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Robotic graspin

How do we develop a theory for learning with strategic agents?
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System Model

Markov/Stochastic/Dynamic games

& n players.

> Action space A = (A! x -+ x AM).

D> Action profile A, = (Al,...,Al') € A.
& Game state S; € 8.

> Game dynamics S¢ 1 ~ P(+[St, At).

> Per-stage reward of playeri: 28§ x A — R
B> Value (i.e., total reward) of player 1i):

Vi(s) = (1 =) B[ 3_v'+¥(50,A0) [So=s].
t=0
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System Model

Markov/Stochastic/Dynamic games Special cases

]

> n players. > Finite horizon games:
> Action space A = (A x - - - x A™). Take time as part of the state space.
> Action profile A, = (Al,...,AT") € A. Go to an absorbing state at end of horizon.
> Zero-sum games:

n=2r'(s,a)+r*(s,a) =0.
. > Teams or common-interest games
D> Per-stage reward of player i: r:8 x A — R r(s,a) =+ = 1"(s, a).

D> Value (i.e., total reward) of player 1i): > MDPs: 11 — 1.

> Game state S, € 8.
P> Game dynamics S¢ 1 ~ P(+[St, A¢).

Vi(s) = (1—v) E [thrWSt,At) S0 = s].
t=0
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Solution concept

Markov perfect equilibrium (MPE)

B> Refinement of NE, where all players play (time-homogeneous) Markov policies.

B> Always exists for finite-state and Ffnite-action games.
P> Exists under mild technical conditions, in general.

P> Various computational algorithms: non-linear programming, homotopy methods, etc.
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Solution concept

Markov perfect equilibrium (MPE)

B> Refinement of NE, where all players play (time-homogeneous) Markov policies.

B> Always exists for finite-state and fnite-action games.
> Exists under mild technical conditions, in general.

B> Various computational algorithms: non-linear programming, homotopy methods, etc.

MPE of general-sum games is qualitatively different from ZSG and teams:

P> A game can have multiple MPEs.
> Different MPEs may have different payoff profiles.
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Problem Formulation

Learning MPE in games with unknown dynamics

B> Suppose that the game dynamics are unknown,
.. .but we have access to a generative model (i.e., a system simulator) or historical data:
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Problem Formulation

Learning MPE in games with unknown dynamics

P> Suppose that the game dynamics are unknown,
.. .but we have access to a generative model (i.e., @ system simulator) or historical data:

P> Can we learn an MPE or an approximate MPE?

Want to Characterize:

B> Sample complexity: How many samples do we need to learn an approximate MPE?

B> Regret: How much better could we have done, had we known the model upfront?
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Review: Markov perfect equilibrium

> (Time-homogeneous) Markov policy profile:

n=(n',...,7m), wheremn:8 — A(AY).
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Review: Markov perfect equilibrium

P> (Time-homogeneous) Markov policy profile: B> Value of a Markov policy profile:

n=(n,...,m), wheren:8 — A(AY.
ZYT (StyAt) [ So=s

V‘L( —
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Review: Markov perfect equilibrium

B> (Time-homogeneous) Markov policy profile: > Value of a Markov policy profile:

n=(n',...,m), wheremn:8 — A(AY).

(0.@)

YtTi (S¢, Ad)
=0

Vi(s) = (1—7) En[

t

Markov perfect equilibrium (MPE)

B> A Markov policy profile 7t is a Markov perfect equilibrium if for all 1 and s:
Vigno)(8) 2 Vi (s), Vii8 = A(AY),
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Review: Markov perfect equilibrium

B> (Time-homogeneous) Markov policy profile: > Value of a Markov policy profile:

m=(n',...,m), wheren:8 — A(AY.

o

Yri(Se, Ay) [ So = S]
=0

Vi(s) = (1—7) Eﬂ[

t

Markov perfect equilibrium (MPE)

B> A Markov policy profile 7t is a Markov perfect equilibrium if for all 1 and s:
Vigno(8) 2 Vi (s), Wii8 = A(AY),

Approximate MPE

> Given o = (a',..., ™), a Markov policy profile 7t is an «-approximate MPE if for all i and s:

V(iﬂi)nfi)(s) > Vi (s) — o, Va8 — A(AY).

