Learning to control networked-coupled subsystems with unknown dynamics

Aditya Mahajan McGill University

Mean Field Games on Networks Workshop 28th Oct 2021

email: aditya.mahajan@mcgill.ca

homepage: http://cim.mcgill.ca/~adityam

Transportation networks

Internet of Things

Energy network

Salient Features

- Large/growing size
- Nodes have local states
- Coupled dynamics and costs

Energy network

Network-coupled subsystems-(Aditya Mahajan)

Salient Features

- Large/growing size
- Nodes have local states
- Coupled dynamics and costs

Design challenges

- Scalability of the solution
- How to handle model uncertainty

Salient Features

- Large/growing size
- Nodes have local states
- Coupled dynamics and costs

Design challenges

- Scalability of the solution
- How to handle model uncertainty

Present a spectral decomposition method for network-coupled subysstems which leads to scalable planning and learning

- Network-coupled subsystems
 - > Agents interacting over a graph
 - Coupled dynamics
 - Coupled costs

System Model	 Network-coupled subsystems Agents interacting over a graph Coupled dynamics Coupled costs
Planning solution	 Spectral factorization of dynamics and cost Decoupled Riccati equations

	System Model	 Network-coupled subsystems Agents interacting over a graph Coupled dynamics Coupled costs
	Planning solution	 Spectral factorization of dynamics and cost Decoupled Riccati equations
7. 5 X 5.	Learning solution	 Spectral factorization of learning Numerical experiments

System Model	Δ	 Network-coupled subsystems Agents interacting over a graph Coupled dynamics Coupled costs
		Spectral factorization of dynamics and cost Decoupled Riccati equations
		Spectral factorization of learning Numerical experiments

System Model

Weighted undirected graph $\boldsymbol{\mathcal{G}}$

- ▷ Nodes $N = \{1, \ldots, n\}$.
- Symmetric matrix M = [m^{ij}] associated with G
 (e.g., weighted adjacency matrix, weighted Laplacian, etc.)

System Model

Weighted undirected graph $\boldsymbol{\mathcal{G}}$

- ▶ Nodes $N = \{1, \ldots, n\}$.
- Symmetric matrix M = [m^{ij}] associated with G
 (e.g., weighted adjacency matrix, weighted Laplacian, etc.)

System Dynamics

▷ A subsystem located at each node. State $x_t^i \in \mathbb{R}^{d_x}$. Control $u_t^i \in \mathbb{R}^{d_u}$.

$$x_{t+1}^{i} = Ax_{t}^{i} + Bu_{t}^{i} + D\sum_{j \in N} m^{ij}x_{t}^{j} + E\sum_{j \in N} m^{ij}u_{t}^{j} + w_{t}^{i}$$

System Model

Weighted undirected graph $\boldsymbol{\mathcal{G}}$

- ▷ Nodes $N = \{1, \ldots, n\}$.
- Symmetric matrix M = [m^{ij}] associated with G
 (e.g., weighted adjacency matrix, weighted Laplacian, etc.)

System Dynamics

 $\blacktriangleright \text{ A subsystem located at each node. State } x^i_t \in \mathbb{R}^{d_x}. \text{ Control } u^i_t \in \mathbb{R}^{d_u}.$

$$\begin{split} \dot{x}_{t+1}^{i} &= Ax_{t}^{i} + Bu_{t}^{i} + D\sum_{j \in \mathbb{N}} m^{ij} x_{t}^{j} + E\sum_{j \in \mathbb{N}} m^{ij} u_{t}^{j} + w_{t}^{i} \\ & \\ \textbf{Network field of states } x_{t}^{g,i} & \\ \textbf{Network field of control } u_{t}^{g,i} \end{split}$$

System Model (cont.)

Per-step cost

$$\begin{split} c(x_t, u_t) &= \sum_{i,j \in N} \left[h_q^{ij}(x_t^i)^\top Q(x_t^j) + h_r^{ij}(u_t^i)^\top Q(u_t^j) \right] \\ \text{where } H_q \, = \, [h_q^{ij}] \text{ and } H_r \, = \, [h_r^{ij}] \text{ are symmetric matrices} \\ \text{which have the same eigenvectors as } M. \end{split}$$

System Model (cont.)

Per-step cost

 $c(\mathbf{x}_t, \mathbf{u}_t) = \sum_{i,j \in N} \left[\mathbf{h}_{\mathbf{q}}^{\mathbf{ij}}(\mathbf{x}_t^i)^\top Q(\mathbf{x}_t^j) + \mathbf{h}_{\mathbf{r}}^{\mathbf{ij}}(\mathbf{u}_t^i)^\top Q(\mathbf{u}_t^j) \right]$

where $H_q = [h_q^{ij}]$ and $H_r = [h_r^{ij}]$ are symmetric matrices which have the same eigenvectors as M.

