
Remote state estimation over erasure channels:

structure of optimal strategies and

fundamental limits

Aditya Mahajan
McGill University

Joint work with Jhelum Chakravorty and Jayakumar Subramanian

Information Theory Forum, Stanford University
4 Nov, 2016



There is a need to revisit rate distortion

theory to take network access into account.
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Sensor Networks

Smart Grids
Internet of Things

Many applications require:
Sequential transmission of data
Zero- (or inite-) delay reconstruction

Salient features
Sensing is cheap
Transmission is expensive
Size of data-packet is not critical

Analyze a stylized model and evaluate fundamental trade-ofs
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1. Discounted setup, β (0, 1)
D (f, g) = (1 β)� [

∞∑
t=

βtd(Xt X̂t)]; N (f, g) = (1 β)� [
∞∑
t=

βtUt]
2. Average cost setup, β = 1
D (f, g) = lim sup

T→∞

1T � [
T−∑
t=

d(Xt X̂t)]; N (f, g) = lim sup
T→∞

1T � [
T−∑
t=

Ut]

Ut = ft(X :t, Y :t− ) ℙ(St = OFF) = ε Yt = {
Xt, if Ut = 1 and St = ON�, if Ut = 0 or St = OFF

X̂t = gt(Y :t)

Distortiond(Xt X̂t)
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For α (0, 1), D∗ (α) ∶= inf {D (f, g) : N (f, g) α}

Costly communication (Lagrange relaxation)

For λ ℝ> , C∗ (λ) = C (f∗, g∗; λ) ∶= inf {D (f, g) + λN (f, g)}

λ

C∗

C∗ is cts, inc, and concave

α

D∗

D∗ is cts, dec, and convex

Our result: Provide computable expressions for these trade-ofs
and identify optimal strategies that achieve them.
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Comparison to Information Theory
Costly communication is analogous to communication under power constraint.
Constrained communication is analogous to distortion-rate function.
So, we call it distortion-transmission function.

Due to zero-delay reconstruction, information theoretic approaches do not apply.

Previous work on remote-state estimation
[Marshak 1954] Static (one-shot) problem with arbitrary source distribution
[Kushner 1964] Off-line choice of measurement times
[Åstrom Bernhardsson 2002] Lebesque sampling (or event-based sampling)

Other related work
Event-based estimation . . .
Censoring sensors . . .

Sensor sleep scheduling . . .
Age of Information . . .
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� = � + �, � ∼ �( , ). Perfect channel

Periodic
Transmission
Strategy

D = 0.67N ≈ 1/3

Randomized
Transmission
Strategy

D = 2.00N ≈ 1/3

Optimal
Transmission
Strategy

D = 0.24N ≈ 1/3
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Distortion-transmission trade-off: Perfect channel
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Randomized transmission strategy
Periodic transmission strategy
Optimal strategy



What’s the conceptual difficulty?
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Static (one-shot) problem

�� ⊂ � is the silence setx̂ is the estimate when no packet is received

Cost when x �λ + εd(x x̂)Cost when x �d(x x̂)

Total expected costc(x̂, �) ∶= λℙ(X �) + ε∑
�

ℙ(X = x)d(x x̂) +∑
�

ℙ(X = x)d(x x̂)

Choose (x̂, �) to minimize c(x̂, �).
Set-valued (or combinatorial) optimization problem.
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Dynamic problem

�� ⊂ � is the silence setx̂ is the estimate when no packet is received

If a packet is received �� (x ) ⊂ � is the silence setx̂ is the estimate when no packet is received

If a packet is not received�� (� ) ⊂ � is the silence setx̂ (� ) is the estimate when no packet is received

Sequential optimization problemwhere the optimization problem
at each step is a set-valued optimization problem that depends
on a history of previously chosen sets!.

Exhaustive search complexity: |�|2|�|
|�| T



Main results
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Salient features
The transmitter does not try to send information
through timing events.

The estimation strategy is the same to the one for
intermittent observations and does not depend on

the choice of the threshold
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Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for continuous Markov processes

Provide simulation-based algorithms to compute optimal thresholds

Beautiful example of stochastics and optimization
Decentralized stochastic control (or team theory) and POMDPs

Stochastic orders and majorization

Markov chain analysis, stopping times, and renewal theory

Constrained MDPs and Lagrangian relaxations

Stochastic approximation and simulation based optimization
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Solution methodology

Standard technique Achievability: Identify a good strategy and evaluate its performance.
Converse: Determine a lower bound on distortion.
Hope: The two curves match

Converse bounds are hard! Especially for sequential models.

