Reinforcement learning in stationary mean-field games

Aditya Mahajan McGill University

Based on work with Jayakumar Subramanian (Adobe Research)

Machine Learning and Mean-field games seminars 23rd Nov 2021

Mean-field interactions arise in various applications

The importance of mean-field interactions have led to various models of mean-field games and teams.

Excellent overview in the previous two talks in this series!

- Mean-field models
 - Stationary mean-field equilibrium
 - Stationary mean-field social optimality
 - Local solution concepts

	System Model	 Mean-field models Stationary mean-field equilibrium Stationary mean-field social optimality Local solution concepts 		
7. 5 X 5	RL for MF	 RL for SMFE RL for SMF-SO 		

	System Model	 Mean-field models Stationary mean-field equilibrium Stationary mean-field social optimality Local solution concepts 	
₹ ₹ \$ \$	RL for MF	 RL for SMFE RL for SMF-SO 	
	Numerical examples	Malware spread in networks	

System Model	 Mean-field models Stationary mean-field equilibrium Stationary mean-field social optimality Local solution concepts
	 RL for SMFE RL for SMF-SO
	Malware spread in networks

Population of homogeneous agents

- ▶ n homogeneous agents.
- \triangleright State space *S*; action space *A*.
- ▷ $(S_t^i, A_t^i) \in S \times A$. State and action of agent i at time t.

Population of homogeneous agents

- ▶ n homogeneous agents.
- \triangleright State space *S*; action space *A*.
- ▷ $(S_t^i, A_t^i) \in S \times A$. State and action of agent i at time t.

Mean-field coupling

▶ Mean-field:
$$Z_t(s) = \frac{1}{n} \sum_{i \in \mathbb{N}} \mathbb{1}\{S_t^i = s\}.$$

Population of homogeneous agents

- n homogeneous agents.
- State space S; action space A.
- ▷ $(S_t^i, A_t^i) \in S \times A$. State and action of agent i at time t.

Mean-field coupling

• Mean-field:
$$Z_t(s) = \frac{1}{n} \sum_{i \in \mathbb{N}} \mathbb{1}\{S_t^i = s\}.$$

- ▷ Dynamics: $S_{t+1}^i \sim P(S_t^i, A_t^i, \mathbf{Z_t})$
- ▶ Per-step reward: $R_t^i = r(S_t^i, A_t^i, \mathbf{Z}_t, S_{t+1}^i)$.

Utility of each agent

Utility of agent i

$$V^{i}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t}^{i} \mid S_{0}^{i} = s\right]$$

Population of homogeneous agents

- n homogeneous agents.
- State space S; action space A.
- ▷ $(S_t^i, A_t^i) \in S \times A$. State and action of agent i at time t.

Mean-field coupling

• Mean-field:
$$Z_t(s) = \frac{1}{n} \sum_{i \in \mathbb{N}} \mathbb{1}\{S_t^i = s\}.$$

- ▷ Dynamics: $S_{t+1}^i \sim P(S_t^i, A_t^i, \mathbf{Z_t})$
- ▷ Per-step reward: $R_t^i = r(S_t^i, A_t^i, \mathbf{Z}_t, S_{t+1}^i)$.
- ▷ If all agents play a Markov policy $\pi_t: S \to \Delta(\mathcal{A})$:

$$Z_{t+1}(s') = \sum_{s \in S} \sum_{a \in A} Z_t(s) \pi_t(a|s) P(s'|s, a, Z_t)$$

RL in stationary MFG-(Aditya Mahajan)

Utility of each agent

Utility of agent i

$$V^{i}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R^{i}_{t} \mid S^{i}_{0} = s\right]$$

Population of homogeneous agents

- n homogeneous agents.
- \triangleright State space *S*; action space *A*.
- ▶ $(S_t^i, A_t^i) \in S \times A$. State and action of agent i at time t.

Mean-field coupling

• Mean-field:
$$Z_t(s) = \frac{1}{n} \sum_{i \in \mathbb{N}} \mathbb{1}{S_t^i = s}$$
.