Remark

For two symmetric $n \times n$ matrices M_1 and M_2 , the following statements are equivalent:

- \triangleright M_1 and M_2 share the same eigenvectors.
- \triangleright M₁ and M₂ communte (i.e., M₁M₂ = M₂M₁)
- M₁ and M₂ are simultaneously diagonalizable.

System Model (cont.)

Per-step cost

$$c(\mathbf{x}_t, \mathbf{u}_t) = \sum_{i,j \in N} \left[\mathbf{h}_{\mathbf{q}}^{\mathbf{ij}}(\mathbf{x}_t^i)^\top Q(\mathbf{x}_t^j) + \mathbf{h}_{\mathbf{r}}^{\mathbf{ij}}(\mathbf{u}_t^i)^\top Q(\mathbf{u}_t^j) \right]$$

where $H_q = [h_q^{ij}]$ and $H_r = [h_r^{ij}]$ are symmetric matrices which have the same eigenvectors as M.

Important special case

$$\blacktriangleright H_q = \sum_{k=0}^{K_q} q_k M^k \text{ and } H_r = \sum_{k=0}^{K_r} r_k M^k.$$

Captures the intuition that the per-step cost respects the graph structure.

Example: $H_q = q_0I + q_1M + q_2M^2$ means that there is a cost coupling between the oneand two-hop neighbors.

A graph \mathcal{G}

5

Dynamical coupling

Nodes are not exchageable

$$\begin{aligned} x_t^{\mathcal{G},1} &= 2 \, x_t^2 + 1 \, x_t^4, \qquad x_t^{\mathcal{G},2} &= 2 \, x_t^1 + 2 \, x_t^3, \\ x_t^{\mathcal{G},3} &= 2 \, x_t^2 + 1 \, x_t^4, \qquad x_t^{\mathcal{G},4} &= 1 \, x_t^1 + 1 \, x_t^3. \end{aligned}$$

A graph \mathcal{G}

Dynamical coupling

Nodes are not exchageable

$$x_t^{\mathfrak{G},1} = 2 x_t^2 + 1 x_t^4, \qquad x_t^{\mathfrak{G},2} = 2 x_t^1 + 2 x_t^3,$$

 $x_t^{\mathfrak{G},3} = 2 x_t^2 + 1 x_t^4, \qquad x_t^{\mathfrak{G},4} = 1 x_t^1 + 1 x_t^3.$

A graph \mathcal{G}

Cost coupling

▷ Nodes are not exchageable Suppose $H_q = q_0I + q_1M + q_2M^2$.

Dynamical coupling

Nodes are not exchageable

$$x_t^{\mathfrak{G},1} = 2 x_t^2 + 1 x_t^4, \qquad x_t^{\mathfrak{G},2} = 2 x_t^1 + 2 x_t^3,$$

 $x_t^{\mathfrak{G},3} = 2 x_t^2 + 1 x_t^4, \qquad x_t^{\mathfrak{G},4} = 1 x_t^1 + 1 x_t^3.$

Cost coupling

▷ Nodes are not exchageable Suppose $H_q = q_0I + q_1M + q_2M^2$.

Two-hop neighborhood

Dynamical coupling

Nodes are not exchageable

$$x_t^{\mathfrak{G},1} = 2 x_t^2 + 1 x_t^4, \qquad x_t^{\mathfrak{G},2} = 2 x_t^1 + 2 x_t^3,$$

 $x_t^{\mathfrak{G},3} = 2 x_t^2 + 1 x_t^4, \qquad x_t^{\mathfrak{G},4} = 1 x_t^1 + 1 x_t^3.$

▷ Nodes are not exchageable Suppose $H_q = q_0I + q_1M + q_2M^2$. Then $H_q = \begin{bmatrix} q_0 + 5q_2 & 2q_1 & 5q_2 & q_1 \\ 2q_1 & q_0 + 8q_2 & 2q_1 & 4q_2 \\ 5q_2 & 2q_1 & q_0 + 5q_2 & q_1 \\ q_1 & 4q_2 & q_1 & q_0 + 2q_2 \end{bmatrix}$

Network-coupled subsystems-(Aditya Mahajan)

Two-hop neighborhood

Model generalizes mean-field control model

Special case

Model generalizes mean-field control model

Special case

Dynamics

$$x_{t+1}^i = Ax_t^i + Bu_t^i + D\bar{x}_t + E\bar{u}_t + w_t^i.$$

Per-step cost

$$\begin{split} c(\mathbf{x}_t, \mathbf{u}_t) &= (1+\kappa) \big[\bar{\mathbf{x}}_t^\top Q \bar{\mathbf{x}}_t + \bar{\mathbf{u}}_t^\top R \bar{\mathbf{u}}_t \big] \\ &+ \frac{1}{n} \sum_{i \in \mathbf{N}} \big[(\mathbf{x}_t^i - \bar{\mathbf{x}}_t)^\top Q (\mathbf{x}_t^i - \bar{\mathbf{x}}_t) + (\mathbf{u}_t^i - \bar{\mathbf{u}}_t)^\top Q (\mathbf{u}_t^i - \bar{\mathbf{u}}_t) \big]. \end{split}$$