Our approach Model the optimization problem as a decentralized stochastic control problem.
[Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis 2006, Mahajan-Teneketzis 2009,
Kaspi-Merhav 2012, Asnani-Weissman 2013, Yüksel 2013 . . . ]

The system has two decision makers: the transmitter and the estimator, that
have access to diferent information.

Identify qualitative properties of optimal strategies
Identify a dynamic programming decomposition
Determine optimal strategies based on the dynamic program.



So how do we start?

Decentralized stochastic control
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

The coordinated system is equivalent to the original system.ft(x, y :t− ) = ht(y :t− )(x).
The coordinated system is centralized. Belief state ℙ(Xt | Y :t− ).

Nayyar, Mahajan and Teneketzis, Decentralized stochastic control with partial history sharing: A common information approach, IEEE TAC 2013.
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Information

state update
πt |t = Q̃(πt|t).πt|t = Q(πt|t− , φt, yt).

In particular, πt|t(x) ∶=
πt|t− (x)[εφt(x) + (1 φt(x))]∑

′ �

πt|t− (x′)[εφt(x′) + (1 φt(x′))], if yt = �
δ

t
, if yt ≠ �
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Structural results There is no loss of optimality in using

Ut = ft(Xt, Πt|t− ) and X̂t = gt(Πt|t).
Dynamic Program VT |T(π) = 0, and for t = T, . . . , 0

Vt|t(π) = min
^ �

�[d(Xt x̂) + Vt |t(Πt ) | Πt|t = π],
Vt|t− (π) = min

φ:�→{ }
�[λφ(Xt) + Vt|t(Πt|t) | Πt|t− = π,φt = φ].
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U X̂
Π | Π |

U X̂
Π | Π |

U X̂
Π | Π |

U X̂

φ ,y φ , y φ , y φ , y
Structural results There is no loss of optimality in using

Ut = ft(Xt, Πt|t− ) and X̂t = gt(Πt|t).
Dynamic Program VT |T(π) = 0, and for t = T, . . . , 0

Vt|t(π) = min
^ �

�[d(Xt x̂) + Vt |t(Πt ) | Πt|t = π],
Vt|t− (π) = min

φ:�→{ }
�[λφ(Xt) + Vt|t(Πt|t) | Πt|t− = π,φt = φ].

Standard POMDP. Optimal strategies can
be computed numerically (at least, in principle).



Can we use the DP to say something

more about the optimal strategy?
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Simplifying modeling assumptions

Markov process Xt = aXt +Wt

Discrete state process: Xt, a,Wt ℤ

Continuous state process: Xt, a,Wt ℝ

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing
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Markov process Xt = aXt +Wt

Discrete state process: Xt, a,Wt ℤ

Continuous state process: Xt, a,Wt ℝ

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing

Proof outline Step 1 Show that threshold-based strategies are optimal

Step 2 Find performance of arbitrary threshold based strategies

Step 3 Solution to the costly communication problem

Step 4 Solution to the constrained communication problem
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Step 1 Preliminaries: Change of variables

Definition Let σ denote the last time a packet was received successfully. Deine

Et = Xt a −tX
Êt = X̂t a −tX
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Step 1 Preliminaries: Change of variables

Definition Let σ denote the last time a packet was received successfully. Deine

Et = Xt a −tX
Êt = X̂t a −tX

Note that Et is a regenerative process:
Et = {

aEt +Wt, if Yt = �Wt, if Yt ≠ � and d(Et Êt) = d(Xt X̂t)

We work with {Et}t≥ rather than {Xt}t≥
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Step 1 Preliminaries: Change of variables

Information states Pre-transmission belief : Πt|t− (e) = ℙ(Et = x | Y :t− ).
Post-transmission belief : Πt|t(e) = ℙ(Et = e | Y :t).

Π | Π |

U Ê
Π | Π |

U Ê
Π | Π |

U Ê
Π | Π |

U Ê

φ ,y φ , y φ , y φ , y
Information

state update
πt |t = Q̃(πt|t).πt|t = Q(πt|t− , φt, yt).

