{t+1} \mid \mathsf{H}_t = \mathsf{h}_t, \mathsf{A}_t = \mathfrak{a}_t) = \widehat{\mathsf{P}}(z_{t+1} | \sigma_t(\mathsf{h}_t), \mathfrak{a}_t).$

Let $\{Z_t\}_{t \ge 1}$ be any information state proces. Define

Info State based dynanmic program

$$V(z) = \max_{a \in \mathcal{A}} \left\{ \hat{r}(z, a) + \gamma \int_{\mathcal{Z}} V(z_{+}) \hat{P}(dz_{+}|z, a) \right\}$$

Let $\pi^*(z)$ denote the arg max of the RHS. Then, the policy $\pi = (\pi_1, \pi_2, ...)$ given by $\pi_t = \pi^* \circ \sigma_t$ is optimal.

Markov decision processes (MDP)

Current state S_t is an info state

Markov decision processes (MDP)

Current state S_t is an info state

MDP with delayed observations

$$S_{t-\delta+1}, A_{t-\delta+1:t-1})$$
 is an info state

Markov decision processes (MDP)

Current state \boldsymbol{S}_t is an info state

MDP with delayed observations

$$S_{t-\delta+1}, A_{t-\delta+1:t-1})$$
 is an info state

POMDP

Belief state is an info state

Markov decision processes (MDP)

Current state S_t is an info state

MDP with delayed observations

 $(S_{t-\delta+1},A_{t-\delta+1:t-1})$ is an info state

POMDP

Belief state is an info state

POMDP with delayed observations

$$(\mathbb{P}(S_{t-\delta}|Y_{1:t-\delta},A_{1:t-\delta}),A_{t-\delta+1:t-1})$$
 is info state

Markov decision processes (MDP)

Current state S_t is an info state

MDP with delayed observations

 $(S_{t-\delta+1},A_{t-\delta+1:t-1})$ is an info state

POMDP

Belief state is an info state

POMDP with delayed observations

 $(\mathbb{P}(S_{t-\delta}|Y_{1:t-\delta},A_{1:t-\delta}),A_{t-\delta+1:t-1})$ is info state

Linear Quadratic Guassian (LQG)

The state estimate $\mathbb{E}[S_t|H_t]$ is an info state

10

Markov decision processes (MDP)

Current state S_t is an info state

MDP with delayed observations

 $(S_{t-\delta+1},A_{t-\delta+1:t-1})$ is an info state

POMDP

Belief state is an info state

POMDP with delayed observations

 $(\mathbb{P}(S_{t-\delta}|Y_{1:t-\delta},A_{1:t-\delta}),A_{t-\delta+1:t-1})$ is info state

Linear Quadratic Guassian (LQG)

The state estimate $\mathbb{E}[S_t|H_t]$ is an info state

Machine Maintenance

 $(\tau,S_{\tau}^{+}) \text{ is info state,} \\ \text{where } \tau \text{ is the time of last maintenance}$

Outline

Information state	
Approximate information state	 Information state is defined in terms of two properties. An AIS is a process which approximately satisfies these properties. We show that AIS always leads to a approximate dynamic program. Recover (and improve up on) many existing results in the literature.
AIS based RL	

Approximate information state (AIS)

Approximate information state A collection $(\sigma_t, \hat{r}, \hat{P})$ is called an (ϵ, δ) -approximate information state (AIS) if it satisfies properties (P1) and (P2) approximately, i.e.,

(P1) Sufficient for approximate performance evaluation:

$$\left|\mathbb{E}[R_t \mid H_t = h_t, A_t = a_t] - \hat{r}(\sigma_t(h_t), a_t)\right| \leq \epsilon$$

(P2) Sufficient for predicting itself approximately:

 $d_{\mathfrak{F}}\big(\mathbb{P}(Z_{t+1}=\cdot \mid H_t=h_t,A_t=a_t), \hat{P}(\cdot \mid \sigma_t(h_t),a_t)\big) \leqslant \delta$

Approximate information state (AIS)

