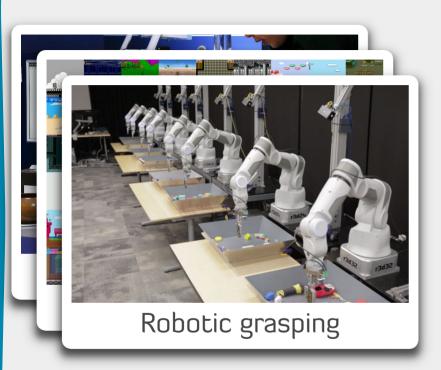
Model based MARL for general-sum Markov games

Aditya Mahajan McGill University

CRM Workshop on Agents behaviour in combinatorial game theory 17th Nov 2021

email: aditya.mahajan@mcgill.ca

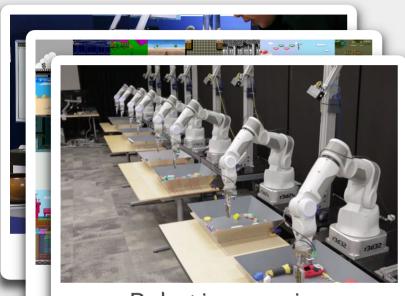
homepage: http://cim.mcgill.ca/~adityam



> Algorithms based on comprehensive theory

Algorithms based on comprehensive theory

The theory is restricted almost exclusively to single agent envs or models which can be reduced to single agent envs.



Robotic grasping

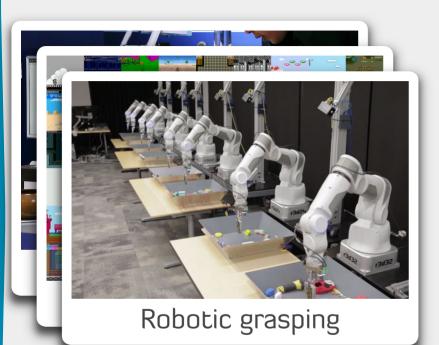
Recent successes of RL

Algorithms based on comprehensive theory

The theory is restricted almost exclusively to single agent envs or models which can be reduced to single agent envs.

Many real-world applications have strategic agents

- Industrial organization
- Energy markets
- Communication networks
- Cyber-security
- ▶ ...



Algorithms based on comprehensive theory

The theory is restricted almost exclusively to single agent envs or models which can be reduced to single agent envs.

Many real-world applications have strategic agents

- Industrial organization
- Energy markets
- Communication networks
- Cyber-security

How do we develop a theory for learning with strategic agents?

- Markov/Stochastic/Dynamic game
 - Markov-perfect equilibrium
 - Approximate MPE
 - Characterization via Bellman operators

System Model	 Markov/Stochastic/Dynamic game Markov-perfect equilibrium Approximate MPE Characterization via Bellman operators
RL in games	Why is RL in games hard?

	System Model	 Markov/Stochastic/Dynamic game Markov-perfect equilibrium Approximate MPE Characterization via Bellman operators
	RL in games	Why is RL in games hard?
7. 5 7. 5	Model-based RL	 Robustness of MPE to model approx. Sample complexity bounds

	System Model	 Markov/Stochastic/Dynamic game Markov-perfect equilibrium Approximate MPE Characterization via Bellman operators
7.5 7.5 5		 Robustness of MPE to model approx. Sample complexity bounds

System Model

Markov/Stochastic/Dynamic games

n players.

- ▷ Action space $\mathcal{A} = (\mathcal{A}^1 \times \cdots \times \mathcal{A}^n).$
- ▷ Action profile $A_t = (A_t^1, \ldots, A_t^n) \in \mathcal{A}$.
- ▷ Game state $S_t \in S$.
- ▷ Game dynamics $S_{t+1} \sim P(\cdot|S_t, A_t)$.

Per-stage reward of player i: $r^i: S \times A \to \mathbb{R}$ Value (i.e., total reward) of player i):

$$V^{i}(s) = (1 - \gamma) \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} r^{i}(S_{t}, A_{t}) \middle| S_{0} = s \right].$$

System Model

Markov/Stochastic/Dynamic games

n players.

- ▶ Action space $\mathcal{A} = (\mathcal{A}^1 \times \cdots \times \mathcal{A}^n).$
- ▶ Action profile $A_t = (A_t^1, \dots, A_t^n) \in \mathcal{A}$.
- $\blacktriangleright \text{ Game state } S_t \in S.$
- ▷ Game dynamics $S_{t+1} \sim P(\cdot|S_t, A_t)$.