In particular, πt|t(e) ∶=
πt|t− (e)[εφt(e) + (1 φt(e))]∑

′ �

πt|t− (e′)[εφt(e′) + (1 φt(e′))], if yt = �
δ , if yt ≠ �

Note that we can write πt|t = Q(πt|t− , φt, ht), where ht = utst
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Step 1 Preliminaries: Change of variables

Information states Pre-transmission belief : Πt|t− (e) = ℙ(Et = x | Y :t− ).
Post-transmission belief : Πt|t(e) = ℙ(Et = e | Y :t).

Π | Π |

U Ê
Π | Π |

U Ê
Π | Π |

U Ê
Π | Π |

U Ê

φ ,y φ , y φ , y φ , y

Dynamic Program Remains same as before
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Step 1 Preliminaries: Majorization

Almost uniform and
unimodal (ASU)

distribution about c c
πc πc πc− πc ⋅ ⋅ ⋅

[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]
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Step 1 Preliminaries: Majorization

Almost uniform and
unimodal (ASU)

distribution about c c
πc πc πc− πc ⋅ ⋅ ⋅

ASU Rearrangement

π π
Majorization ξ ⪰ π if

∑
i=−

ξi ∑
i=−

πi and ∑
i=−

ξi ∑
i=−

πi
Invariant to permutations.

[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

⪰
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Step 1 Preliminaries: Majorization

Majorization ξ ⪰ π if

∑
i=−

ξi ∑
i=−

πi and ∑
i=−

ξi ∑
i=−

πi
Invariant to permutations.

⪰
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Step 1 Preliminaries: Majorization

Majorization ξ ⪰ π if

∑
i=−

ξi ∑
i=−

πi and ∑
i=−

ξi ∑
i=−

πi
Invariant to permutations.

ASU Majorization ξ ⪰a π if ξ is ASU and ξ ⪰ π

⪰
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Step 1 Properties of majorization

Threshold based
strategies

Let ℱ(c) denote the class of all threshold based strategies around c, i.e.,
φ ℱ(c) if k s.t. φ(e) = {

1 if |e ac| k0 otherwise
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strategies

Let ℱ(c) denote the class of all threshold based strategies around c, i.e.,
φ ℱ(c) if k s.t. φ(e) = {

1 if |e ac| k0 otherwise

Property 1 For any ξ ⪰a π where ξ is ASU(c),
and any φ, there exists a θ ℱ(c) s.t.

∑
�

θ(e)ξ(e) = ∑
�

φ(e)π(e).
ξ

c
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Step 1 Properties of majorization

Threshold based
strategies

Let ℱ(c) denote the class of all threshold based strategies around c, i.e.,
φ ℱ(c) if k s.t. φ(e) = {

1 if |e ac| k0 otherwise

Property 1 For any ξ ⪰a π where ξ is ASU(c),
and any φ, there exists a θ ℱ(c) s.t.

∑
�

θ(e)ξ(e) = ∑
�

φ(e)π(e).

Moreover, for h {0, 1} (recall h = u ⋅ s), Q(ξ, θ, h) ⪰a Q(π,φ, h).

ξ

c
⪰a

π
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Step 1 Properties of majorization

Property 2 If π is ASU(c), then c argmin
^ �

∑
�

d(e ê)π(e)

c
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Step 1 Properties of majorization

Property 2 If π is ASU(c), then c argmin
^ �

∑
�

d(e ê)π(e)

Property 3 if ξ ⪰a π, then
min
^ �

∑
�

d(e ê)π(e) min
^ �

∑
�

d(e ê)π (e) min
^ �

∑
�

d(e ê)ξ(e)

c
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Step 1 Properties of majorization

Property 2 If π is ASU(c), then c argmin
^ �

∑
�

d(e ê)π(e)

Property 3 if ξ ⪰a π, then
min
^ �

∑
�

d(e ê)π(e) min
^ �

∑
�

d(e ê)π (e) min
^ �

∑
�

d(e ê)ξ(e)

Property 4 if ξ ⪰a π, then Q̃(ξ) ⪰a Q̃(π)

c
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Step 1 An interchange argument to identify optimal strategies

Main theorem The optimal estimation strategy is given as follows: Ê = 0 and for t 1
Êt = {

0, if Yt = �Et, if Yt ≠ �
In addition, there exist thresholds {kt}t≥ such that the following transmission
strategy is optimal

Ut = {
1, if |Et| kt0, otherwise
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φt, ht

⪰θt, ht
πt |t

ξt |t

⪰



For infinite-horizon setup time-homogeneous

threshold-based strategies are optimal.