Problem formulation

Summary of the model

▶ Dynamics:
$$x_{t+1}^i = Ax_t^i + Bu_t^i + D\sum_{j \in N} m^{ij} x_t^j + E\sum_{j \in N} m^{ij} u_t^j + w_t^i$$
▶ Per-step cost: $c(x_t, u_t) = \sum_{i,j \in N} \left[h_q^{ij} (x_t^i)^\top Q(x_t^j) + h_r^{ij} (u_t^i)^\top Q(u_t^j) \right]$

 \triangleright Network structure: M, H_q, and H_r have the same eigenvectors.

Problem formulation

Summary of the model

► Dynamics:
$$x_{t+1}^i = Ax_t^i + Bu_t^i + D\sum_{j \in N} \mathbf{m}^{ij} x_t^j + E\sum_{j \in N} \mathbf{m}^{ij} u_t^j + w_t^i$$

► Per-step cost: $c(x_t, u_t) = \sum_{i,j \in N} \left[\mathbf{h}_q^{ij} (x_t^i)^\top Q(x_t^j) + \mathbf{h}_r^{ij} (u_t^i)^\top Q(u_t^j) \right]$

 \triangleright Network structure: M, H_q, and H_r have the same eigenvectors.

Objective

Choose a policy
$$\pi: (x_t^1, \dots, x^n) \to (u_t^1, \dots, u_t^n)$$
 to minimize:
$$\limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{\pi} \left[\sum_{t=1}^T c(x_t, u_t) \right]$$

Problem formulation

Summary of the model

▶ Dynamics:
$$x_{t+1}^i = Ax_t^i + Bu_t^i + D\sum_{j \in N} m^{ij} x_t^j + E\sum_{j \in N} m^{ij} u_t^j + w_t^i$$
▶ Per-step cost: $c(x_t, u_t) = \sum_{i,j \in N} \left[h_q^{ij} (x_t^i)^\top Q(x_t^j) + h_r^{ij} (u_t^i)^\top Q(u_t^j) \right]$

 \triangleright Network structure: M, H_q, and H_r have the same eigenvectors.

Objective

Choose a policy
$$\pi: (x_t^1, \dots, x^n) \to (u_t^1, \dots, u_t^n)$$
 to minimize:
$$\limsup_{T \to \infty} \frac{1}{T} \mathbb{E}^{\pi} \left[\sum_{t=1}^T c(x_t, u_t) \right]$$

Standard soln requires solving nd_x × nd_x Riccati Eq.

Complexity scales $O(n^3 d_x^3)$.

		 Network-coupled subsystems Agents interacting over a graph Coupled dynamics Coupled costs
	Planning solution	 Spectral factorization of dynamics and cost Decoupled Riccati equations
205 205 5		 Spectral factorization of learning Numerical experiments

Our result: Develop a decomposition which computes the optimal policy by solving at most n Riccati eqns of dimension $d_x \times d_x$.

- co-author: Shuang Gao
- paper: https://arxiv.org/abs/2009.12367

Spectral decomposition of coupling matrices

$$M = \sum_{\ell=1}^{L} \lambda^{\ell} \boldsymbol{\nu}^{\ell} (\boldsymbol{\nu}^{\ell})^{\mathsf{T}},$$

Spectral decomposition of coupling matrices

$$\mathcal{M} = \sum_{\ell=1}^{L} \lambda^{\ell} \boldsymbol{\nu}^{\ell} (\boldsymbol{\nu}^{\ell})^{\mathsf{T}}, \quad \mathcal{H}_{q} = q_{0} \mathbf{I} + q_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{q} \boldsymbol{\nu}^{\ell} (\boldsymbol{\nu}^{\ell})^{\mathsf{T}}, \quad \mathcal{H}_{r} = r_{0} \mathbf{I} + r_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{r} \boldsymbol{\nu}^{\ell} (\boldsymbol{\nu}^{\ell})^{\mathsf{T}}$$

Spectral decomposition of coupling matrices

$$\mathcal{M} = \sum_{\ell=1}^{L} \lambda^{\ell} \boldsymbol{\nu^{\ell}}(\boldsymbol{\nu^{\ell}})^{\mathsf{T}}, \quad \mathcal{H}_{q} = q_{0} \mathbf{I} + q_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{q} \boldsymbol{\nu^{\ell}}(\boldsymbol{\nu^{\ell}})^{\mathsf{T}}, \quad \mathcal{H}_{r} = r_{0} \mathbf{I} + r_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{r} \boldsymbol{\nu^{\ell}}(\boldsymbol{\nu^{\ell}})^{\mathsf{T}}$$