▶ Per-stage reward of player i: rⁱ: S × A → ℝ
 ▶ Value (i.e., total reward) of player i):

$$V^{i}(s) = (1 - \gamma) \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} r^{i}(S_{t}, A_{t}) \middle| S_{0} = s \right].$$

Special cases

Finite horizon games:

Take time as part of the state space.

Go to an absorbing state at end of horizon.

Zero-sum games:

 $n = 2; r^1(s, a) + r^2(s, a) = 0.$

Teams or common-interest games r¹(s, a) = · · · = rⁿ(s, a).
 MDPs: n = 1

Solution concept

Markov perfect equilibrium (MPE)

- Refinement of NE, where all players play (time-homogeneous) Markov policies.
- Always exists for finite-state and finite-action games.
- Exists under mild technical conditions, in general.
- > Various computational algorithms: non-linear programming, homotopy methods, etc.

Solution concept

Markov perfect equilibrium (MPE)

- Refinement of NE, where all players play (time-homogeneous) Markov policies.
- Always exists for finite-state and finite-action games.
- Exists under mild technical conditions, in general.
- > Various computational algorithms: non-linear programming, homotopy methods, etc.

MPE of general-sum games is qualitatively different from ZSG and teams:

- A game can have multiple MPEs.
- Different MPEs may have different payoff profiles.

Problem Formulation

Learning MPE in games with unknown dynamics

Suppose that the game dynamics are unknown,

... but we have access to a generative model (i.e., a system simulator) or historical data:

Problem Formulation

Learning MPE in games with unknown dynamics

Suppose that the game dynamics are unknown,

... but we have access to a generative model (i.e., a system simulator) or historical data:

Can we learn an MPE or an approximate MPE?

Problem Formulation

Learning MPE in games with unknown dynamics

Suppose that the game dynamics are unknown,

... but we have access to a generative model (i.e., a system simulator) or historical data:

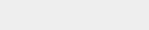
Can we learn an MPE or an approximate MPE?

Want to Characterize:

- Sample complexity: How many samples do we need to learn an approximate MPE?
- **Regret**: How much better could we have done, had we known the model upfront?

(Time-homogeneous) Markov policy profile:

 $\pi = (\pi^1, \dots, \pi^n), \quad \text{where } \pi^i : \mathbb{S} \to \Delta(\mathcal{A}^i).$



► (Time-homogeneous) Markov policy profile:

 $\pi = (\pi^1, \dots, \pi^n), \quad \text{where } \pi^i : \mathbb{S} \to \Delta(\mathcal{A}^i).$

► Value of a Markov policy profile:

$$V_{\pi}^{i}(s) = (1 - \gamma) \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r^{i}(S_{t}, A_{t}) \middle| S_{0} = s \right]$$

► (Time-homogeneous) Markov policy profile: $\pi = (\pi^1, \dots, \pi^n), \text{ where } \pi^i : S \to \Delta(\mathcal{A}^i).$ ► Value of a Markov policy profile:

$$V_{\pi}^{i}(s) = (1 - \gamma) \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r^{i}(S_{t}, A_{t}) \middle| S_{0} = s \right]$$

Markov perfect equilibrium (MPE)

A Markov policy profile π is a Markov perfect equilibrium if for all i and s: $V^{i}_{(\pi^{i},\pi^{-i})}(s) \ge V^{i}_{(\tilde{\pi}^{i},\pi^{-i})}(s), \quad \forall \tilde{\pi}^{i}: S \to \Delta(\mathcal{A}^{i}).$

▶ (Time-homogeneous) Markov policy profile: $\pi = (\pi^1, \dots, \pi^n), \text{ where } \pi^i : S \to \Delta(\mathcal{A}^i).$ ► Value of a Markov policy profile:

$$V_{\pi}^{i}(s) = (1 - \gamma) \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r^{i}(S_{t}, A_{t}) \middle| S_{0} = s \right]$$

Markov perfect equilibrium (MPE)

A Markov policy profile π is a Markov perfect equilibrium if for all i and s: $V^{i}_{(\pi^{i},\pi^{-i})}(s) \ge V^{i}_{(\tilde{\pi}^{i},\pi^{-i})}(s), \quad \forall \tilde{\pi}^{i}: S \to \Delta(\mathcal{A}^{i}).$

Approximate MPE

▷ Given $\alpha = (\alpha^1, ..., \alpha^n)$, a Markov policy profile π is an α -approximate MPE if for all i and s: $V^{i}_{(\pi^i, \pi^{-i})}(s) \ge V^{i}_{(\tilde{\pi}^i, \pi^{-i})}(s) - \alpha^i, \quad \forall \tilde{\pi}^i: S \to \Delta(\mathcal{A}^i).$