- ▷ Dynamics: $S_{t+1}^i \sim P(S_t^i, A_t^i, \textbf{Z}_t)$
- ▷ Per-step reward: $R_t^i = r(S_t^i, A_t^i, \mathbf{Z}_t, S_{t+1}^i)$.
- ▷ If all agents play a Markov policy $\pi_t: S \to \Delta(\mathcal{A})$:

$$Z_{t+1}(s') = \sum_{s \in S} \sum_{a \in A} Z_t(s) \pi_t(a|s) P(s'|s, a, Z_t)$$

RL in stationary MFG-(Aditya Mahajan)

Utility of each agent

$$V^{i}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R^{i}_{t} \mid S^{i}_{0} = s\right]$$

$$Z_{t+1} = \Phi(Z_t, \pi_t)$$

Discrete-time Fokker-Plank eqn

Solution concept

Stationary mean-field equilibrium (SMFE)

Solution concept proposed by Weintraub, Benkard, and Van Roy (2005, 2008) ... and extended by Adlakha, Johari, and Weintraub (2010).

- Contemporaneous to the other "evolutive" solution concept for mean-field games
 - Huang, Malhame, Caines (2003, 2006)
 - Larsy and Lions (2005)

Solution concept

Stationary mean-field equilibrium (SMFE)

Solution concept proposed by Weintraub, Benkard, and Van Roy (2005, 2008) ... and extended by Adlakha, Johari, and Weintraub (2010).

- Contemporaneous to the other "evolutive" solution concept for mean-field games
 - Huang, Malhame, Caines (2003, 2006)
 - Larsy and Lions (2005)

Interpreting SMFE

- Presented as an approximation to Markov perfect equilibrium ... of a game where agents observe the state of all players
- The equilibrium in "evolutive" mean-field game is also typically presented as an approximation to Markov perfect equilibrium.

An alternative view: SMFE is a sequential equilibrium of a game with imprefect information.

Normal-form reduction

1	-	-	-	-
I	-	-	-	-
-	-	-	-	-
-	-	_	_	-
-	-	_	_	-

4

Nash equilibrium

- Reduce the extensive form game to a normal form game.
 A NE strategy of the normal form game is a NE of the extensive form game.
 - Not ideal, because gives rise to equilibrium which are based on non-credible threats.

Normal-form reduction

Nash equilibrium

- Reduce the extensive form game to a normal form game.
 A NE strategy of the normal form game is a NE of the extensive form game.
 - Not ideal, because gives rise to equilibrium which are based on non-credible threats.

Subgame-perfect equilibrium

- > A strategy profile which is a NE of every subgame
- Can be solved by dynamic programming
- Special case: Markov perfect equilibrium

Information sets

Nodes of a game tree which are indistinguishable to a player
Must play the same move at all nodes in an information set.

Information sets

Nodes of a game tree which are indistinguishable to a player
 Must play the same move at all nodes in an information set.

How to evaluate performance of a sub-tree?

Need to have belief on all nodes in an information set.

Information sets

Nodes of a game tree which are indistinguishable to a player
Must play the same move at all nodes in an information set.
How to evaluate performance of a sub-tree?

Need to have belief on all nodes in an information set.

Sequential equilibrium (Kreps and Wilson, 1982)

A strategy profile and a belief system which satisfy:

- Sequential rationality: If we evaluate performance according to beliefs, then in each subgame, each player is playing a NE.
- **Consistency**: The beliefs are Bayes consistent with the strategy.

Sequential equilibrium (Kreps and Wilson, 1982)

A strategy profile and a belief system which satisfy:

- Sequential rationality: If we evaluate performance according to beliefs, then in each subgame, each player is playing a NE.
- **Consistency**: The beliefs are Bayes consistent with the strategy.