Spectral decomposition of dynamics

At each node $i \in [n]$:

▷ For each $\ell \in [L]$, define eigenstates, eigencontrols, and eigennoise as

$$x_t^{\ell,i} = x_t^i \nu^\ell (\nu^\ell)^\top, \quad u_t^{\ell,i} = u_t^i \nu^\ell (\nu^\ell)^\top, \quad \text{and} \quad w_t^{\ell,i} = w_t^i \nu^\ell (\nu^\ell)^\top.$$

Spectral decomposition of coupling matrices

$$\mathcal{M} = \sum_{\ell=1}^{L} \lambda^{\ell} \boldsymbol{\nu^{\ell}}(\boldsymbol{\nu^{\ell}})^{\mathsf{T}}, \quad \mathcal{H}_{q} = q_{0} \mathbf{I} + q_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{q} \boldsymbol{\nu^{\ell}}(\boldsymbol{\nu^{\ell}})^{\mathsf{T}}, \quad \mathcal{H}_{r} = r_{0} \mathbf{I} + r_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{r} \boldsymbol{\nu^{\ell}}(\boldsymbol{\nu^{\ell}})^{\mathsf{T}}$$

Spectral decomposition of dynamics

At each node $i \in [n]$:

▷ For each $l \in [L]$, define eigenstates, eigencontrols, and eigennoise as

$$\mathbf{x}_t^{\ell,i} = \mathbf{x}_t^i \mathbf{v}^\ell (\mathbf{v}^\ell)^\top, \quad \mathbf{u}_t^{\ell,i} = \mathbf{u}_t^i \mathbf{v}^\ell (\mathbf{v}^\ell)^\top, \quad \text{and} \quad \mathbf{w}_t^{\ell,i} = \mathbf{w}_t^i \mathbf{v}^\ell (\mathbf{v}^\ell)^\top.$$

Define auxiliary state, auxiliary control, auxiliary noise as

$$\breve{x}_t^i = x_t^i - \sum_{\substack{\ell=1\\\ell=1}}^L x_t^{\ell,i}, \quad \breve{u}_t^i = u_t^i - \sum_{\substack{\ell=1\\\ell=1}}^L u_t^{\ell,i}, \quad \text{and} \quad \breve{w}_t^i = w_t^i - \sum_{\substack{\ell=1\\\ell=1}}^L w_t^{\ell,i}.$$
Network-coupled subsystems-(Aditya Mahajan)

Implication of Spectral Decomposition

Noise-coupled	$x_{t+1}^{\ell,i} = (A + \lambda^{\ell} D) x_t^{\ell,i} + (B + \lambda^{\ell} E) u_t^{\ell,i} + w_t^{\ell,i}$
dynamics	and $\breve{x}_{t+1}^i = A\breve{x}_t^i + B\breve{u}_t^i + \breve{w}_t^i$

Implication of Spectral Decomposition

Noise-coupled	$x_{t+1}^{\ell,i} = (A + \lambda^{\ell}D)x_t^{\ell,i} + (B + \lambda^{\ell}E)u_t^{\ell,i} + w_t^{\ell,i}$
dynamics	and $\breve{x}_{t+1}^i = A\breve{x}_t^i + B\breve{u}_t^i + \breve{w}_t^i$

$$\begin{aligned} \mathsf{Decoupled\ cost} & \mathsf{c}(x_t, u_t) = \sum_{i \in \mathsf{N}} \left[\mathsf{q}_0 \breve{\mathsf{c}}(\breve{x}_t^i, \breve{u}_t^i) + \sum_{\ell=1}^{\mathsf{L}} \mathsf{q}^\ell \mathsf{c}^\ell(x_t^{\ell, i}, u_t^{\ell, i}) \right] \\ & \mathsf{where}\ \mathsf{q}^\ell = \mathsf{q}_0 + \mathsf{q}_1 \lambda_{\mathsf{q}}^\ell, \quad \mathsf{r}^\ell = \mathsf{r}_0 + \mathsf{r}_1 \lambda_{\mathsf{r}}^\ell, \mathsf{and} \\ & \breve{\mathsf{c}}(\breve{x}_t^i, \breve{u}_t^i) = (\breve{x}_t^i)^\top \mathsf{Q}\breve{x}_t^i + \frac{\mathsf{r}_0}{\mathsf{q}_0}(\breve{u}_t^i)^\top \mathsf{R}\breve{u}_t^i \\ & \mathsf{c}^\ell(x_t^{\ell, i}, u_t^{\ell, i}) = (x_t^{\ell, i})^\top \mathsf{Q} x_t^{\ell, i} + \frac{\mathsf{r}^\ell}{\mathsf{q}^\ell}(u_t^{\ell, i})^\top \mathsf{R} u_t^{\ell, i}. \end{aligned}$$