(7t 1)
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Alternative characterization: Bellman operators

Bellman operators

> Given Markov policy profile 7, define Bi: RISl — R8I as:
Birl(s) = Y mlals) [(1 —yri(s,a) +y ¥ Plsls, aMS,)]

acA s'eS
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Alternative characterization: Bellman operators

Bellman operators

B> Given Markov policy profile 7, define Bi: RIS — R8I as:
Birl(s) = Y mlals) [(1 —yri(s,a)+y ¥ Plsls, a)v(s’)]
acA S'ES

B> Given Markov policy profile «, define Bf, __:RI®l — Rl as:

¥, 7t

B, ovlls) = max Y ni(aws)[u —yiri(s,a) +y Y Psls, a)v(s)

ateAr | iea—i S'ES
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Alternative characterization: Bellman operators

Bellman operators Fixed-point

> Given Markov policy profile 7, define Bi: RIS — R8I as: Vi — Bi Vi
Birl(s) = Y mlals) [m —yri(s,a) +y ¥ P(sls, a)v(s')}

acA s'eS

> Given Markov policy profile 7, define Bf, _:RI®l — RISl as:

*, 70t

max Y e )| (1 ris al v X Pl i)

ateAt S’ES

MARL for general-sum Markov games-(Aditya Mahajan)

|




Alternative characterization: Bellman operators

Bellman operators

> Given Markov policy profile 7, define Bi: R8I — RISI as:
Birl(s) = Y mlals) [(1 —yri(s,a) +y Y Psls, av(s)
acA S'ES

> Given Markov policy profile , define B, :RI®/ — Rl as:

¥, 70t

|

Fixed-point

Vi = BV

Fixed-point

= max Z ntaYs) {(1 —y)ri(s, a) -

e i
GRS ateA-1

vi

Ca

_ pi
)_B(
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Alternative characterization: Bellman operators

Bellman operators

B> Given Markov policy profile 7, define BL: RISl — R8I as:
Birl(s) = 3 mlals) [(1 —yri(s,a) +y 3 Psls, av(s)
acA S'ES

B> Given Markov policy profile m, define B, __:RI®/ — Rl as:

*, 70t

|

Fixed-point

Vi = BV

Fixed-point

max Z nta"Ys) {(1 —y)ri(s,a) -

e i
S ateAt

vi

Ca

_ Ri
)_B(

A policy 7t is an MPE if for all
Vi =V,
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Alternative characterization: Bellman operators

Bellman operators Fixed-point

B> Given Markov policy profile 7, define Bi: RISl — R8I as: Vi — piyvi
7T 7T T 7T

= Z mt(als) [(1 —vy)ri(s,a) +vy Z P(s's, a)v(s’)]

acA s'€S

> Given Markov policy profile 7, define Bi RIS — RISI as: Fixed-point

>|<7r1

max Z nta"Ys) {(1 —v)ri(s,a) -

e gt
Ca ateAt

A policy 7t is an MPE if for all A policy 7t is an x-MPE if for all i
v1 _ V1 Vl vl*n 4= (xi

(x,7t— 1)

MARL for general-sum Markov games-(Aditya Mahajan)




Outline

N

\j‘ : N N-EI IS > \Why is RL in games hard?
R

MARL for general-sum Markov games-(Aditya Mahajan)




Review: How does RL (Q-learning) work in MDPs?

Expand the Bellman operator

V(s) =maxQ(s, a)

acA

Q(s,a) =7(s,a) +v )_P(s'ls,a)V(s')

S'ES
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Review: How does RL (Q-learning) work in MDPs?

Expand the Bellman operator Approximate via stochastic approximation
|

V(s) = maxQ(s, a) Q(s,a) < Qfs, a)

acA

Q(s,a) =7(s,a) +v Y P(sls,a)V(s) + afr(s,a) +v max Qls4,a’) — Q(s,a)]
S'ES
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Review: How does RL (Q-learning) work in MDPs?