How do we find the optimal threshold-based strategy?
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Step 2 Performance of threshold-based strategies

Consider a threshold-based strategy

f k (e) = {
1 if |e| k0 otherwise

k k
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Proposition {Et}∞t= is a regenerative process. By renewal relationships, we have:

D k ∶= D (f k , g∗) = L k (0)
M k (0)

N k ∶= N (f k , g∗) = K k (0)
M k (0)
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Define L k (e) = � [
k −∑
t=

βtd(Et)|E = e].
M k (e) = � [

k −∑
t=

βt|E = e].
K k (e) = � [

k −∑
t=

βtUt|E = e].

Consider a threshold-based strategy

f k (e) = {
1 if |e| k0 otherwise

k k

Let τ k denote the stopping time of irst reception
(starting at E = 0).

τ k t

k

k

Et

Proposition {Et}∞t= is a regenerative process. By renewal relationships, we have:

D k ∶= D (f k , g∗) = L k (0)
M k (0)

N k ∶= N (f k , g∗) = K k (0)
M k (0)

Computing L k ,M k , K k is suicient to compute

the performance of f k (i.e., to compute D k and N k ).
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Step 2 Computing � , � , and � : The discrete case

L k (e) =
d(e) + β

ℤ

p −a L k (n), if |e| < k
ε[d(e) + β

ℤ

p −a L k (n)], if |e| k

M k (e) =
1 + β

ℤ

p −a M k (n), if |e| < k
ε[1 + β

ℤ

p −a M k (n)], if |e| k

K k (e) =
β

ℤ

p −a K k (n), if |e| < k
1 + εβ

ℤ

p −a M k (n), if |e| k

k k
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⋮

L k
β (−2)
L k
β (−1)
L k
β (0)
L k
β (1)
L k
β (2)

⋮

=

⋮

εd(−2)
d(−1)
d(0)
d(1)
εd(2)
⋮

+ β

⋮ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋮

⋅ ⋅ ⋅ εp εp εp εp εp ⋅ ⋅ ⋅
⋅ ⋅ ⋅ p p p p p ⋅ ⋅ ⋅
⋅ ⋅ ⋅ p− p p p p ⋅ ⋅ ⋅
⋅ ⋅ ⋅ p− p− p p p ⋅ ⋅ ⋅
⋅ ⋅ ⋅ εp− εp− εp− εp εp ⋅ ⋅ ⋅
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⋮
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β (−1)
L k
β (0)
L k
β (1)
L k
β (2)

⋮



Remote state estimation–(Mahajan)
25

Step 2 Computing � , � , and � : The discrete case

L k (e) =
d(e) + β

ℤ

p −a L k (n), if |e| < k
ε[d(e) + β

ℤ

p −a L k (n)], if |e| k

M k (e) =
1 + β

ℤ

p −a M k (n), if |e| < k
ε[1 + β

ℤ

p −a M k (n)], if |e| k

K k (e) =
β

ℤ

p −a K k (n), if |e| < k
1 + εβ

ℤ

p −a M k (n), if |e| k

L k = [I βh k ⊙ P]− h k ⊙ d
where h k ⊙ P is substochastic.
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L k (e) =
d(e) + β

ℤ

p −a L k (n), if |e| < k
ε[d(e) + β

ℤ

p −a L k (n)], if |e| k

M k (e) =
1 + β

ℤ

p −a M k (n), if |e| < k
ε[1 + β

ℤ

p −a M k (n)], if |e| k

K k (e) =
β

ℤ

p −a K k (n), if |e| < k
1 + εβ

ℤ

p −a M k (n), if |e| k

L k = [I βh k ⊙ P]− h k ⊙ d
where h k ⊙ P is substochastic.

M k = [I βh k ⊙ P]− h k

K k = [I βh k ⊙ P]− h̄ k

D k and N k can be computed

using these expressions.
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Step 2 Computing � , � , and � : The continuous case

The expressions are similar to the discrete case.

h k ⊙ P is a contraction operator

The equations for L k , etc. are Fredholm integral equations of the second kind.
Numerical solution can be obtained by using Picard’s iteration and Nystrom
interpolation.

We will later provide a simulation based approach to
compute C∗ (λ) and D∗ (α) that does not need an exact

computation of L k , etc.