Eigen-system (ℓ,i) with $\ell \in [L]$, $i \in [n]$

Auxiliary system i with $i \in [n]$

- ▶ State x̃ⁱ_t. Control ŭⁱ_t.
- \blacktriangleright Dynamics: $\breve{x}^i_{t+1} = A\breve{x}^i_t + B\breve{u}^i_t + \breve{w}^i_t$
- $\blacktriangleright \text{ Per-step cost: } c^\ell(\breve{x}^i_t,\breve{u}^i_t).$

Eigen-system (ℓ,i) with $\ell \in [L]$, $i \in [n]$

Auxiliary system i with $i \in [n]$

State Xⁱ_t. Control ŭⁱ_t.

▶ Dynamics:
$$\check{x}_{t+1}^i = A\check{x}_t^i + B\check{u}_t^i + \check{w}_t^i$$

 $\blacktriangleright \text{ Per-step cost: } c^\ell(\breve{x}^i_t,\breve{u}^i_t).$

Only coupled through the noise in the dynamics

Eigen-system (ℓ,i) with $\ell \in [L]$, $i \in [n]$

Auxiliary system i with $i \in [n]$

- State Xⁱ_t. Control ŭⁱ_t.
- ▶ Dynamics: $\breve{x}_{t+1}^i = A\breve{x}_t^i + B\breve{u}_t^i + \breve{w}_t^i$
- $\blacktriangleright \text{ Per-step cost: } c^\ell(\breve{x}^i_t,\breve{u}^i_t).$

Certainty equivalence: Optimal policy of stochastic LQ system is same as that of deterministic LQ system.

The deterministic system has **decoupled dynamics and cost**!

Only coupled through the noise in the dynamics

Eigen-system (ℓ,i) with $\ell \in [L]$, $i \in [n]$

Auxiliary system i with $i \in [n]$

State Xⁱ_t. Control ŭⁱ_t.

Dynamics:
$$\breve{x}_{t+1}^i = A\breve{x}_t^i + B\breve{u}_t^i + \breve{x}_t^i$$

▶ Per-step cost: $c^{\ell}(\breve{x}_t^i, \breve{u}_t^i)$.

Certainty equivalence: Optimal policy of stochastic LQ system is same as that of deterministic LQ system.

The deterministic system has **decoupled dynamics and cost**!

Only coupled through the noise in the dynamics

Main result

Under standard assumptions, the optimal control action is given by

$$u_{t}^{i} = \breve{u}_{t}^{i} + \sum_{\ell=1}^{L} u_{t}^{\ell,i} = \breve{G}\breve{x}_{t}^{i} + \sum_{\ell=1}^{L} G^{\ell}x_{t}^{\ell,i}$$

where

$$\begin{split} \breve{G} &= \text{Gain}\Big(A,B,Q,\frac{r_0}{q_0}R\Big)\\ G^\ell &= \text{Gain}\Big(A+\lambda^\ell D,B+\lambda^\ell E,Q,\frac{r^\ell}{q^\ell}R\Big) \end{split}$$

Main result

Under standard assumptions, the optimal control action is given by

$$u_{t}^{i} = \breve{u}_{t}^{i} + \sum_{\ell=1}^{L} u_{t}^{\ell,i} = \breve{G}\breve{x}_{t}^{i} + \sum_{\ell=1}^{L} G^{\ell}x_{t}^{\ell,i}$$

where

$$\begin{split} \breve{G} &= \mathsf{Gain}\Big(A,B,Q,\frac{r_0}{q_0}R\Big)\\ G^\ell &= \mathsf{Gain}\Big(A+\lambda^\ell D,B+\lambda^\ell E,Q,\frac{r^\ell}{q^\ell}R\Big) \end{split}$$

▷ The gains \check{G} , $\{G^{\ell}\}_{\ell=1}^{L}$ are the same at all subsystems!

▶ Requires solving (L + 1) Riccati Eqn of dimension $d_x \times d_x$.

Complexity scales $O(Ld_x^3)$ (cf. $O(n^3d_x^3)$ for naive solution).