Bellman operators

Siven Markov policy profile π , define $\mathcal{B}^{\mathbf{i}}_{\pi}$: $\mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ as:

$$[\mathcal{B}^{\mathbf{i}}_{\pi}\nu](s) = \sum_{\mathbf{a}\in\mathcal{A}} \pi(\mathbf{a}|s) \left[(1-\gamma)r^{\mathbf{i}}(s,\mathbf{a}) + \gamma \sum_{s'\in\mathcal{S}} P(s'|s,\mathbf{a})\nu(s') \right]$$

Bellman operators

Siven Markov policy profile π , define \mathcal{B}^{i}_{π} : $\mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ as:

$$[\mathcal{B}^{i}_{\pi}\nu](s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[(1-\gamma)r^{i}(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a)\nu(s') \right]$$

▷ Given Markov policy profile π , define $\mathcal{B}^{i}_{(*,\pi^{-i})}: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ as:

$$[\mathcal{B}^{i}_{(*,\pi^{-i})}\nu](s) = \max_{a^{i} \in \mathcal{A}^{i}} \sum_{a^{-i} \in \mathcal{A}^{-i}} \pi^{-i}(a^{-i}|s) \left[(1-\gamma)r^{i}(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a)\nu(s') \right]$$

Bellman operators

Siven Markov policy profile π , define \mathcal{B}^{i}_{π} : $\mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ as:

$$[\mathcal{B}_{\pi}^{i}\nu](s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[(1-\gamma)r^{i}(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a)\nu(s') \right]$$

$$V^i_\pi = \mathbb{B}^i_\pi V^i_\pi$$

Siven Markov policy profile π , define $\mathcal{B}^{i}_{(*,\pi^{-i})}: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ as:

$$[\mathcal{B}^{i}_{(*,\pi^{-i})}\nu](s) = \max_{a^{i} \in \mathcal{A}^{i}} \sum_{a^{-i} \in \mathcal{A}^{-i}} \pi^{-i}(a^{-i}|s) \left[(1-\gamma)r^{i}(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a)\nu(s') \right]$$

Bellman operators

[]

Siven Markov policy profile π , define \mathcal{B}^{i}_{π} : $\mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ as:

$$[\mathcal{B}^{i}_{\pi}\nu](s) = \sum_{\alpha \in \mathcal{A}} \pi(\alpha|s) \left[(1-\gamma)r^{i}(s,\alpha) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,\alpha)\nu(s') \right]$$

Siven Markov policy profile π , define $\mathcal{B}^{i}_{(*,\pi^{-i})}: \mathbb{R}^{|S|} \to \mathbb{R}^{|S|}$ as:

$$B_{(*,\pi^{-i})}^{i}\nu](s) = \max_{a^{i}\in\mathcal{A}^{i}}\sum_{a^{-i}\in\mathcal{A}^{-i}}\pi^{-i}(a^{-i}|s)\left[(1-\gamma)r^{i}(s,a)-V\right]$$

$$V^{i}_{\pi} = \mathcal{B}^{i}_{\pi}V^{i}_{\pi}$$

The second second second

Fixed-point

$$V^{i}_{(*,\pi^{-i})} = \mathcal{B}^{i}_{(*,\pi^{-i})}V^{i}_{(*,\pi^{-i})}$$

Bellman operators

Siven Markov policy profile π , define \mathcal{B}^{i}_{π} : $\mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ as:

$$[\mathcal{B}^{i}_{\pi}\nu](s) = \sum_{\alpha \in \mathcal{A}} \pi(\alpha|s) \left[(1-\gamma)r^{i}(s,\alpha) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,\alpha)\nu(s') \right]$$

▷ Given Markov policy profile π , define $\mathcal{B}^{i}_{(*,\pi^{-i})}: \mathbb{R}^{|S|} \to \mathbb{R}^{|S|}$ as:

$$V^{i}_{\pi} = \mathcal{B}^{i}_{\pi} V^{i}_{\pi}$$

Fixed-point

$$[\mathcal{B}^{i}_{(*,\pi^{-i})}v](s) = \max_{a^{i} \in \mathcal{A}^{i}} \sum_{a^{-i} \in \mathcal{A}^{-i}} \pi^{-i}(a^{-i}|s) \left[(1-\gamma)r^{i}(s,a) - V^{i}_{(*,\pi^{-i})} = \mathcal{B}^{i}_{(*,\pi^{-i})}V^{i}_{(*,\pi^{-i})} - \mathcal{B}^{i}_{(*,\pi^{-i})}V^{i}_{(*,\pi^{-i})} \right]$$