Expand the Bellman operator Approximate via stochastic approximation
|

V(s) = maxQ(s, a) Q(s,a) < Qfs, a)

acA
Q(s,a) =7(s,a) +v ) _P(sls,a)V(s') +afr(s,a) +v IS Qs+, a’) —Qs,a)]

s'ES
| unbiased sample \
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Review: How does RL (Q-learning) work in MDPs?

Expand the Bellman operator Approximate via stochastic approximation
|

V(s) = maxQ(s, a) Q(s,a) < Qfs, a)

acA

Q(s,a) =7(s,a) +v ) _P(sls,a)V(s') +ar(s,a) 7 Qs+, a’) —Qs,a)]
s'€S

unbiased sample

Why does Q-learning converge?

B> Under approrpriate technical conditions, SA tracks an ODE (Borkar 1997).

> Since the Bellman operator is a contraction, the ODE has a unique equilibrium point which
is globally asymptotically stable (Borkar and Soumyanatha, 1997).
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Review: How does RL (Q-learning) work in zero-sum games?

Expand the Bellman operator

max min Q(s, (a',a?))
aleAl a2eA?

Q(s,a) =7(s,a)+v )_P(s/ls,a)V(s)

S'ES
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Review: How does RL (Q-learning) work in zero-sum games?

Expand the Bellman operator Approximate via stochastic approximation
|

V(s) = max min Q(s, (a', a? _
(s) aleA! QZEAZQ( »(a’,a%) Use r(s,a) +y max min Q(s,(a',a?))
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Review: How does RL (Q-learning) work in zero-sum games?

Expand the Bellman operator Approximate via stochastic approximation
|

V(s) = max min Q(s,(a',a?)) :

aleAl a2c A2 Use r(s,a) +y max min Q(s,(a',a?))
aleAl a2eA?

Q(s,a) =7(s,a) +v ) P(sls,a)V(s)) ‘—l
s'€8 unbiased sample

Minimax Q-learning (Littman 1994)
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Review: How does RL (Q-learning) work in zero-sum games?

Expand the Bellman operator Approximate via stochastic approximation
|

- 1 .2

max min Q(s,(a',a _

Al azeAZQ( ,(a’,a%)) Use r(s,a) +v qwa}f] r211|22Q(s+,(a1)a2))
a'e a“e

Q(s,a) =7(s,a) +v ) P(sls,a)V(s)) ‘—l
s'€8 unbiased sample

Minimax Q-learning (Littman 1994)

Why does Minimax Q-learning converge?

> Exactly same reason as before.

B> The important part is that the minimax Bellman operator is a contraction
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Review: How does RL (Q-learning) work in general-sum games?

Expand the Bellman operator

V(s) = NashQ(s, a)

Q(s,a) =7(s,a) +v )_P(s'ls,a)V(s')

S'ES
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Review: How does RL (Q-learning) work in general-sum games?

Expand the Bellman operator Approximate via stochastic approximation
|

V(s) = NashQ(s, a)

Use r(s, a) —0—1/Na£qhQ(s+, a)

Qls,a) =r(s,a) +v ) Pls'ls,a)V(s) !
s'€8 unbiased sample
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Expand the Bellman operator Approximate via stochastic approximation
|

V(s) = NashQ(s, a)

Use r(s, a) +yNa€§qhQ(s+, a)

Qls,a) =r(s,a) +v ) Pls'ls,a)V(s) !
s'€S unbiased sample

Nash Q-learning (Hu Wellman 2003)
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Review: How does RL (Q-learning) work in general-sum games?

Expand the Bellman operator Approximate via stochastic approximation
|

V(s) = NashQ(s, a)

Use r(s, a) +yNa§qhQ(s+, a)
ac

Qls,a) =r(s,a) +v ) Pls'ls,a)V(s) !
s'€S unbiased sample

Nash Q-learning (Hu Wellman 2003)

How to guanratee convergence?

_____________________________________________________]

> The Nash operator is not a contraction. Need to assume that all Q-functions encountered
during learning satisfy one of the following very strong assumptions (Bowling 2000):
> has a NE where each player receives its maximum payoff
> has a NE where no player benefits from the deviation of any player.