Outline

		 Network-coupled subsystems Agents interacting over a graph Coupled dynamics Coupled costs
		 Spectral factorization of dynamics and cost Decoupled Riccati equations
i k i	Learning solution	 Spectral factorization of learning Numerical experiments

Modeling uncertainty

Model $\theta_{\star} = [A_{\star}, B_{\star}] \in \Theta$ (uncertain set)

Modeling uncertainty

Model $\theta_{\star} = [A_{\star}, B_{\star}] \in \Theta$ (uncertain set)

Worst-case design

- Assume that nature is adversarial
- Choose a policy which minimizes worst case performance
- Zero-sum game or robust control

Modeling uncertainty

Model $\theta_{\star} = [A_{\star}, B_{\star}] \in \Theta$ (uncertain set)

Worst-case design

- Assume that nature is adversarial
- Choose a policy which minimizes worst case performance
- Zero-sum game or robust control

Learning solution

- Design an adaptive policy which asymptotically converges to the optimal policy of the true (unknown) model.
- Reinforcement learning or adaptive control

Modeling uncertainty

Model $\theta_\star = [A_\star, B_\star] \in \Theta$ (uncertain set)

Worst-case design

- Assume that nature is adversarial
- Choose a policy which minimizes worst case performance
- Zero-sum game or robust control

Learning solution

- Design an adaptive policy which asymptotically converges to the optimal policy of the true (unknown) model.
- Reinforcement learning or adaptive control

Comparing learning algorithms

$$\operatorname{Regret}(T) = \sum_{t=1}^{I} \left[\operatorname{cost} \text{ of learning } \operatorname{algo}(t) - \operatorname{cost} \text{ of clairvoyant } \operatorname{agent}(t) \right]$$

Large literature. Various classes of algos with different regret guarantees.

Review: Regret for learning in LQ regulation

Bounds on Regret

- **b** Lower bound: No algorithm can do better than $\tilde{\Omega}(d_x^{0.5}d_u\sqrt{T})$.
- ▷ Upper bound: Various classes of algorithms achieve $\tilde{O}(d_x^{0.5}(d_x + d_u)\sqrt{T})$.
 - Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

Review: Regret for learning in LQ regulation

Bounds on Regret

- **b** Lower bound: No algorithm can do better than $\tilde{\Omega}(d_x^{0.5} d_u \sqrt{T})$.
- ▶ Upper bound: Various classes of algorithms achieve $\tilde{O}(d_x^{0.5}(d_x + d_u)\sqrt{T})$.
 - Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

Challenge	▶ Effective dimensions are nd_x and nd_u
with learning	▷ Directly using existing algos gives regret of $\tilde{O}(\mathbf{n}^{1.5} \mathbf{d}_x^{0.5} (\mathbf{d}_x + \mathbf{d}_u) \sqrt{T})$.
in networks	▷ Normalized regret per agent is $\tilde{O}(\mathbf{n}^{0.5} d_x^{0.5} (d_x + d_u) \sqrt{T})$.

Review: Regret for learning in LQ regulation

Bounds on Regret

- **>** Lower bound: No algorithm can do better than $\tilde{\Omega}(d_x^{0.5} d_u \sqrt{T})$.
- ▶ Upper bound: Various classes of algorithms achieve $\tilde{O}(d_x^{0.5}(d_x + d_u)\sqrt{T})$.
 - Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

Challenge	▶ Effective dimensions are nd_x and nd_u
with learning	▷ Directly using existing algos gives regret of $\tilde{O}(\mathbf{n}^{1.5} d_x^{0.5} (d_x + d_u) \sqrt{T})$.
in networks	▷ Normalized regret per agent is $\tilde{O}(\mathbf{n}^{0.5} d_x^{0.5} (d_x + d_u) \sqrt{T})$.

Regret per agent grows with size of the network!

Our result: Develop a learning algorithm which exploits the structure of the network and has a per agent regret of $\tilde{O}((1 + \frac{1}{n})d_x^{0.5}(d_x + d_u)\sqrt{T})$.

co-author: Sagar Sudhakara, Ashutosh Nayyar, Yi Ouyang

paper: https://arxiv.org/abs/2108.07970

Learning model

Problem setting

Known: Network (M, H_q, H_r). Cost (Q, R).
 Unknown: Dynamics (A, B, C, D).

Learning model

Problem setting

Known: Network (M, H_q, H_r). Cost (Q, R).
 Unknown: Dynamics (A, B, C, D).

Modeling assumptions

$$ightarrow \check{\theta}_{\star} = [A_{\star}, B_{\star}] \in \check{\Theta}$$

 $\blacktriangleright \ \theta^{\ell} = [A_{\star} + \lambda^{\ell} D_{\star}, B_{\star} + \lambda^{\ell} E_{\star}] \in \Theta^{\ell}$

```
▶ Bayesian prior on \check{\Theta} and \{\Theta^{\ell}\}_{\ell=1}^{L}.
```


Learning model

Problem setting

Known: Network (M, H_q, H_r). Cost (Q, R).
 Unknown: Dynamics (A, B, C, D).