MPE

A policy π is an MPE if for all i $V^i_\pi \,=\, V^i_{(*,\pi^{-\,i\,})}$

Bellman operators

Given Markov policy profile π , define $\mathcal{B}^{\mathbf{i}}_{\pi}$: $\mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ as:

$$[\mathcal{B}_{\pi}^{i}\nu](s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[(1-\gamma)r^{i}(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a)\nu(s') \right]$$

Siven Markov policy profile π , define $\mathcal{B}^{i}_{(*,\pi^{-i})} : \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ as:

Fixed-point
$$V^i_{\pi} = \mathcal{B}^i_{\pi} V^i_{\pi}$$

$$=$$
 $= \mathcal{B}^{i}_{(i)} = \mathcal{V}^{i}_{(i)} =$

Fixed-point

$$[\mathcal{B}^{i}_{(*,\pi^{-i})}\nu](s) = \max_{a^{i} \in \mathcal{A}^{i}} \sum_{a^{-i} \in \mathcal{A}^{-i}} \pi^{-i}(a^{-i}|s) \left[(1-\gamma)r^{i}(s,a) - V^{i}_{(*,\pi^{-i})} = \mathcal{B}^{i}_{(*,\pi^{-i})}V^{i}_{(*,\pi^{-i})} - \mathcal{B}^{i}_{(*,\pi^{-i})} - \mathcal{B}^{i}_{(*,\pi^{-i})}$$

MPE

A policy π is an MPE if for all i $V^{i}_{\pi} = V^{i}_{(*,\pi^{-i})}$

$$\begin{array}{l} \textbf{\alpha-MPE}\\ \text{A policy π is an α-MPE if for all i}\\ V_{\pi}^{i} = V_{(*,\pi^{-i})}^{i} - \alpha^{i} \end{array}$$

		 Markov/Stochastic/Dynamic game Markov-perfect equilibrium Approximate MPE Characterization via Bellman operators
	RL in games	Why is RL in games hard?
70507 5	Model-based RL	 Robustness of MPE to model approx. Sample complexity bounds

Expand the Bellman operator

$$\begin{split} V(s) &= \max_{a \in \mathcal{A}} Q(s, a) \\ Q(s, a) &= r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathsf{P}(s'|s, a) \mathsf{V}(s') \end{split}$$

Expand the Bellman operator

$$V(s) = \max_{a \in \mathcal{A}} Q(s, a)$$
$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V(s')$$

Approximate via stochastic approximation

 $Q(s, a) \leftarrow Q(s, a)$

 $+ \alpha \big[r(s, a) + \gamma \max_{a' \in \mathcal{A}} Q(s_+, a') - Q(s, a) \big]$

Expand the Bellman operator

$$V(s) = \max_{a \in \mathcal{A}} Q(s, a)$$
$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V(s')$$

Approximate via stochastic approximation

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r(s, a) + \gamma \max_{a' \in \mathcal{A}} Q(s_{+}, a') - Q(s, a) \right]$$

unbiased sample

Expand the Bellman operator

$$V(s) = \max_{a \in \mathcal{A}} Q(s, a)$$
$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V(s')$$

Approximate via stochastic approximation

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r(s, a) + \gamma \max_{a' \in \mathcal{A}} Q(s_+, a') - Q(s, a) \right]$$

unbiased sample

Why does Q-learning converge?

- Under approrpriate technical conditions, SA tracks an ODE (Borkar 1997).
- Since the Bellman operator is a contraction, the ODE has a unique equilibrium point which is globally asymptotically stable (Borkar and Soumyanatha, 1997).

Expand the Bellman operator

$$V(s) = \max_{a^{1} \in \mathcal{A}^{1}} \min_{a^{2} \in \mathcal{A}^{2}} Q(s, (a^{1}, a^{2}))$$
$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V(s')$$

Expand the Bellman operator

$$V(s) = \max_{a^{1} \in \mathcal{A}^{1}} \min_{a^{2} \in \mathcal{A}^{2}} Q(s, (a^{1}, a^{2}))$$
$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V(s')$$

Approximate via stochastic approximation

Use
$$r(s, a) + \gamma \max_{a^1 \in \mathcal{A}^1} \min_{a^2 \in \mathcal{A}^2} Q(s_+, (a^1, a^2))$$

Expand the Bellman operator

 $V(s) = \max_{a^{1} \in \mathcal{A}^{1}} \min_{a^{2} \in \mathcal{A}^{2}} Q(s, (a^{1}, a^{2}))$ $Q(s, a) = r(s, a) + \gamma \sum_{a^{1} \in \mathcal{A}^{1}} P(s'|s, a) V(s')$

