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Recent successes of RL
Algorithms based on comprehensive theory

The theory is restricted almost exclusively
to single agent envs or models which can
be reduced to single agent envs.

Many real-world applications have
strategic agents

Industrial organization
Energy markets
Communication networks
Cyber-security
. . .

How do we develop a theory for learning with strategic agents?
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Markov/Stochastic/Dynamic games

n players.

Action space 𝒜 = (𝒜1 × ⋅ ⋅ ⋅ × 𝒜n).
Action profile At = (A1

t , . . . , An
t ) ∈ 𝒜.

Game state St ∈ 𝒮.
Game dynamics St+1 ∼ P(⋅|St, At).

Per-stage reward of player i: ri∶ 𝒮 × 𝒜 → ℝ
Value (i.e., total reward) of player i):

Vi(s) = (1 − γ)𝔼
[

∞

∑
t=0

γtri(St, At)
|
S0 = s]

.

System Model
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t , . . . , An
t ) ∈ 𝒜.

Game state St ∈ 𝒮.
Game dynamics St+1 ∼ P(⋅|St, At).

Per-stage reward of player i: ri∶ 𝒮 × 𝒜 → ℝ
Value (i.e., total reward) of player i):

Vi(s) = (1 − γ)𝔼
[

∞

∑
t=0

γtri(St, At)
|
S0 = s]

.

Special cases

Finite horizon games:
Take time as part of the state space.
Go to an absorbing state at end of horizon.
Zero-sum games:
n = 2; r1(s, a) + r2(s, a) = 0.
Teams or common-interest games
r1(s, a) = ⋅ ⋅ ⋅ = rn(s, a).
MDPs: n = 1.

System Model
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Markov perfect equilibrium (MPE)

Refinement of NE, where all players play (time-homogeneous) Markov policies.

Always exists for finite-state and finite-action games.
Exists under mild technical conditions, in general.

Various computational algorithms: non-linear programming, homotopy methods, etc.

Solution concept
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Markov perfect equilibrium (MPE)

Refinement of NE, where all players play (time-homogeneous) Markov policies.

Always exists for finite-state and finite-action games.
Exists under mild technical conditions, in general.

Various computational algorithms: non-linear programming, homotopy methods, etc.

MPE of general-sum games is qualitatively different from ZSG and teams:

A game can have multiple MPEs.
Different MPEs may have different payoff profiles.

Solution concept
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Learning MPE in games with unknown dynamics

Suppose that the game dynamics are unknown,
. . . but we have access to a generative model (i.e., a system simulator) or historical data:

Can we learn an MPE or an approximate MPE?

Want to Characterize:

Sample complexity: How many samples do we need to learn an approximate MPE?

Regret: How much better could we have done, had we known the model upfront?

Problem Formulation
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Markov perfect equilibrium (MPE)
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Vi
π(s) = (1 − γ)𝔼π[

∞

∑
t=0

γtri(St, At)
|
S0 = s]

.

Markov perfect equilibrium (MPE)

A Markov policy profile π is a Markov perfect equilibrium if for all i and s:
Vi
(πi,π−i)(s) ≥ V

i
(π̃i,π−i)(s), ∀π̃i∶ 𝒮 → Δ(𝒜i).

Approximate MPE

Given α = (α1, . . . , αn), a Markov policy profile π is an α-approximate MPE if for all i and s:
Vi
(πi,π−i)(s) ≥ V

i
(π̃i,π−i)(s) − α

i, ∀π̃i∶ 𝒮 → Δ(𝒜i).

Review: Markov perfect equilibrium
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Bellman operators

Given Markov policy profile π, define ℬi
π∶ℝ|𝒮| → ℝ|𝒮| as:

[ℬi
πv](s) = ∑

a∈𝒜
π(a|s)

[
(1 − γ)ri(s, a) + γ∑

s′∈𝒮
P(s′|s, a)v(s′)

]

Alternative characterization: Bellman operators
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]

MPE

A policy π is an MPE if for all i
Vi
π = Vi

(∗,π−i)

α-MPE

A policy π is an α-MPE if for all i
Vi
π = Vi

(∗,π−i) − α
i

Alternative characterization: Bellman operators
Fixed-point
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π = ℬi

πVi
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Expand the Bellman operator

V(s) = max
a∈𝒜

Q(s, a)

Q(s, a) = r(s, a) + γ∑
s′∈𝒮

P(s′|s, a)V(s′)

Review: How does RL (Q-learning) work in MDPs?
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Expand the Bellman operator

V(s) = max
a∈𝒜

Q(s, a)

Q(s, a) = r(s, a) + γ∑
s′∈𝒮

P(s′|s, a)V(s′)

Approximate via stochastic approximation

Q(s, a) ← Q(s, a)

+ α[r(s, a) + γmax
a′∈𝒜

Q(s+, a′) − Q(s, a)]

Why does Q-learning converge?