Approximate information state

A collection $(\sigma_t, \hat{r}, \hat{P})$ is called an (ε, δ) -approximate information state (AIS) if it satisfies properties (P1) and (P2) approximately, i.e., (P1) Sufficient for approximate performance evaluation:

$$\left| \mathbb{E}[R_t \mid H_t = h_t, A_t = a_t] - \hat{r}(\sigma_t(h_t), a_t) \right| \leqslant \epsilon$$

(P2) Sufficient for predicting itself approximately: $d_{\mathfrak{F}}(\mathbb{P}(Z_{t+1} = \cdot \mid H_t = h_t, A_t = a_t), \hat{P}(\cdot | \sigma_t(h_t), a_t)) \leq \delta$

Metrics on probability measures

- ▷ The definition of AIS depends on the choice of metric $d_{\mathfrak{F}}$ on probability measures.
- There are various choices for choosing a metric on probability measures, e.g., total variation, Wasserstein distance, bounded-Lipsctiz metric, etc.
- We work with a class of metrics known as integral probability metrics (IPM) with respect to a class of function S.
- ▷ The precise approximation bounds depend on what is called the Minkowski functional $\rho_{\mathfrak{F}}$ corresponding to \mathfrak{F} .

Integral probability metrics (IPMs)

Given a measurable space \mathcal{X} and class of real-valued functions \mathfrak{F} on \mathcal{X} , the integral probability metric (IPM) between two distributions μ and ν on \mathcal{X} with respect to \mathfrak{F} is defined as

IPM

 $d_{\mathfrak{F}}(\mu,\nu) = \sup_{f\in\mathfrak{F}} \left| \int_{\mathfrak{X}} f d\mu - \int_{\mathfrak{X}} f d\nu \right|.$

The Minkowski function $\rho_{\mathfrak{F}}$ with respect to \mathfrak{F} is given by $\rho_{\mathfrak{F}}(f) = \inf\{\rho \in \mathbb{R}_{\geq 0} : \rho^{-1}f \in \mathfrak{F}\}.$

Integral probability metrics (IPMs)

Given a measurable space ${\mathfrak X}$ and class of real-valued functions ${\mathfrak F}$ on ${\mathfrak X}$, the integral probability metric (IPM) between two distributions μ and ν on ${\mathfrak X}$ with respect to ${\mathfrak F}$ is defined as

IPM

The Minkowski function $\rho_{\mathfrak{F}}$ with respect to \mathfrak{F} is given by $\rho_{\mathfrak{F}}(f) = \inf\{\rho \in \mathbb{R}_{\geq 0} : \rho^{-1}f \in \mathfrak{F}\}.$

 $d_{\mathfrak{F}}(\mu,\nu) = \sup_{f \in \mathfrak{F}} \left| \int_{\Upsilon} f d\mu - \int_{\Upsilon} f d\nu \right|.$

Total variation distance corresponds to $\mathfrak{F} = \{f : ||f||_{\infty} \leq 1\}.$

Examples of IPM

▶ Kolmogorov distance corresponds to \$\vec{v}\$ = {1_{(-∞,t]}: t ∈ ℝ^m}.
▶ Wasserstein distance corresponds to \$\vec{v}\$ = {f : ||f||_{Lip} ≤ 1}.
▶ Maximum mean discrepancy corresponds to \$\vec{v}\$ = {f ∈ \$\mathcal{H}\$: ||f||_{\$\mathcal{H}\$} ≤ 1}, where \$\mathcal{H}\$ is a RKHS.

AIS based approximation bounds

Let \hat{V} be the fixed point of the following equations:

$$\hat{\mathbf{V}}(z, \mathbf{a}) = \max_{\mathbf{a} \in \mathcal{A}} \left\{ \hat{\mathbf{r}}(z, \mathbf{a}) + \gamma \int_{\mathcal{Z}} \hat{\mathbf{V}}(z_{+}) \hat{\mathbf{P}}(\mathbf{d}z_{+}|z, \mathbf{a}) \right\}$$

Let \boldsymbol{V} denote the optimal value and action-value functions.

AIS based approximation bounds

Let \hat{V} be the fixed point of the following equations:

$$\hat{\mathbf{V}}(z, a) = \max_{a \in \mathcal{A}} \left\{ \hat{\mathbf{r}}(z, a) + \gamma \int_{\mathcal{Z}} \hat{\mathbf{V}}(z_{+}) \hat{\mathbf{P}}(dz_{+}|z, a) \right\}$$

Let \boldsymbol{V} denote the optimal value and action-value functions.