> Few known examples other than zero-sum games or common interest games.
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Other challenges with RL in general-sum games

Policy evaluation Bellman equaitons

Vr(s) = ) m(als)Qxrls,a)

acA

QT[(S) (1) - T(S, (1) +Y Z P(SI|S> a)vn(sl)

s'e8
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Other challenges with RL in general-sum games

Policy evaluation Bellman equaitons

Vr(s) = ) m(als)Qxrls,a)

acA

Qrls,a) =1(s,a) +v )_P(s'ls,a)Vi(s')

s'e8

NoSDE games (Zinkevich, Greenwald, Littman 2006)

B> A specific family of general-sum games with the following properties:
B> The game has a unique MPE in mixed strategies.
> Forany game § = (S, A, P, r) with unique MPE strategy T, there exists another
NoSDE game § = (8, A, P, ) with unique MPE strategy 7 such that

n#mand VS £VS but QY =QY
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Other challenges with RL in general-sum games

Policy evaluation Bellman equaitons Implications

V(s) = Z mt(als)Qx(s,a) > Value-based (critic only) algorithms
wed cannot work!
Qnrls,a) =7(s,a) +v Z P(s'ls, a)Vr(s') > Lot of the follow-up literature focuses
Ve on other solution concepts: cyclic
equilibrium, correlated equilibrium, etc.

NoSDE games (Zinkevich, Greenwald, Littman 2006
B> A specific family of general-sum games with the following properties:
B> The game has a unique MPE in mixed strategies.

> Forany game § = (S, A, P, r) with unique MPE strategy T, there exists another
NoSDE game § = (8, A, P, ') with unique MPE strategy 7 such that

n#mand VS £VS but QY =QY

MARL for general-sum Markov games-(Aditya Mahajan)




Simple observation: Model-based
approaches side-step all such challenges.

We characterize sample-complexity bounds

B> co-author: Jayakumar Subramanian and Amit Sinha
> paper: https://arxiv.org/abs/2110.02355
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Model-based RL

B> Robustness of MPE to model approx.
> Sample complexity bounds




Quantifying an approximate model

True model Approx. model

Is a MPE of the approximate model an
approximate MPE of the true model?
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Quantifying an approximate model

True model Approx. model

Is a MPE of the approximate model an
approximate MPE of the true model?

(e,0)-approximation of a game

A game G = (P,#)is an (e, b)-approximation of game G = (P, r) if for all (s, a):

’r(s,a) — (s, a)‘ < ¢ and dg(P('|S,Cl),]/3('|S,(1)) <0
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Quantifying an approximate model

True model Approx. model

Is a MPE of the approximate model an
approximate MPE of the true model?

(e,0)-approximation of a game

A game G = (P,#)is an (e, b)-approximation of game G = (P, r) if for all (s, a):

’r(s,a) — (s, a)‘ < ¢ and dg(P('|S,C1),]3('|S,(1)) <0

Definition depend on the choice of metric on probability spaces
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Robustness of MPE to model approximation

§ is an (&, 8)-approximation of G
IF and then 7t is an x-MPE of §
# is an MPE of G
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Robustness of MPE to model approximation

§ is an (&, 8)-approximation of G

# is an MPE of §

IF and then 7t is an «-MPE of G

Instance dependent approximation bounds
|

YAL
(1—)

N\

ot \2(54— ) where AL = max Z{P(sﬂs,a) L) — P(s'ls, a)

se8,acA ses
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Robustness of MPE to model approximation

§ is an (&, 8)-approximation of G
IF and
# is an MPE of G

then 7t is an «-MPE of G

Instance dependent approximation bounds
|

( YAL
ot <2 e+
(1T—7vy) s€8,a€A| 5=

) where AL = max Z{P(sws,a) i(s) —P(s'ls, a)

N\

L(s)]

Succintly, AL = HP \A/}T — IAD\A/TE[

(0.©)
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Robustness of MPE to model approximation