Stationary mean-field equilibrium (SMFE)

- ▶ A strategy profile $\pi: S \to \Delta(A)$ and a mean-field belief z such that:
- \blacktriangleright Consistency: $z = \Phi(z, \pi)$

Stationary mean-field equilibrium (SMFE)

A strategy profile $\pi: S \to \Delta(A)$ and a mean-field belief z such that: Stationarity of beliefs

 \blacktriangleright Consistency: $z = \Phi(z,\pi)$

Stationary mean-field equilibrium (SMFE)

A strategy profile $\pi: S \to \Delta(A)$ and a mean-field belief z such that:
Consistency: $z = \Phi(z, \pi)$

Stationarity of beliefs

Evaluation of performance (same for all i)

$$V_{\pi,\mathbf{z}}^{i}(s) = \mathbb{E}_{\substack{A_{t}^{i} \sim \pi(S_{t}^{i})\\S_{t+1}^{i} \sim P(S_{t}^{i},A_{t}^{i},\mathbf{z})}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(S_{t}^{i},A_{t}^{i},\mathbf{z},S_{t+1}^{i}) \middle| S_{0}^{i} = s \right]$$

Stationary mean-field equilibrium (SMFE)

A strategy profile $\pi: S \to \Delta(A)$ and a mean-field belief z such that:
Consistency: $z = \Phi(z, \pi)$

Evaluation of performance (same for all i)

$$V^{i}_{\pi,\mathbf{z}}(s) = \mathbb{E}_{\substack{A^{i}_{t} \sim \pi(S^{i}_{t})\\S^{i}_{t+1} \sim P(S^{i}_{t},A^{i}_{t},\mathbf{z})}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(S^{i}_{t},A^{i}_{t},\mathbf{z},S^{i}_{t+1}) \ \middle| \ S^{i}_{0} = s\right].$$

Evaluate performance according to belief

Stationarity of beliefs

Stationary mean-field equilibrium (SMFE)

- A strategy profile $\pi: S \to \Delta(A)$ and a mean-field belief z such that:
 Consistency: $z = \Phi(z, \pi)$
- Evaluation of performance (same for all i)

$$V_{\pi,\mathbf{z}}^{i}(s) = \mathbb{E}_{\substack{A_{t}^{i} \sim \pi(S_{t}^{i}) \\ S_{t+1}^{i} \sim P(S_{t}^{i},A_{t}^{i},\mathbf{z})}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(S_{t}^{i},A_{t}^{i},\mathbf{z},S_{t+1}^{i}) \middle| S_{0}^{i} = s \right].$$

Evaluate performance according to belief

Stationarity of beliefs

 \blacktriangleright Sequential rationality: For any other strategy π'

$$V_{\boldsymbol{\pi},\boldsymbol{z}}(s) \geqslant V_{\boldsymbol{\pi}',\boldsymbol{z}}(s)$$

Stationary mean-field equilibrium (SMFE)

- A strategy profile $\pi: S \to \Delta(A)$ and a mean-field belief z such that:
 Consistency: $z = \Phi(z, \pi)$
- Evaluation of performance (same for all i)

$$V_{\pi,\mathbf{z}}^{i}(s) = \mathbb{E}_{\substack{A_{t}^{i} \sim \pi(S_{t}^{i}) \\ S_{t+1}^{i} \sim P(S_{t}^{i}, A_{t}^{i}, \mathbf{z})}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(S_{t}^{i}, A_{t}^{i}, \mathbf{z}, S_{t+1}^{i}) \middle| S_{0}^{i} = s \right].$$

Evaluate performance according to belief

Stationarity of beliefs

 \blacktriangleright Sequential rationality: For any other strategy π'

$$V_{\boldsymbol{\pi},\boldsymbol{z}}(s) \geqslant V_{\boldsymbol{\pi}',\boldsymbol{z}}(s)$$

Stationary mean-field social-welfare optimality (SMF-SO)

Consider the setting where the players are cooperative.
Performance of a generic agent (same as before)

$$V_{\pi,\mathbf{z}}^{i}(s) = \mathbb{E}_{\substack{A_{t}^{i} \sim \pi(S_{t}^{i}) \\ S_{t+1}^{i} \sim P(S_{t}^{i},A_{t}^{i},\mathbf{z})}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(S_{t}^{i},A_{t}^{i},\mathbf{z},S_{t+1}^{i}) \right| S_{0}^{i} = s \right].$$

Stationary mean-field social-welfare optimality (SMF-SO)

Consider the setting where the players are cooperative.
Performance of a generic agent (same as before)

$$V_{\pi,\mathbf{z}}^{i}(s) = \mathbb{E}_{\substack{A_{t}^{i} \sim \pi(S_{t}^{i}) \\ S_{t+1}^{i} \sim P(S_{t}^{i}, A_{t}^{i}, \mathbf{z})}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(S_{t}^{i}, A_{t}^{i}, \mathbf{z}, S_{t+1}^{i}) \middle| S_{0}^{i} = s \right].$$