Approximate via stochastic approximation

Use
$$r(s, a) + \gamma \max_{a^1 \in \mathcal{A}^1} \min_{a^2 \in \mathcal{A}^2} Q(s_+, (a^1, a^2))$$

Minimax Q-learning (Littman 1994)

Expand the Bellman operator

 $V(s) = \max_{a^1 \in \mathcal{A}^1} \min_{a^2 \in \mathcal{A}^2} Q(s, (a^1, a^2))$

$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V(s')$$

Approximate via stochastic approximation

Use
$$r(s, a) + \gamma \max_{a^1 \in A^1} \min_{a^2 \in A^2} Q(s_+, (a^1, a^2))$$

unbiased sample

Minimax Q-learning (Littman 1994)

Why does Minimax Q-learning converge?

Exactly same reason as before.

The important part is that the minimax Bellman operator is a contraction

Expand the Bellman operator

$$\begin{split} V(s) &= \underset{a \in \mathcal{A}}{\mathsf{Nash}} Q(s, a) \\ Q(s, a) &= r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathsf{P}(s'|s, a) \mathsf{V}(s') \end{split}$$

Expand the Bellman operator

Approximate via stochastic approximation

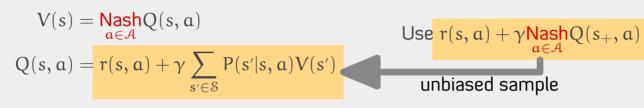
$$V(s) = \underset{a \in \mathcal{A}}{\mathsf{Nash}} Q(s, a)$$

$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathsf{P}(s'|s, a) V(s')$$

Use $r(s, a) + \gamma \underset{a \in \mathcal{A}}{\mathsf{Nash}} Q(s_+, a)$
unbiased sample

Expand the Bellman operator

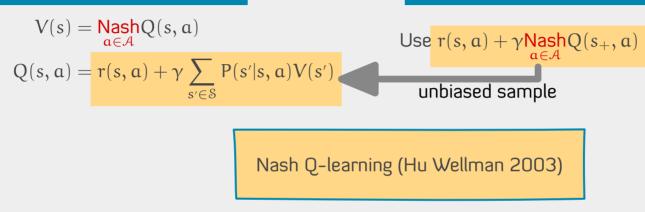
Approximate via stochastic approximation



Nash Q-learning (Hu Wellman 2003)

Expand the Bellman operator

Approximate via stochastic approximation



How to guanratee convergence?

The Nash operator is not a contraction. Need to assume that all Q-functions encountered during learning satisfy one of the following very strong assumptions (Bowling 2000):

- has a NE where each player receives its maximum payoff
- ▶ has a NE where no player benefits from the deviation of any player.

Few known examples other than zero-sum games or common interest games. MARL for general-sum Markov games-(Aditya Mahajan)

Other challenges with RL in general-sum games

Policy evaluation Bellman equaitons

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q_{\pi}(s, a)$$
$$Q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V_{\pi}(s')$$

Other challenges with RL in general-sum games

Policy evaluation Bellman equaitons

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q_{\pi}(s, a)$$
$$Q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V_{\pi}(s')$$

NoSDE games (Zinkevich, Greenwald, Littman 2006)

> A specific family of general-sum games with the following properties:

- > The game has a unique MPE in mixed strategies.
- ► For any game $\mathcal{G} = \langle \mathcal{S}, \mathcal{A}, \mathsf{P}, \mathbf{r} \rangle$ with unique MPE strategy π , there exists another NoSDE game $\mathcal{G}' = \langle \mathcal{S}, \mathcal{A}, \mathsf{P}, \mathbf{r}' \rangle$ with unique MPE strategy π' such that

$$\pi
eq \pi'$$
 and $V^{\mathfrak{G}}_{\pi}
eq V^{\mathfrak{G}'}_{\pi'}$ but $\mathbf{Q}^{\mathfrak{G}}_{\pi} = \mathbf{Q}^{\mathfrak{G}'}_{\pi'}$

Other challenges with RL in general-sum games

Policy evaluation Bellman equaitons

$$V_{\pi}(s) = \sum_{\alpha \in \mathcal{A}} \pi(\alpha|s) Q_{\pi}(s, \alpha)$$

$$Q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{\pi}(s')$$

Implications

- Value-based (critic only) algorithms cannot work!
- Lot of the follow-up literature focuses on other solution concepts: cyclic equilibrium, correlated equilibrium, etc.