Modeling assumptions

$$ightarrow \check{\Theta}_{\star} = [A_{\star}, B_{\star}] \in \check{\Theta}$$

$$\triangleright \ \theta^{\ell} = [A_{\star} + \lambda^{\ell} D_{\star}, B_{\star} + \lambda^{\ell} E_{\star}] \in \Theta^{\ell}$$

• Bayesian prior on
$$\check{\Theta}$$
 and $\{\Theta^{\ell}\}_{\ell=1}^{L}$.

$$\begin{array}{l} \mbox{Implication} \\ \mbox{of Spectral} \\ \mbox{Decomposition} \end{array} & \mbox{Recall: } c(x_t, u_t) = \sum_{i \in \mathbb{N}} \left[q_0 \breve{c}(\breve{x}_t^i, \breve{u}_t^i) + \sum_{\ell=1}^L q^\ell c^\ell(x_t^{\ell,i}, u_t^{\ell,i}) \right] \\ \mbox{Thus, for any policy } \pi, \\ \mbox{J}(\pi; \theta_\star) = \sum_{i \in \mathbb{N}} \left[q_0 \breve{J}^i(\pi; \breve{\theta}_\star) + \sum_{\ell=1}^L q^\ell J^{\ell,i}(\pi; \theta_\star^\ell) \right]. \end{array}$$

Separately learn $\{\theta^\ell\}_{\ell=1}^L$ and $\breve{\theta}$

For learning \$\theta_{\star}^{\ell}\$, select an agent \$i_{\circ}^{\ell}\$ such that \$v^{\ell, i_{\circ}^{\ell}} \neq 0\$.
Learn \$G^{\ell}(\theta_{\star}^{\ell})\$ using \$\$x_t^{\ell, i_{\circ}^{\ell}}\$, \$u_t^{\ell, i_{\circ}^{\ell}}\$\$\$_{t \ge 1}\$.

Separately learn $\{\theta^\ell\}_{\ell=1}^L$ and $\breve{\theta}$

For learning \$\theta_{\star}^{\ell}\$, select an agent \$i_{\circ}^{\ell}\$ such that \$v^{\ell, i_{\circ}^{\ell}} \neq 0\$.
Learn \$G^{\ell}(\theta_{\star}^{\ell})\$ using \$\$x_t^{\ell, i_{\circ}^{\ell}}\$, \$u_t^{\ell, i_{\circ}^{\ell}}\$\$\$}_{t \ge 1}\$.

At time t, select agent j_{t-1} with the "most informative obs".
 Learn Ğ(Ğ_{*}) using {x_t^{j_t}, ŭ_t^{j_t}, x_{t+1}^{j_t}}_{t≥1}.

Separately learn $\{\theta^\ell\}_{\ell=1}^L$ and $\breve{\theta}$

For learning \$\theta_{\star}^{\ell}\$, select an agent \$i_{\circ}^{\ell}\$ such that \$v^{\ell, i_{\circ}^{\ell}} \neq 0\$.
Learn \$G^{\ell}(\theta_{\star}^{\ell})\$ using \$\$x_t^{\ell, i_{\circ}^{\ell}}\$, \$u_t^{\ell, i_{\circ}^{\ell}}\$\$\$}_{t \ge 1}\$.

At time t, select agent j_{t-1} with the "most informative obs".
 Learn Ğ(Ğ_{*}) using {x_t^{j_t}, u_t^{j_t}, x_{t+1}^{j_t}}_{t≥1}.

 Use variant of Thompson sampling to learn each component

The high-level idea also applies to other learning algos

Separately learn $\{\theta^\ell\}_{\ell=1}^L$ and $\breve{\theta}$

For learning \$\theta_{\star}^{\ell}\$, select an agent \$i_{\circ}^{\ell}\$ such that \$v^{\ell, i_{\circ}^{\ell}} \neq 0\$.
Learn \$G^{\ell}(\theta_{\star}^{\ell})\$ using \$\$x_t^{\ell, i_{\circ}^{\ell}}\$, \$u_t^{\ell, i_{\circ}^{\ell}}\$\$\$_{t \ge 1}\$.

At time t, select agent j_{t-1} with the "most informative obs".
 Learn Ğ(Ğ_{*}) using {x_t^{j_t}, ŭ_t^{j_t}, x_{t+1}^{j_t}}_{t≥1}.

 Use variant of Thompson sampling to learn each component

The high-level idea also applies to other learning algos

ince
$$J(\pi; \theta_{\star}) = \sum_{i \in \mathbb{N}} \left[\mathbf{q}_{\mathbf{0}} \breve{J}^{i}(\pi; \breve{\theta}_{\star}) + \sum_{\ell=1}^{L} \mathbf{q}^{\ell} J^{\ell, i}(\pi; \theta_{\star}^{\ell}) \right].$$

Thus, regret also decomposes as

$$R(T) = \sum_{i \in \mathbb{N}} \left[\mathbf{q}_0 \breve{R}^i(T) + \sum_{\ell=1}^L \mathbf{q}^\ell R^{\ell,i}(T) \right].$$