Optimality

$$V_{\pi, \mathbf{z}}(s) \geqslant V_{\pi', \mathbf{z}'}(s)$$

Stationary mean-field social-welfare optimality (SMF-SO)

Consider the setting where the players are cooperative.
Performance of a generic agent (same as before)

$$V^{\mathbf{i}}_{\pi,\mathbf{z}}(s) = \mathbb{E}_{\substack{A^{\mathbf{i}}_{t} \sim \pi(S^{\mathbf{i}}_{t})\\S^{\mathbf{i}}_{t+1} \sim P(S^{\mathbf{i}}_{t},A^{\mathbf{i}}_{t},\mathbf{z})}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(S^{\mathbf{i}}_{t},A^{\mathbf{i}}_{t},\mathbf{z},S^{\mathbf{i}}_{t+1}) \middle| S^{\mathbf{i}}_{0} = s \right].$$

Optimality

$$V_{\pi,z}(s) \ge V_{\pi',z'}(s)$$
$$\downarrow z = \Phi(z,\pi) \qquad z' = \Phi(z',\pi')$$

Stationary mean-field social-welfare optimality (SMF-SO)

Consider the setting where the players are cooperative.
 Performance of a generic agent (same as before)

$$V_{\pi,\mathbf{z}}^{i}(s) = \mathbb{E}_{\substack{A_{t}^{i} \sim \pi(S_{t}^{i}) \\ S_{t+1}^{i} \sim P(S_{t}^{i}, A_{t}^{i}, \mathbf{z})}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(S_{t}^{i}, A_{t}^{i}, \mathbf{z}, S_{t+1}^{i}) \middle| S_{0}^{i} = s \right].$$

Optimality

$$V_{\pi,z}(s) \ge V_{\pi',z'}(s)$$
$$z = \Phi(z,\pi) \qquad z' = \Phi(z',\pi')$$

Equilibrium and social optimality are different

- For equilibrium, deviation in policy does not change the stationary mean-field (single player is deviating)
- For optimality, deviation in policy changes the stationary mean-field (entire population is deviating)

Agents with bounded rationality

Global	solution
	3010011

Solution concepts require global search over all policies

Agents with bounded rationality

Global solution Solution concepts require global search over all policies

Curse of
dimensionalityVerification requires computation of
value functions

Agents with bounded rationality

Global solution

Solution concepts require global search over all policies

Use local search over parameterized policies

Curse of
dimensionalityVerification requires computation of
value functions

Agents with bounded rationality

Global solution

Curse of

dimensionality

Solution concepts require global search over all policies

Use local search over parameterized policies

Verification requires computation of value functions

Use function approximation

Preliminaries

- Scalarize returns: Assume $s_0^i \sim \xi_0$ (start state distribution, independent across agents)
 - $J_{\boldsymbol{\pi},\boldsymbol{z}} = \mathbb{E}_{S_0 \sim \boldsymbol{\xi}}[V_{\boldsymbol{\pi},\boldsymbol{z}}(S_0)]$
- ▶ Parameterize policies: π_{θ} where $\theta \in \Theta$ [closed compact set] (e.g., softmax)

Preliminaries

Scalarize returns: Assume $s_0^i \sim \xi_0$ (start state distribution, independent across agents)

 $J_{\boldsymbol{\pi},\boldsymbol{z}} = \mathbb{E}_{S_0 \sim \boldsymbol{\xi}}[V_{\boldsymbol{\pi},\boldsymbol{z}}(S_0)]$

▶ Parameterize policies: π_{θ} where $\theta \in \Theta$ [closed compact set] (e.g., softmax)

- LSMFE is a pair (π_{θ}, z) that satisfies:
- **Local** sequential rationality:

$$\frac{\partial J_{\pi_{\theta},z}}{\partial \theta} = 0$$

▷ Consistency: $z = \Phi(z, \pi_{\theta})$

Preliminaries

Scalarize returns: Assume $s_0^i \sim \xi_0$ (start state distribution, independent across agents)