Then, we have the following:

Value function	The value function \hat{V} is approximately optimal, i.e.,
approximation	$ V_t(h_t) - \hat{V}(\sigma_t(h_t)) \leqslant \alpha = \frac{\epsilon + \gamma \rho_{\mathfrak{F}}(\hat{V})\delta}{1 - \gamma}.$
Policy approximation	Let $\hat{\pi}^*: \mathfrak{Z} \to \Delta(\mathcal{A})$ be an optimal policy for \hat{V} . Then, the policy $\pi = (\pi_1, \pi_2, \dots)$ given by $\pi_t = \hat{\pi}^* \circ \sigma_t$ is approx. optimal: $V_t(h_t) - V_t^{\pi}(h_t) \leqslant 2\alpha$.

14

Examples of AIS

What is the loss in performance if we choose a policy using the simulation model and use it in the real world?

Approx. planning and learning-(Mahajan)

 (\mathbf{P},\mathbf{r})

What is the loss in performance if we choose a policy using the simulation model and use it in the real world?

Model mismatch as an AIS

 $\begin{array}{l} \blacktriangleright \quad (\text{Identity}, \hat{P}, \hat{r}) \text{ is an } (\varepsilon, \delta) \text{-} \text{AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(s, a) \right| \text{ and } \delta_{\mathfrak{F}} = \sup_{s, a} d_{\mathfrak{F}}(P(\cdot | s, a), \hat{P}(\cdot | s, a)). \\ \\ \blacktriangleright \quad \text{Thus, } V(s) - V^{\pi}(s) \leqslant 2 \frac{\varepsilon + \gamma \rho_{\mathfrak{F}}(\hat{V}) \delta_{\mathfrak{F}}}{1 - \gamma}. \end{array}$

 $(P,r) \xrightarrow{\text{Real-world}} (\hat{P},\hat{r})$

What is the loss in performance if we choose a policy using the simulation model and use it in the real world?

$$\begin{array}{l} \blacktriangleright \quad (\text{Identity}, \hat{P}, \hat{r}) \text{ is an } (\varepsilon, \delta) \text{-} \text{AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(s, a) \right| \text{ and } \delta_{\mathfrak{F}} = \sup_{s, a} d_{\mathfrak{F}}(P(\cdot | s, a), \hat{P}(\cdot | s, a)). \\ \\ \triangleright \quad \text{Thus, } V(s) - V^{\pi}(s) \leqslant 2 \frac{\varepsilon + \gamma \rho_{\mathfrak{F}}(\hat{V}) \delta_{\mathfrak{F}}}{1 - \gamma}. \end{array}$$

 $d_{\mathfrak{F}}$ is total variation

$$\mathcal{N}(s) - V^{\pi}(s) \leqslant rac{2arepsilon}{1-\gamma} + rac{\gamma\delta\, extsf{span}(r)}{(1-\gamma)^2}$$

Recover bounds of Müller (1997).

What is the loss in performance if we choose a policy using the simulation model and use it in the real world?

Model mismatch as an AIS

$$\begin{array}{l} \blacktriangleright \quad (\text{Identity}, \hat{P}, \hat{r}) \text{ is an } (\varepsilon, \delta) \text{-} \text{AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(s, a) \right| \text{ and } \delta_{\mathfrak{F}} = \sup_{s, a} d_{\mathfrak{F}}(P(\cdot | s, a), \hat{P}(\cdot | s, a)). \\ \\ \blacktriangleright \quad \text{Thus, } V(s) - V^{\pi}(s) \leqslant 2 \frac{\varepsilon + \gamma \rho_{\mathfrak{F}}(\hat{V}) \delta_{\mathfrak{F}}}{1 - \gamma}. \end{array}$$

 $d_{\mathfrak{F}}$ is total variation

$$\mathcal{N}(s) - \mathcal{V}^{\pi}(s) \leqslant rac{2arepsilon}{1-\gamma} + rac{\gamma\delta\, extsf{span}(r)}{(1-\gamma)^2}$$

Recover bounds of Müller (1997).