NoSDE games (Zinkevich, Greenwald, Littman 2006)

> A specific family of general-sum games with the following properties:

- > The game has a unique MPE in mixed strategies.
- ▶ For any game $\mathcal{G} = \langle \mathcal{S}, \mathcal{A}, \mathsf{P}, \mathbf{r} \rangle$ with unique MPE strategy π , there exists another NoSDE game $\mathcal{G}' = \langle \mathcal{S}, \mathcal{A}, \mathsf{P}, \mathbf{r}' \rangle$ with unique MPE strategy π' such that

$$\pi
eq \pi'$$
 and $V^{\mathfrak{G}}_{\pi}
eq V^{\mathfrak{G}'}_{\pi'}$ but $\mathbf{Q}^{\mathfrak{G}}_{\pi} = \mathbf{Q}^{\mathfrak{G}'}_{\pi'}$

Simple observation: Model-based approaches side-step all such challenges.

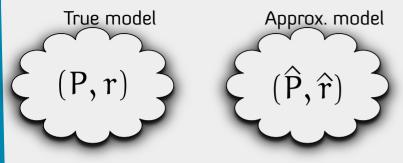
We characterize sample-complexity bounds

co-author: Jayakumar Subramanian and Amit Sinha
 paper: https://arxiv.org/abs/2110.02355

Outline

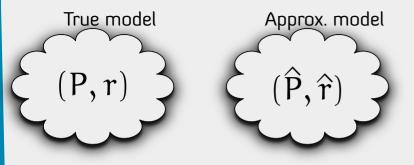
		 Markov/Stochastic/Dynamic game Markov-perfect equilibrium Approximate MPE Characterization via Bellman operators
7. 5 7 5	Model-based RL	 Robustness of MPE to model approx. Sample complexity bounds

Quantifying an approximate model



Is a MPE of the approximate model an approximate MPE of the true model?

Quantifying an approximate model



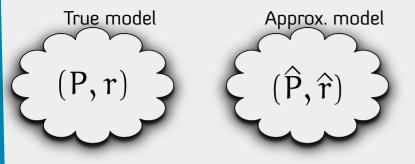
Is a MPE of the approximate model an approximate MPE of the true model?

$(\epsilon,\delta)\text{-approximation of a game}$

A game $\hat{\mathcal{G}} = (\hat{\mathbf{P}}, \hat{\mathbf{r}})$ is an (ε, δ) -approximation of game $\mathcal{G} = (\mathbf{P}, \mathbf{r})$ if for all (s, α) :

$$|\mathbf{r}(s, a) - \hat{\mathbf{r}}(s, a)| \leq \varepsilon$$
 and $d_{\mathfrak{F}}(\mathbf{P}(\cdot|s, a), \hat{\mathbf{P}}(\cdot|s, a)) \leq \delta$

Quantifying an approximate model



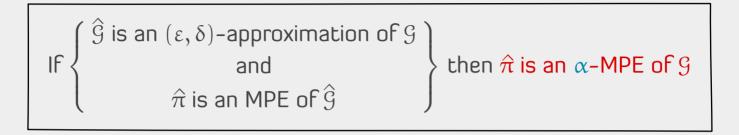
Is a MPE of the approximate model an approximate MPE of the true model?

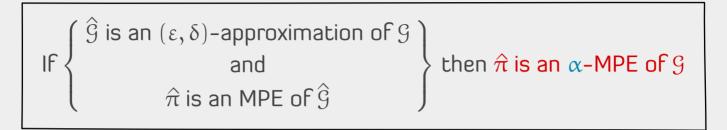
$(\epsilon,\delta)\text{-approximation of a game}$

A game $\hat{\mathcal{G}} = (\hat{\mathcal{P}}, \hat{r})$ is an (ε, δ) -approximation of game $\mathcal{G} = (\mathcal{P}, r)$ if for all (s, α) :

$$|\mathbf{r}(s, a) - \hat{\mathbf{r}}(s, a)| \leq \varepsilon$$
 and $d_{\mathfrak{F}}(\mathbf{P}(\cdot|s, a), \hat{\mathbf{P}}(\cdot|s, a)) \leq \delta$