Optimal trade-offs for costly and constrained

communication for discrete sources



Remote state estimation–(Mahajan)
27

Step 3 Solution to costly optimization problem

Proposition C k (λ) ∶= D k + λN k is submodular in (k, λ).
Hence, k∗ (λ) ∶= argmin

k≥
C k (λ) is increasing in λ
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Theorem Strategy f k is optimal for λ (λ k , λ k ] .
C∗ (λ) = mink ℤ≥0

C k is piecewise linear, continuous, concave, and increasing
function of λ.
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Step 4 Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ 0 such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.



Remote state estimation–(Mahajan)
29

Let k∗ be such that

N k∗
β > α > N k∗

β

Step 4 Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ 0 such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.

λ k
λ

D k

D k

D k



Remote state estimation–(Mahajan)
29

Let k∗ be such that

N k∗
β > α > N k∗

β

Step 4 Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ 0 such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.

λ k

f k optimal

λ
D k

D k

D k



Remote state estimation–(Mahajan)
29

Let k∗ be such that

N k∗
β > α > N k∗

β

Step 4 Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ 0 such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.

λ k

f k optimal

f k optimal

λ
D k

D k

D k



Remote state estimation–(Mahajan)
29

Let k∗ be such that

N k∗
β > α > N k∗

β

Step 4 Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ 0 such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.

λ k

f k optimal

f k optimal

λ
D k

D k

D k

Randomized strategy (θ∗, f k , fk ) is optimal where

θ∗N k + (1 θ∗)N k = α



Remote state estimation–(Mahajan)
29

Let k∗ be such that

N k∗
β > α > N k∗

β

Step 4 Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ 0 such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.

λ k

f k optimal

f k optimal

λ
D k

D k

D k

Randomized strategy (θ∗, f k , fk ) is optimal where

θ∗N k + (1 θ∗)N k = α
0 1α

D∗

(N k , D k )
(N k , D k )

D∗ is PWL, dec, and convex



Remote state estimation–(Mahajan)
29

Let k∗ be such that

N k∗
β > α > N k∗

β

Step 4 Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ 0 such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.

λ k

f k optimal

f k optimal

λ
D k

D k

D k

Randomized strategy (θ∗, f k , fk ) is optimal where

θ∗N k + (1 θ∗)N k = α
0 1α

D∗

αc

(N k , D k )
(N k , D k )

D∗ is PWL, dec, and convex



Remote state estimation–(Mahajan)
30

Example Symmetric birth-death Markov chain

p = p, if |n| = 1;1 2p, if n = 0;0, otherwise,

where p (0, 13), d(e) = |e|

0 1 2 ⋅ ⋅ ⋅12⋅ ⋅ ⋅ p
1 2p

p
1 2p

p
1 2p

p
1 2p

p
1 2p

p
pppppp
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Example Symmetric birth-death Markov chain (� = .�, β = .�)
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Optimal trade-offs for costly and constrained

communication for continuous sources
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Step 3 Solution to costly optimization problem

Proposition As in the case of discrete sources:C k (λ) ∶= D k + λN k is submodular in (k, λ).
Hence, k∗ (λ) ∶= argmin

k≥
C k (λ) is increasing in λ
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Hence, k∗ (λ) ∶= argmin

k≥
C k (λ) is increasing in λ

Theorem If the pair (λ, k) satisies
λ = kD k

kN k
(i.e., kD k + λ kN k = 0)

then the strategy (f k , g∗) is optimal for the costly communication with cost λ.
The optimal performance C∗ (λ) is continuous, concave and increasing function of λ.

Scaling with variance for Gaussian noise

C∗ (λ) = σ C∗ λσ .
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Step 4 Solution to constrained optimization problem

Theorem For any β (0, 1] and α (0, 1), let k∗ (α) be such that

N k∗
β = α.

Such a k∗ (α) always exists and we have the following:

The strategy (f k∗
β , g∗) is optimal for the constrained optimization problem

with constraint α
The distortion transmission functionD∗ (α) is continuous, convex, and decreasing
in α and is given by

D∗ (α) = D k∗
β



Remote state estimation–(Mahajan)
33

Step 4 Solution to constrained optimization problem

Theorem For any β (0, 1] and α (0, 1), let k∗ (α) be such that

N k∗
β = α.