Under approrpriate technical conditions, SA tracks an ODE (Borkar 1997).

Since the Bellman operator is a contraction, the ODE has a unique equilibrium point which
is globally asymptotically stable (Borkar and Soumyanatha, 1997).

Review: How does RL (Q-learning) work in MDPs?
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Expand the Bellman operator

V(s) = max
a1∈𝒜1

min
a2∈𝒜2

Q(s, (a1, a2))

Q(s, a) = r(s, a) + γ∑
s′∈𝒮

P(s′|s, a)V(s′)

Review: How does RL (Q-learning) work in zero-sum games?
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Expand the Bellman operator

V(s) = max
a1∈𝒜1

min
a2∈𝒜2

Q(s, (a1, a2))

Q(s, a) = r(s, a) + γ∑
s′∈𝒮

P(s′|s, a)V(s′)

Approximate via stochastic approximation

Use r(s, a) + γ max
a1∈𝒜1

min
a2∈𝒜2

Q(s+, (a1, a2))

Why does Minimax Q-learning converge?

Exactly same reason as before.

The important part is that the minimax Bellman operator is a contraction

Review: How does RL (Q-learning) work in zero-sum games?

Minimax Q-learning (Littman 1994)
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Expand the Bellman operator

V(s) = Nash
a∈𝒜

Q(s, a)

Q(s, a) = r(s, a) + γ∑
s′∈𝒮

P(s′|s, a)V(s′)

Review: How does RL (Q-learning) work in general-sum games?
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Review: How does RL (Q-learning) work in general-sum games?

Nash Q-learning (Hu Wellman 2003)
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Expand the Bellman operator

V(s) = Nash
a∈𝒜

Q(s, a)

Q(s, a) = r(s, a) + γ∑
s′∈𝒮

P(s′|s, a)V(s′)

Approximate via stochastic approximation

Use r(s, a) + γNash
a∈𝒜

Q(s+, a)

How to guanratee convergence?

The Nash operator is not a contraction. Need to assume that all Q-functions encountered
during learning satisfy one of the following very strong assumptions (Bowling 2000):

has a NE where each player receives its maximum payoff
has a NE where no player benefits from the deviation of any player.

Few known examples other than zero-sum games or common interest games.

Review: How does RL (Q-learning) work in general-sum games?

Nash Q-learning (Hu Wellman 2003)
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Policy evaluation Bellman equaitons

Vπ(s) = ∑
a∈𝒜

π(a|s)Qπ(s, a)

Qπ(s, a) = r(s, a) + γ∑
s′∈𝒮

P(s′|s, a)Vπ(s′)

Other challenges with RL in general-sum games
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π(a|s)Qπ(s, a)

Qπ(s, a) = r(s, a) + γ∑
s′∈𝒮

P(s′|s, a)Vπ(s′)

NoSDE games (Zinkevich, Greenwald, Littman 2006)

A specific family of general-sum games with the following properties:
The game has a unique MPE in mixed strategies.
For any game 𝒢 = ⟨𝒮,𝒜, P, r⟩ with unique MPE strategy π, there exists another
NoSDE game 𝒢′ = ⟨𝒮,𝒜, P, r′⟩ with unique MPE strategy π′ such that

π ≠ π′ and V𝒢
π ≠ V𝒢′

π′ but Q𝒢
π = Q𝒢′

π′

Other challenges with RL in general-sum games
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Policy evaluation Bellman equaitons

Vπ(s) = ∑
a∈𝒜

π(a|s)Qπ(s, a)

Qπ(s, a) = r(s, a) + γ∑
s′∈𝒮

P(s′|s, a)Vπ(s′)

Implications

Value-based (critic only) algorithms
cannot work!