Definition depend on the choice of metric on probability spaces





Instance dependent approximation bounds

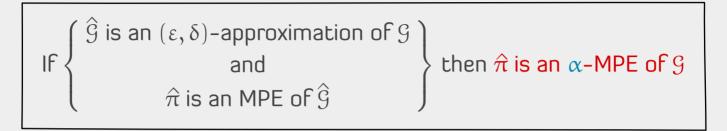
$$\alpha^{\mathbf{i}} \leqslant 2 \bigg(\epsilon + \frac{\gamma \Delta^{\mathbf{i}}_{\widehat{\pi}}}{(1 - \gamma)} \bigg) \qquad \text{where } \Delta^{\mathbf{i}}_{\widehat{\pi}} = \max_{s \in \mathcal{S}, a \in \mathcal{A}} \bigg|_{s' \in \mathcal{S}} \bigg[\mathsf{P}(s'|s, a) \hat{V}^{\mathbf{i}}_{\widehat{\pi}}(s') - \widehat{\mathsf{P}}(s'|s, a) \hat{V}^{\mathbf{i}}_{\widehat{\pi}}(s') \bigg]$$

$$\left\{ \begin{array}{c} \hat{\mathcal{G}} \text{ is an } (\varepsilon, \delta) \text{-approximation of } \mathcal{G} \\ \\ \text{ and } \\ \\ \hat{\pi} \text{ is an MPE of } \hat{\mathcal{G}} \end{array} \right\} \text{ then } \hat{\pi} \text{ is an } \alpha \text{-MPE of } \mathcal{G}$$

Instance dependent approximation bounds

$$\alpha^{i} \leqslant 2 \bigg(\epsilon + \frac{\gamma \Delta_{\hat{\pi}}^{i}}{(1 - \gamma)} \bigg) \qquad \text{where } \Delta_{\hat{\pi}}^{i} = \max_{s \in \mathcal{S}, a \in \mathcal{A}} \bigg|_{s' \in \mathcal{S}} \bigg[\mathsf{P}(s'|s, a) \hat{V}_{\hat{\pi}}^{i}(s') - \widehat{\mathsf{P}}(s'|s, a) \hat{V}_{\hat{\pi}}^{i}(s') \bigg] \bigg|$$

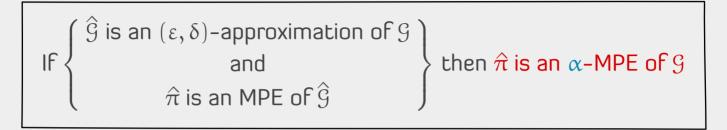
Succintly,
$$\Delta_{\hat{\pi}}^{i} = \left\| \mathbf{P} \, \hat{V}_{\hat{\pi}}^{i} - \hat{\mathbf{P}} \, \hat{V}_{\hat{\pi}}^{i} \right\|_{\infty}$$



Instance dependent approximation bounds

$$\alpha^{i} \leqslant 2 \bigg(\epsilon + \frac{\gamma \Delta_{\hat{\pi}}^{i}}{(1 - \gamma)} \bigg) \qquad \text{where } \Delta_{\hat{\pi}}^{i} = \max_{s \in \mathcal{S}, a \in \mathcal{A}} \bigg|_{s' \in \mathcal{S}} \bigg[\mathsf{P}(s'|s, a) \hat{V}_{\hat{\pi}}^{i}(s') - \hat{\mathsf{P}}(s'|s, a) \hat{V}_{\hat{\pi}}^{i}(s') \bigg] \bigg|$$

Instance independent approximation bounds

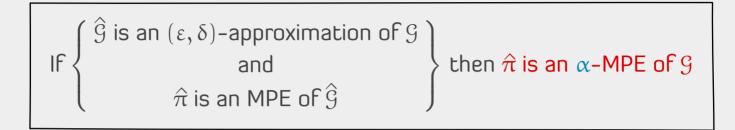


Instance dependent approximation bounds

$$\alpha^{i} \leqslant 2 \bigg(\epsilon + \frac{\gamma \Delta_{\widehat{\pi}}^{i}}{(1 - \gamma)} \bigg) \qquad \text{where } \Delta_{\widehat{\pi}}^{i} = \max_{s \in \mathcal{S}, a \in \mathcal{A}} \left| \sum_{s' \in \mathcal{S}} \Big[\mathsf{P}(s'|s, a) \hat{V}_{\widehat{\pi}}^{i}(s') - \hat{\mathsf{P}}(s'|s, a) \hat{V}_{\widehat{\pi}}^{i}(s') \Big] \right|$$

Instance independent approximation bounds

▶ When
$$\mathbf{d}_{\mathfrak{F}}$$
 is total-variation metric: $\alpha^{i} \leq 2\left(\epsilon + \frac{\gamma \delta \text{span}(\hat{r}^{i})}{(1-\gamma)}\right)$