§ is an (&, 8)-approximation of G

# is an MPE of §

IF and then 7t is an «-MPE of G

Instance dependent approximation bounds
|

YAL
(1—7v)

Instance independent approximation bounds
|

N\

ot \2(54— ) where AL = max Z{P(sﬂs,a) L) — P(s'ls, a)

se8,acA ses
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Robustness of MPE to model approximation

§ is an (&, 8)-approximation of G
IF and then 7t is an x-MPE of §
# is an MPE of G

Instance dependent approximation bounds
|

YAL
(1—7v)

Instance independent approximation bounds
|

ot < 2(5 + ) where AL = max

se8,acA se

> When dj is total-variation metric: o' < 2(5 S
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Robustness of MPE to model approximation

§ is an (&, 8)-approximation of G

# is an MPE of §

IF and then 7t is an «-MPE of G

Instance dependent approximation bounds
|

YAL
(1—7v)

Instance independent approximation bounds
|

ot < 2(5 + ) where AL = max Z {P(s’|s, a) A7%(5 ) —

se8,acA ses

> When dj3 is total-variation metric: o' < 2(8 +

yéspan(?ﬂ)
(T—")

. oL,
> When dz is Wasserstein metric: «' < 2( ¢ + ﬁ) where {
—YLp
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Learning with a generative model
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P estimated from generated samples




Learning with a generative model

How many samples do we need from
the generateve model to ensure
that the MPE of the generated game
is an «-MPE of the true game.
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(s'|s,a) = #N(s',s,a)/#N(s, a)

—»St41
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Learning with a generative model

How many samples do we need from
the generateve model to ensure
that the MPE of the generated game

is an a-MPE of the true game. Ag—

5S¢4 1

P estimated from generated samples
P(s'ls, a) = #N(s', s, a)/#N(s, a)

Forany o > 0 and p > 0, if we generate
2 n i
ms (Y 2log(2I8I(TTi, M )n)/p
1—vy o?
samples for each state action pair, then the MPE of the generated
model is an «x-MPE of the true model with probability 1 — p.

Main Result
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Some remarks

Proof sketch

B> In the robustness result, bound A%, = HP\?ﬁm — IADmAﬁmHOO using Hoeffding inequality.

MARL for general-sum Markov games-(Aditya Mahajan)




Some remarks

Proof sketch

> In the robustness result, bound Aj%m = HP\?ﬁm — anoo using Hoeffding inequality.

Tightness of the bounds

& For MDPs (n = 1), the bound is loose by a factor of 1/(1 — ).
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Some remarks

Proof sketch

> In the robustness result, bound A%, = HP\?ﬁm — P AﬁmHoo using Hoeffding inequality.

Tightness of the bounds

> For MDPs (n = 1), the bound is loose by a factor of 1/(1 —y).
& Tighter bounds for MDPs rely on Bernstein inequality to bound var(Aﬁm) (Agarwal et al
2020; Li et al 2020).

B> Similar bounds were adapted to zero-sum games (Zhang et al 2020) but the proof relies on
the unigueness of the minmax value.

> Open question: How to establish tighter sample complexity bounds for general-sum games?
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Conclusion

Takeaway message: Model-based methods side-step
many of the conceptual challenges of learning in games
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Takeaway message: Model-based methods side-step
many of the conceptual challenges of learning in games
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—

Key technical result

> Novel and general characterization of robustness of MPE to model approximations.

MARL for general-sum Markov games-(Aditya Mahajan)




Conclusion

-]

Takeaway message: Model-based methods side-step
many of the conceptual challenges of learning in games

=

Key technical result

& Novel and general characterization of robustness of MPE to model approximations.

Future directions

> How to tighten the sample complexity bounds?
> How do we characterize regret?
B> ...What do we even mean by regret when there are multiple equilibria?

MARL for general-sum Markov games-(Aditya Mahajan)




email: aditya.mahajan@mcgill.ca
web: http://cim.mcgill.ca/~adityam

Thank you

Funding References
|
NSERC Discovery Approx for POMDPs: https://arxiv.org/abs/2010.08843

DND IDEaS Network Approx for Games: https://arxiv.org/abs/2009.12367