Lot of the follow-up literature focuses
on other solution concepts: cyclic
equilibrium, correlated equilibrium, etc.

NoSDE games (Zinkevich, Greenwald, Littman 2006)

A specific family of general-sum games with the following properties:
The game has a unique MPE in mixed strategies.
For any game 𝒢 = ⟨𝒮,𝒜, P, r⟩ with unique MPE strategy π, there exists another
NoSDE game 𝒢′ = ⟨𝒮,𝒜, P, r′⟩ with unique MPE strategy π′ such that

π ≠ π′ and V𝒢
π ≠ V𝒢′

π′ but Q𝒢
π = Q𝒢′

π′

Other challenges with RL in general-sum games



co-author: Jayakumar Subramanian and Amit Sinha
paper: https://arxiv.org/abs/2110.02355

Simple observation: Model-based
approaches side-step all such challenges.

We characterize sample-complexity bounds
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(P, r) (P̂, r̂)(P, r) (P̂, r̂)

True model Approx. model

Is a MPE of the approximate model an
approximate MPE of the true model?

(ε, δ)-approximation of a game

A game 𝒢̂ = (P̂, r̂) is an (ε, δ)-approximation of game 𝒢 = (P, r) if for all (s, a):

|r(s, a) − r̂(s, a)| ≤ ε and d𝔉(P(⋅|s, a), P̂(⋅|s, a)) ≤ δ

Quantifying an approximate model
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Is a MPE of the approximate model an
approximate MPE of the true model?

(ε, δ)-approximation of a game

A game 𝒢̂ = (P̂, r̂) is an (ε, δ)-approximation of game 𝒢 = (P, r) if for all (s, a):

|r(s, a) − r̂(s, a)| ≤ ε and d𝔉(P(⋅|s, a), P̂(⋅|s, a)) ≤ δ

Definition depend on the choice of metric on probability spaces

Quantifying an approximate model
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Succintly, Δi
π̂ = ‖P V̂

i
π̂ − P̂ V̂

i
π̂‖∞
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Instance independent approximation bounds

When 𝐝𝕱 is total-variation metric: αi ≤ 2
(
ε + γδspan(r̂

i)
(1 − γ) )
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[P(s′|s, a)V̂
i
π̂(s′) − P̂(s′|s, a)V̂

i
π̂(s′)]|

Instance independent approximation bounds

When 𝐝𝕱 is total-variation metric: αi ≤ 2
(
ε + γδspan(r̂

i)
(1 − γ) )

When 𝐝𝕱 is Wasserstein metric: αi ≤ 2
(
ε + γδLr

(1 − γLP))
, where

{
Lr :Lip. constant of r
LP :Lip. constant of P

Robustness of MPE to model approximation
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St

At

St+1

P̂ estimated from generated samples
P̂(s′|s, a) = #N(s′, s, a)/#N(s, a)

How many samples do we need from
the generateve model to ensure

that the MPE of the generated game
is an α-MPE of the true game.

Main Result

For any α > 0 and p > 0, if we generate

m ≥
⌈(

γ
1 − γ)

22 log(2|𝒮|(∏
n
i=1 |𝒜i|)n)/p
α2 ⌉

samples for each state action pair, then the MPE of the generated
model is an α-MPE of the true model with probability 1 − p.

Learning with a generative model
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Proof sketch

In the robustness result, bound Δi
π̂m

= ‖PV̂π̂m − P̂mV̂π̂m‖∞ using Hoeffding inequality.

Tightness of the bounds

For MDPs (n = 1), the bound is loose by a factor of 1/(1 − γ).

Tighter bounds for MDPs rely on Bernstein inequality to bound var(V̂π̂m) (Agarwal et al
2020; Li et al 2020).

Similar bounds were adapted to zero-sum games (Zhang et al 2020) but the proof relies on
the uniqueness of the minmax value.

Open question: How to establish tighter sample complexity bounds for general-sum games?

Some remarks
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Key technical result

Novel and general characterization of robustness of MPE to model approximations.

Future directions

How to tighten the sample complexity bounds?
How do we characterize regret?
. . .What do we even mean by regret when there are multiple equilibria?

Conclusion

Takeaway message: Model-based methods side-step
many of the conceptual challenges of learning in games
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