Instance dependent approximation bounds

$$\alpha^{i} \leqslant 2 \bigg(\epsilon + \frac{\gamma \Delta_{\hat{\pi}}^{i}}{(1-\gamma)} \bigg) \qquad \text{where } \Delta_{\hat{\pi}}^{i} = \max_{s \in \mathcal{S}, a \in \mathcal{A}} \left| \sum_{s' \in \mathcal{S}} \Big[\mathsf{P}(s'|s, a) \hat{V}_{\hat{\pi}}^{i}(s') - \hat{\mathsf{P}}(s'|s, a) \hat{V}_{\hat{\pi}}^{i}(s') \Big] \right|$$

Instance independent approximation bounds

▶ When $\mathbf{d}_{\mathfrak{F}}$ is total-variation metric: $\alpha^{i} \leq 2\left(\varepsilon + \frac{\gamma \delta \text{span}(\hat{r}^{i})}{(1-\gamma)}\right)$

▶ When $d_{\mathfrak{F}}$ is Wasserstein metric: $\alpha^i \leq 2\left(\epsilon + \frac{\gamma \delta L_r}{(1 - \gamma L_P)}\right)$, where $\begin{cases} L_r : \text{Lip. constant of } r \\ L_P : \text{Lip. constant of } P \end{cases}$

Learning with a generative model

 \hat{P} estimated from generated samples $\hat{P}(s'|s, \alpha) = \#N(s', s, \alpha) / \#N(s, \alpha)$

Learning with a generative model

How many samples do we need from the generateve model to ensure that the MPE of the generated game is an α -MPE of the true game.

 \hat{P} estimated from generated samples $\hat{P}(s'|s, a) = \#N(s', s, a) / \#N(s, a)$

Learning with a generative model

How many samples do we need from the generateve model to ensure that the MPE of the generated game is an α -MPE of the true game.

 \hat{P} estimated from generated samples $\hat{P}(s'|s, a) = \#N(s', s, a)/\#N(s, a)$

Main ResultFor any $\alpha > 0$ and p > 0, if we generate $m \ge \left[\left(\frac{\gamma}{1-\gamma}\right)^2 \frac{2\log(2|S|(\prod_{i=1}^n |\mathcal{A}^i|)n)/p}{\alpha^2}\right]$ samples for each state action pair, then the MPE of the generated
model is an α -MPE of the true model with probability 1-p.

Some remarks

Proof sketch

▷ In the robustness result, bound $\Delta_{\hat{\pi}_m}^i = \left\| P \hat{V}_{\hat{\pi}_m} - \hat{P}_m \hat{V}_{\hat{\pi}_m} \right\|_{\infty}$ using Hoeffding inequality.

Some remarks

Proof sketch

▷ In the robustness result, bound $\Delta_{\hat{\pi}_m}^i = \left\| P \hat{V}_{\hat{\pi}_m} - \hat{P}_m \hat{V}_{\hat{\pi}_m} \right\|_{\infty}$ using Hoeffding inequality.

Tightness of the bounds

For MDPs (n = 1), the bound is loose by a factor of $1/(1 - \gamma)$.

Some remarks

Proof sketch

▷ In the robustness result, bound $\Delta_{\hat{\pi}_m}^i = \left\| P \hat{V}_{\hat{\pi}_m} - \hat{P}_m \hat{V}_{\hat{\pi}_m} \right\|_{\infty}$ using Hoeffding inequality.

Tightness of the bounds

▶ For MDPs (n = 1), the bound is loose by a factor of $1/(1 - \gamma)$.

- Tighter bounds for MDPs rely on Bernstein inequality to bound $var(\hat{V}_{\hat{\pi}_m})$ (Agarwal et al 2020; Li et al 2020).
- Similar bounds were adapted to zero-sum games (Zhang et al 2020) but the proof relies on the uniqueness of the minmax value.
- **Open question**: How to establish tighter sample complexity bounds for general-sum games?

Conclusion

Takeaway message: Model-based methods side-step many of the conceptual challenges of learning in games

Conclusion

Takeaway message: Model-based methods side-step many of the conceptual challenges of learning in games

Key technical result

Novel and general characterization of robustness of MPE to model approximations.

Conclusion

Takeaway message: Model-based methods side-step many of the conceptual challenges of learning in games

Key technical result

> Novel and general characterization of **robustness of MPE** to model approximations.

Future directions

- How to tighten the sample complexity bounds?
- How do we characterize regret?
-What do we even mean by regret when there are multiple equilibria?

email: aditya.mahajan@mcgill.ca

web: http://cim.mcgill.ca/~adityam

Thank you

Funding

- NSERC Discovery
- DND IDEaS Network

References

- Approx for POMDPs: https://arxiv.org/abs/2010.08843
- Approx for Games: https://arxiv.org/abs/2009.12367