 $J_{\boldsymbol{\pi},\boldsymbol{z}} = \mathbb{E}_{S_0 \sim \xi}[V_{\boldsymbol{\pi},\boldsymbol{z}}(S_0)]$

▶ Parameterize policies: π_{θ} where $\theta \in \Theta$ [closed compact set] (e.g., softmax)

▶ Consistency: $z = \Phi(z, \pi_{\theta})$

Local SMF-S0 (LSMF-S0)

LSMF-SO is a policy
$$\pi_{\theta}$$
 that satisfies:
Local optimality:

$$\frac{\mathrm{d}J_{\pi_{\theta},z_{\theta}}}{\mathrm{d}\theta} = 0$$

where
$$z_{m{ heta}} = \Phi(z_{m{ heta}},\pi_{m{ heta}})$$

$$\frac{\mathrm{d}J_{\pi,z}}{\mathrm{d}\theta} = \frac{\partial J_{\pi,z}}{\partial \pi} \frac{\partial \pi}{\partial \theta} + \frac{\partial J_{\pi,z}}{\partial z} \frac{\partial z}{\partial \theta}$$

Outline

		 Mean-field models Stationary mean-field equilibrium Stationary mean-field social optimality Local solution concepts
i k i	RL for MF	 RL for SMFE RL for SMF-SO
	Numerical examples	Malware spread in networks

Two-time scale algorithm

▶ Update policy parameters: $\theta_{k+1} = [\theta_k + \alpha_k G_{\theta_k, z_k}]_{\Theta}$

Two-time scale algorithm

▶ Update policy parameters: $\theta_{k+1} = [\theta_k + \alpha_k G_{\theta_k, z_k}]_{\Theta}$ Unbiased estimator of $\partial J_{\theta, z} / \partial \theta$

Two-time scale algorithm

► Update policy parameters: $\theta_{k+1} = [\theta_k + \alpha_k G_{\theta_k, z_k}] \Theta$ Unbiased estimator of $\partial J_{\theta, z} / \partial \theta$

▶ Update mean-field: $z_{k+1} = z_k + \beta_k [\hat{\Phi}(z_k, \pi_{\theta_k}) - z_k]$

Two-time scale algorithm

Two-time scale algorithm

▷ Update policy parameters: $\theta_{k+1} = [\theta_k + \alpha_k G_{\theta_k, z_k}]_{\Theta}$

▷ Update mean-field:
$$z_{k+1} = z_k + \frac{\beta_k}{\beta_k} [\hat{\Phi}(z_k, \pi_{\theta_k}) - z_k]$$

$$ho$$
 Two-timescale conditions: $rac{lpha_k}{eta_k} o 0$ + (standard Robbins-Monro conditions)

Two-time scale algorithm

▷ Update policy parameters:
$$\theta_{k+1} = [\theta_k + \alpha_k G_{\theta_k, z_k}]_{\Theta}$$

Slower timescale

▷ Update mean-field:
$$z_{k+1} = z_k + \frac{\beta_k}{\beta_k} [\hat{\Phi}(z_k, \pi_{\theta_k}) - z_k]^{\text{faster timescale}}$$

> Two-timescale conditions:
$$rac{lpha_k}{eta_k} o 0$$
 + (standard Robbins-Monro conditions)

Practical considerations

Unrolling two timescales

- ▶ It is hard to make two timescale algos work in practice.
- For every iteration of the slow timescale (update of θ_k), ... run multiple rollouts of the fast timescale (update of z_k).
- ▷ Equivalent to estimating $\Phi(z, \pi_{\theta})$ in a particle-filter like approach

Practical considerations

Unrolling two timescales

- It is hard to make two timescale algos work in practice.
- > For every iteration of the slow timescale (update of θ_k),

... run multiple rollouts of the fast timescale (update of z_k).

Estimating gradients

Likelihood ratio based estimates

$$\frac{\partial J_{\pi_{\theta},z}}{\partial \theta} = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \nabla_{\theta} \log \pi_{\theta} (A_{t}^{i} | S_{t}^{i}) V_{\pi_{\theta},z}(S_{t}^{i}) \mid S_{0} \sim \xi_{0} \right]$$

Practical considerations

Unrolling two timescales

- ▶ It is hard to make two timescale algos work in practice.
- > For every iteration of the slow timescale (update of θ_k),

... run multiple rollouts of the fast timescale (update of z_k).