Such a k∗ (α) always exists and we have the following:

The strategy (f k∗
β , g∗) is optimal for the constrained optimization problem

with constraint α
The distortion transmission functionD∗ (α) is continuous, convex, and decreasing
in α and is given by

D∗ (α) = D k∗
β

Scaling with variance for Gaussian noise

k∗ (α) = k∗ (α) and D∗ (α) = σ D∗ (α).
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Costly communication Given λ, ind k such that k(D k + λN k ) = 0.
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communication
Given α, ind k such that N k = α.
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Summary

Remote state estimation–(Mahajan)
3

Markov
Process

Transmitter
Wireless
Erasure
Channel

Receiver
Xt Ut

Yt X̂t

ACK/NACK

1. Discounted setup, β (0, 1)
D (f, g) = (1 β)� [

∞∑
t=

βtd(Xt X̂t)]; N (f, g) = (1 β)� [
∞∑
t=

βtUt]
2. Average cost setup, β = 1
D (f, g) = lim sup

T→∞

1T � [
T−∑
t=

d(Xt X̂t)]; N (f, g) = lim sup
T→∞

1T � [
T−∑
t=

Ut]

Ut = ft(X :t, Y :t− ) ℙ(St = OFF) = ε Yt = {
Xt, if Ut = 1 and St = ON�, if Ut = 0 or St = OFF

X̂t = gt(Y :t)

Distortiond(Xt X̂t)
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Optimization problems

Constrained communication

For α (0, 1), D∗ (α) ∶= inf {D (f, g) : N (f, g) α}
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Distortion transmission function for auto-regressive sources

Source model Xt = aXt+Wt, whereWt has symmetric and unimodal distribution. Xt ℤ/ℝ.

Optimal estimation strategy

X̂t = {
aX̂t− , if Yt = �Yt, if Yt ≠ �

Optimal transmission strategy

Ut = {
1, if |Xt aX̂t− | k0, otherwise

Performance of threshold based strategiesK k : Expected discounted number of transmissions until irst successful reception.

L k : Expected discounted distortion until irst successful reception.

M k : Expected discounted time until irst successful reception.

Then, D k = L k

M k and N k = K k

M k .
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

The coordinated system is equivalent to the original system.ft(x, y :t− ) = ht(y :t− )(x).
The coordinated system is centralized. Belief state ℙ(Xt | Y :t− ).

Nayyar, Mahajan and Teneketzis, Decentralized stochastic control with partial history sharing: A common information approach, IEEE TAC 2013.
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Simplifying modeling assumptions

Markov process Xt = aXt +Wt

Discrete state process: Xt, a,Wt ℤ

Continuous state process: Xt, a,Wt ℝ

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing

Proof outline Step 1 Show that threshold-based strategies are optimal

Step 2 Find performance of arbitrary threshold based strategies

Step 3 Solution to the costly communication problem

Step 4 Solution to the constrained communication problem
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Computation of optimal thresholds

Costly communication Given λ, ind k such that k(D k + λN k ) = 0.
Constrained

communication
Given α, ind k such that N k = α.

Main idea Pick a threshold k and use strategy f k until irst successful reception.
The sample path values of L,M, and K may be viewed as a noisy observation
of true L k ,M k , and K k .

Use stochastic approximation to ind optimal thresholds.

Kiefer-Wolfowitz Algorithm

Robbins-Monro Algorithm
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Concluding Remarks

Generalization to vector sources
Diiculty: If Xt is ASU, is AXt +Wt also ASU?

Even if threshold policies are not optimal, the tools developed may be useful to identify
best threshold-based strategy.
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Concluding Remarks

Generalization to vector sources
Diiculty: If Xt is ASU, is AXt +Wt also ASU?

Even if threshold policies are not optimal, the tools developed may be useful to identify
best threshold-based strategy.

Results are derived under idealized assumptions

Future directions
Power or rate control . . .
Markovian or burst erasures . . .
Scheduling multiple sources . . .
Model network delays . . .
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Markov
Process

Transmitter
Wireless
Erasure
Channel

Receiver
Xt Ut

Yt X̂t

ACK/NACK

1. Discounted setup, β (0, 1)
D (f, g) = (1 β)� [

∞∑
t=

βtd(Xt X̂t)]; N (f, g) = (1 β)� [
∞∑
t=

βtUt]
2. Average cost setup, β = 1
D (f, g) = lim sup

T→∞

1T � [
T−∑
t=

d(Xt X̂t)]; N (f, g) = lim sup
T→∞

1T � [
T−∑
t=

Ut]

Ut = ft(X :t, Y :t− ) ℙ(St = OFF) = ε Yt = {
Xt, if Ut = 1 and St = ON�, if Ut = 0 or St = OFF

X̂t = gt(Y :t)

Distortiond(Xt X̂t)
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Distortion transmission function for auto-regressive sources

Source model Xt = aXt+Wt, whereWt has symmetric and unimodal distribution. Xt ℤ/ℝ.