$d_{\mathfrak{F}}$ is Wasserstein distance

$$V(s) - V^{\pi}(s) \leq \frac{2\varepsilon}{1 - \gamma} + \frac{2\gamma\delta L_{r}}{(1 - \gamma)(1 - \gamma L_{p})}$$

Recover bounds of Asadi, Misra, Littman (2018).

15

ŝ

and

 $(\widehat{P},\widehat{r})$ is determined from (P,r) using ϕ

S

What is the loss in performance if we choose a policy using the abstract model and use it in the original model?

ŝ

What is the loss in performance if we choose a policy using the abstract model and use it in the original model?

 $\begin{array}{l} \blacktriangleright \quad (\text{Identity}, \hat{P}, \hat{r}) \text{ is an } (\varepsilon, \delta) \text{-} \text{AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(\phi(s), a) \right| \text{ and } \delta_{\mathfrak{F}} = \sup_{s, a} d_{\mathfrak{F}}(P(\phi^{-1}(\cdot)|s, a), \hat{P}(\cdot|\phi(s), a)) \\ \\ \blacktriangleright \quad \text{Thus, } V(s) - V^{\pi}(s) \leqslant 2 \frac{\varepsilon + \gamma \rho_{\mathfrak{F}}(\hat{V}) \delta_{\mathfrak{F}}}{1 - \gamma}. \end{array}$

Approx. planning and learning–(Mahajan)

 (\hat{P}, \hat{r}) is determined from (P, r) using φ

Feature abstraction as AIS

S

ŝ

What is the loss in performance if we choose a policy using the abstract model and use it in the original model?

 $\begin{array}{l} \blacktriangleright \quad (\text{Identity}, \hat{P}, \hat{r}) \text{ is an } (\varepsilon, \delta) \text{-} \text{AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(\phi(s), a) \right| \text{ and } \delta_{\mathfrak{F}} = \sup_{s, a} d_{\mathfrak{F}}(P(\phi^{-1}(\cdot)|s, a), \hat{P}(\cdot|\phi(s), a)). \\ \\ \blacktriangleright \quad \text{Thus, } V(s) - V^{\pi}(s) \leqslant 2 \frac{\varepsilon + \gamma \rho_{\mathfrak{F}}(\hat{V}) \delta_{\mathfrak{F}}}{1 - \gamma}. \end{array}$

 $d_{\mathfrak{F}}$ is total variation

 (\hat{P}, \hat{r}) is determined from (P, r) using φ

Feature abstraction as AIS

$$V(s) - V^{\pi}(s) \leq \frac{2\varepsilon}{1 - \gamma} + \frac{\gamma \delta_{\mathfrak{F}} \operatorname{span}(r)}{(1 - \gamma)^2}$$

improve bounds of Abel et al. (2016)

Approx. planning and learning–(Mahajan)

S

ŝ

What is the loss in performance if we choose a policy using the abstract model and use it in the original model?

$$\begin{array}{l} \blacktriangleright \quad (\text{Identity}, \hat{P}, \hat{r}) \text{ is an } (\varepsilon, \delta) \text{-} \text{AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(\phi(s), a) \right| \text{ and } \delta_{\mathfrak{F}} = \sup_{s, a} d_{\mathfrak{F}}(P(\phi^{-1}(\cdot)|s, a), \hat{P}(\cdot|\phi(s), a)) \\ \\ \blacktriangleright \quad \text{Thus, } V(s) - V^{\pi}(s) \leqslant 2 \frac{\varepsilon + \gamma \rho_{\mathfrak{F}}(\hat{V}) \delta_{\mathfrak{F}}}{1 - \gamma}. \end{array}$$

 $d_{\mathfrak{F}}$ is total variation

 (\hat{P}, \hat{r}) is determined from (P, r) using φ

Feature abstraction as AIS

$$V(s) - V^{\pi}(s) \leq \frac{2\varepsilon}{1 - \gamma} + \frac{\gamma \delta_{\mathfrak{F}} \operatorname{span}(r)}{(1 - \gamma)^2}$$

 $d_{\mathfrak{F}}$ is Wasserstein distance

$$\mathrm{V}(\mathrm{s}) - \mathrm{V}^{\pi}(\mathrm{s}) \leqslant rac{2arepsilon}{1-\gamma} + rac{2\gamma\delta_{\mathfrak{F}}\|\hat{\mathrm{V}}\|_{\mathrm{Lip}}}{(1-\gamma)^2}$$

Recover bounds of Gelada et al. (2019).