Estimating gradients

Likelihood ratio based estimates

$$\frac{\partial J_{\pi_{\theta},z}}{\partial \theta} = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \nabla_{\theta} \log \pi_{\theta} (A_{t}^{i} | S_{t}^{i}) V_{\pi_{\theta},z}(S_{t}^{i}) \mid S_{0} \sim \xi_{0} \right]$$

Simultaneous perturbation based estimates

$$G_{\theta,z} = \frac{\eta}{2c} (J_{\theta+c\eta,z} - J_{\theta-c\eta,z}) \qquad \begin{bmatrix} SPSA: \eta_i \sim Unif(\pm 1) \\ SFSA: \eta_i \sim \mathcal{N}(0, I) \end{bmatrix}$$

Similar ideas work for LSMF-SO (except we don't have likelihood ratio based gradient estimates)

Outline

	 Mean-field models Stationary mean-field equilibrium Stationary mean-field social optimality Local solution concepts
	 RL for SMFE RL for SMF-SO
Numerical examples	Malware spread in networks

Healthy (0)

Healthy (0)

Non-healthy (1)

Mean-field

Salient features

- Representative model for problems with positive externalities.
- ▶ Reward: $r(S^{i}, A^{i}, Z) = -(k + \langle Z \rangle)S^{i} \lambda A^{i}$ where $\langle Z \rangle = \int sZ(s)ds$.
- ▶ Known that SMFE is unique and is a threshold-based strategy: Repair when $S_t^i \ge \tau$.

Salient features

- Representative model for problems with positive externalities.
- ▶ Reward: $r(S^{i}, A^{i}, Z) = -(k + \langle Z \rangle)S^{i} \lambda A^{i}$ where $\langle Z \rangle = \int sZ(s)ds$.
- ▷ Known that SMFE is unique and is a threshold-based strategy: Repair when $S_t^i \ge \tau$.

Policy parameterizations

- ▶ Threshold based policies with $\tau \in [0, 1]$. Update τ using SPSA.
- Neural network based policies. Compute gradient using REINFORCE.

Results: Performance

17
Results: Thresholds

18

Results: Stationary mean-fields

Example 2: Investment in product quality

Model (adapted from Weintraub, Benkard, Van Roy (2010)

- Models investment decisions of firms in a fragmented market.
- Each firm has p products.
- State space: $[0, 1]^p$ (indicating quality of each product)
- Action space: {0, 1}^p (indicating investment decision in each product)
- Mean-field coupled dynamics and reward models.

Example 2: Investment in product quality

Model (adapted from Weintraub, Benkard, Van Roy (2010)

- Models investment decisions of firms in a fragmented market.
- Each firm has p products.
- ▶ State space: [0, 1]^p (indicating quality of each product)
- ▶ Action space: {0, 1}^p (indicating investment decision in each product)
- Mean-field coupled dynamics and reward models.

Simulation details

- Consider p = 3 products.
- Neural networks based policy parameterization.
- Cluster the tails of the trajectories

Example 2: Investment in product quality

Conclusion

Takeaway message: Learning in large games and teams can be easier than small and medium ones.

Conclusion

Takeaway message: Learning in large games and teams can be easier than small and medium ones.

Stationary Mean-field games

- Provide a different view of looking at mean-field games.
- > Arguments easily extend to heterogeneous population (agents with multiple types).

Conclusion

Takeaway message: Learning in large games and teams can be easier than small and medium ones.

Stationary Mean-field games

- Provide a different view of looking at mean-field games.
- > Arguments easily extend to heterogeneous population (agents with multiple types).

Comparison with "evolutive" mean-field games

Both planning and learning solutions have lower complexity than the "evolutive" counterpart.
But require stronger conditions for existence of equilibrium.

email: aditya.mahajan@mcgill.ca

web: http://cim.mcgill.ca/~adityam

Thank you

NSERC Discovery

http://dl.acm.org/citation.cfm?id=3331700