Optimal estimation strategy

X̂t = {
aX̂t− , if Yt = �Yt, if Yt ≠ �

Optimal transmission strategy

Ut = {
1, if |Xt aX̂t− | k0, otherwise

Performance of threshold based strategiesK k : Expected discounted number of transmissions until irst successful reception.

L k : Expected discounted distortion until irst successful reception.

M k : Expected discounted time until irst successful reception.

Then, D k = L k

M k and N k = K k

M k .

Remote state estimation–(Mahajan)
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

The coordinated system is equivalent to the original system.ft(x, y :t− ) = ht(y :t− )(x).
The coordinated system is centralized. Belief state ℙ(Xt | Y :t− ).

Nayyar, Mahajan and Teneketzis, Decentralized stochastic control with partial history sharing: A common information approach, IEEE TAC 2013.

Xt, Y :t−

Y :t−

Original system

Y :t−

Xt

–

Coordinated system

ht (φt, X̂t− )

φt

X̂t−

Ut

X̂t−

Ficticious coordinator

ft

gt−

Ut

X̂t−
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Simplifying modeling assumptions

Markov process Xt = aXt +Wt

Discrete state process: Xt, a,Wt ℤ

Continuous state process: Xt, a,Wt ℝ

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing

Proof outline Step 1 Show that threshold-based strategies are optimal

Step 2 Find performance of arbitrary threshold based strategies

Step 3 Solution to the costly communication problem

Step 4 Solution to the constrained communication problem
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Step 1 Properties of majorization

Threshold based
strategies

Let ℱ(c) denote the class of all threshold based strategies around c, i.e.,
φ ℱ(c) if k s.t. φ(e) = {

1 if |e ac| k0 otherwise

Property 1 For any ξ ⪰a π where ξ is ASU(c),
and any φ, there exists a θ ℱ(c) s.t.

∑
�

θ(e)ξ(e) = ∑
�

φ(e)π(e).

Moreover, for h {0, 1} (recall h = u ⋅ s), Q(ξ, θ, h) ⪰a Q(π,φ, h).

ξ

c
⪰a

π
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Step 2 Performance of threshold-based strategies

Define L k (e) = � [
k −∑
t=

βtd(Et)|E = e].
M k (e) = � [

k −∑
t=

βt|E = e].
K k (e) = � [

k −∑
t=

βtUt|E = e].

Consider a threshold-based strategy

f k (e) = {
1 if |e| k0 otherwise

k k

Let τ k denote the stopping time of irst reception
(starting at E = 0).

τ k t

k

k

Et
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λ

k∗ (λ)

λ k− λ k

Deine Λ k ∶= {λ ℝ≥ : k∗ (λ) = k}= [λ k− , λ k ].
C k (λ k ) = C k (λ k )

Step 3 Solution to costly optimization problem

C k (λ) C k (λ)

λ k λ kΛ k
λ

D k

D k

D k
(λ k , D k + λ k N k )
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Let k∗ be such that

N k∗
β > α > N k∗

β

Step 4 Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) N (f∘, g∘) = α
(C2) There exists λ∘ 0 such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.

λ k

f k optimal

f k optimal

λ
D k

D k

D k

Randomized strategy (θ∗, f k , fk ) is optimal where

θ∗N k + (1 θ∗)N k = α
0 1α

D∗

αc

(N k , D k )
(N k , D k )

D∗ is PWL, dec, and convex
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Computation of optimal thresholds

Costly communication Given λ, ind k such that k(D k + λN k ) = 0.
Constrained

communication
Given α, ind k such that N k = α.

Main idea Pick a threshold k and use strategy f k until irst successful reception.
The sample path values of L,M, and K may be viewed as a noisy observation
of true L k ,M k , and K k .

Use stochastic approximation to ind optimal thresholds.

Kiefer-Wolfowitz Algorithm

Robbins-Monro Algorithm