16

Approx. planning and learning-(Mahajan)

S

Example 3: Belief approximation in POMDPs

Belief space

What is the loss in performance if we choose a policy using the approximate beliefs and use it in the original model?

Example 3: Belief approximation in POMDPs

What is the loss in performance if we choose a policy using the approximate beliefs and use it in the original model?

- \triangleright ε -sufficient statistics defined in Francois-Lavet et al. (2019) as $d_{TV}(\hat{b}_t(\cdot|\varphi_t(h_t)), b_t(\cdot|h_t)) \leqslant \varepsilon$
- ▷ We can show that an ε -sufficient statistic is an $(\varepsilon ||r||_{\infty}, 3\varepsilon)$ -AIS (wrt to the bounded Lipscitz metric).

Example 3: Belief approximation in POMDPs

What is the loss in performance if we choose a policy using the approximate beliefs and use it in the original model?

 $\blacktriangleright \ \epsilon \text{-sufficient statistics defined in Francois-Lavet et al. (2019) as } d_{TV}(\hat{b}_t(\cdot | \varphi_t(h_t)), b_t(\cdot | h_t)) \leqslant \epsilon$

▷ We can show that an ε -sufficient statistic is an $(\varepsilon ||r||_{\infty}, 3\varepsilon)$ -AIS (wrt to the bounded Lipscitz metric).

$$V(s) - V^{\pi}(s) \leq \frac{2\varepsilon \|\mathbf{r}\|_{\infty}}{1 - \gamma} + \frac{6\gamma\varepsilon \|\mathbf{r}\|_{\infty}}{(1 - \gamma)^2}$$

Improve bounds of Francois Lavet et al. (2019) by a factor of $1/(1-\gamma).$

Thus, the notion of AIS unifies many of the approximation results in the literature, both for MDPs and POMDPs.

Outline

AIS Generator

crepancy, $\nabla d_{\mathfrak{F}}(\mu_t, \nu_t)^2$ can be computed efficiently.

AIS Generator

- AIS generator: an LSTM for \$\sigma_t: \mathcal{H}_t \rightarrow \mathcal{Z}\$ and a NN for functions \$\hat{r}\$ and \$\hat{P}\$.
 Use \$\lambda(\tilde{R}_t R_t)^2 + (1 \lambda) d_{\varsigmathcal{S}}(\mu_t, \nu_t)^2\$ as a surrogate loss fn.
 When IPM is Wasserstein distance or maximum mean dis-
- crepancy, $abla d_{\mathfrak{F}}(\mu_t, \nu_t)^2$ can be computed efficiently.

Value approximator

- ▷ Use a NN to approx. action-value function $Q: \mathbb{Z} \times \mathcal{A} \rightarrow \mathbb{R}.$
- Update the parameters to minimize temporal difference loss

AIS Generator

- ▶ AIS generator: an LSTM for \$\sigma_t: \mathcal{H}_t → \mathcal{Z}\$ and a NN for functions \$\hat{r}\$ and \$\hat{P}\$.
 ▶ Use \$\lambda(\tilde{R}_t R_t)^2 + (1 \lambda) d_{\vec{v}}(\mu_t, \nu_t)^2\$ as a surrogate loss fn.
 ▶ When IPM is Wasserstein distance or maximum mean dis-
- crepancy, $abla d_{\mathfrak{F}}(\mu_t, \nu_t)^2$ can be computed efficiently.

Value approximator

- ▷ Use a NN to approx. action-value function $Q: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}.$
- Update the parameters to minimize temporal difference loss

Approx. planning and learning-(Mahajan)

Policy approximator

- ▷ Use a NN to approx. policy $\pi: \mathcal{Z} \to \Delta(\mathcal{A})$.
- ▷ Use policy gradient theorem to efficiently compute $\nabla J(\pi)$.

Convergence Guarantees

- Use multi timescale stochastic approximation to simultaneously learn AIS generator, action-value function, and policy.
- Under appropriate technical assumptions, converges to the stationary point corresponding to the choice of function approximators.

Value approximator

- ▷ Use a NN to approx. action-value function $Q: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}$.
- Update the parameters to minimize temporal difference loss

Approx. planning and learning-(Mahajan)

Policy approximator

- ▷ Use a NN to approx. policy $\pi: \mathcal{Z} \to \Delta(\mathcal{A})$.
- ▷ Use policy gradient theorem to efficiently compute $\nabla J(\pi)$.

Numerical Experiments

MiniGrid Environments

Features

- Partially observable 2D grids. Agent has a view of a 7 × 7 field in front of it. Observations are obstructed by walls.
- Multiple entities (agents, walls, lava, boxes, doors, and keys)
- Multiple actions (Move Forward, Turn Left, Turn Right, Open Door/Box, Pick up Item, Drop Item, Done).

Simple Crossing

Lava Crossing

Key Corrdior

Baselines

Simple Crossing

Simple Crossing S9N3

Key Corridor

Key Corridor S3R2

Obstructed Maze

Obstructed Maze 1Dl

Approx. planning and learning-(Mahajan)

Obstructed Maze 1Dlh

Formal definition of information state

Given a Banach space \mathcal{Z} , a collection $\{\sigma_t : \mathcal{H}_t \to \mathcal{Z}\}_{t \ge 1}$ is called an information state generator if there exist a reward function \hat{r} and a transition kernel \hat{P} such that they are:

Information State (P1) Sufficient for performance evaluation:

 $\mathbb{E}[\mathsf{R}_t \mid \mathsf{H}_t = \mathsf{h}_t, \mathsf{A}_t = \mathfrak{a}_t] = \hat{\mathsf{r}}(\sigma_t(\mathsf{h}_t), \mathfrak{a}_t).$

(P2) Sufficient for predicting itself:

 $\mathbb{P}(\mathsf{Z}_{t+1} = z_{t+1} \mid \mathsf{H}_t = \mathsf{h}_t, \mathsf{A}_t = \mathfrak{a}_t) = \widehat{\mathsf{P}}(z_{t+1} \mid \sigma_t(\mathsf{h}_t), \mathfrak{a}_t).$

Let $\{Z_t\}_{t \ge 1}$ be any information state proces. Define

Info State based dynanmic program $V(z) = \max_{a \in \mathcal{A}} \left\{ \hat{r}(z, a) + \gamma \int_{\mathcal{Z}} V(z_{+}) \hat{P}(dz_{+}|z, a) \right\}$

Let $\pi^*(z)$ denote the arg max of the RHS. Then, the policy $\pi = (\pi_1, \pi_2, \dots)$ given by $\pi_t = \pi^* \circ \sigma_t$ is optimal.

Approx. planning and learning-(Mahajan)

9

AIS based approximation bounds

Let \hat{V} be the fixed point of the following equations:

$$\hat{\mathrm{V}}(z,\mathfrak{a}) = \max_{\mathfrak{a}\in\mathcal{A}} \Big\{ \widehat{\mathrm{r}}(z,\mathfrak{a}) + \gamma \int_{\mathfrak{Z}} \widehat{\mathrm{V}}(z_{+}) \widehat{\mathrm{P}}(\mathrm{d} z_{+}|z,\mathfrak{a}) \Big\}$$

Let \boldsymbol{V} denote the optimal value and action-value functions.

Obstructed Maze

24

Approx. planning and learning–(Mahajan)

Concluding thoughts

A conceptually clean framework for approximate DP and online RL in partially observed systems

Other results in the paper

Generalizations to observation compression, action quantization, and lifelong learning.
 Generalizations to multi-agent systems.

Ongoing work

Thinking about other RL settings such as offline RL, model based RL, inverse RL.
 A building block for multi-agent RL.
 ...

email: aditya.mahajan@mcgill.ca
 web: http://cim.mcgill.ca/~adityam

Thank you

Funding: NSERC, DND

paper: https://arxiv.org/abs/2010.08843
 code: https://github.com/info-structures/ais