17

Bounding regret

Since agent i_{\circ}^{ℓ} is learning in the standard manner, we have $R^{\ell, \mathbf{i}_{\circ}^{\ell}}(T) = \tilde{\mathbb{O}}(\mathbf{W}^{\ell, \mathbf{i}_{\circ}^{\ell}} d_{x}^{0.5} (d_{x} + d_{u})\sqrt{T}).$

Bounding $R^{\ell,i}(T)$ > We show that f

We show that for other agents

$$R^{\ell,\mathbf{i}}(T) = \left(\frac{\nu^{\ell,\mathbf{i}}}{\nu^{\ell,\mathbf{i}_{\circ}^{\ell}}}\right)^{2} R^{\ell,\mathbf{i}_{\circ}^{\ell}}(T) = \tilde{\mathbb{O}}\left(\mathbf{W}^{\ell,\mathbf{i}}d_{x}^{0.5}(d_{x}+d_{u})\sqrt{T}\right).$$

Bounding regret

Since agent i_{\circ}^{ℓ} is learning in the standard manner, we have $R^{\ell, \mathbf{i}_{\circ}^{\ell}}(T) = \tilde{\mathbb{O}}(\mathbf{W}^{\ell, \mathbf{i}_{\circ}^{\ell}} d_{x}^{0.5} (d_{x} + d_{u})\sqrt{T}).$

Bounding $R^{\ell,i}(T)$

Bounding $\breve{R}^{i}(T)$

We show that for other agents
$$R^{\ell,\mathbf{i}}(T) = \left(\frac{\nu^{\ell,\mathbf{i}}}{\nu^{\ell,\mathbf{i}_{\circ}^{\ell}}}\right)^{2} R^{\ell,\mathbf{i}_{\circ}^{\ell}}(T) = \tilde{\mathbb{O}}\left(\mathbf{W}^{\ell,\mathbf{i}}d_{x}^{0.5}(d_{x}+d_{u})\sqrt{T}\right).$$

- ▶ Need to bound regret from first principles.
 - Using the most informative observation allows us to bound the regret of auxiliary systems at all nodes.
- Show that $\check{R}^{i}(T) = \tilde{O}(\check{W}^{i}d_{x}^{0.5}(d_{x} + d_{u})\sqrt{T}).$

Bounding regret

Some examples

Mean-field systems

Choice of parameters

$$\blacktriangleright M = \frac{1}{n} \mathbb{1}_{n \times n} \text{ and } H_q = H_r = \frac{1}{n} I + \frac{\kappa}{n} M.$$

Mean-field systems

Choice of parameters

$$\blacktriangleright M = \frac{1}{n} \mathbb{1}_{n \times n} \text{ and } H_q = H_r = \frac{1}{n} I + \frac{\kappa}{n} M.$$

Scaling of regret

- ▶ $q^1 = r^1 = (1 + \kappa)/n$. Therefore, (normalized) $\alpha^{\mathcal{G}} = \left(1 + \frac{\kappa}{n}\right)$.
- Regret per-agent goes down as the network becomes larger (mean-field effect).

Mean-field systems

Choice of parameters

$$\blacktriangleright M = \frac{1}{n} \mathbb{1}_{n \times n} \text{ and } H_q = H_r = \frac{1}{n} I + \frac{\kappa}{n} M.$$

Scaling of regret

▶
$$q^1 = r^1 = (1 + \kappa)/n$$
. Therefore, (normalized) $\alpha^9 = \left(1 + \frac{\kappa}{n}\right)$

A general low-rank network

Choice of parameters

$$\blacktriangleright M = M^{\circ} \otimes \frac{1}{n} \mathbb{1}_{n \times n}, H_q = (I - M)^2, \text{ and } H_r = I.$$

▷ $\lambda^{\ell} = \pm \sqrt{2(a^2 + b^2)}$, $q^{\ell} = (1 - \lambda^{\ell})^2$, $r^{\ell} = 1$. Therefore, (unnormalized) $\alpha^9 = 4n + 4(a^2 + b^2)$.

Regret per-agent goes down as the network becomes larger (network-field effect).

A general low-rank network

Choice of parameters

$$\blacktriangleright M = M^{\circ} \otimes \frac{1}{n} \mathbb{1}_{n \times n}, H_{q} = (I - M)^{2}, \text{ and } H_{r} = I.$$

Scaling of regret

▷ $\lambda^{\ell} = \pm \sqrt{2(a^2 + b^2)}$, $q^{\ell} = (1 - \lambda^{\ell})^2$, $r^{\ell} = 1$. Therefore, (unnormalized) $\alpha^9 = 4n + 4(a^2 + b^2)$.

b

Conclusion

Presented a spectral decomposition method for network-coupled subysstems which leads to scalable planning and learning

Conclusion

Presented a spectral decomposition method for network-coupled subysstems which leads to scalable planning and learning

Planning solution

▷ Solve (L + 1) Riccati eqns of dims $d_x \times d_x$.

Learning solution

• Regret per agent
$$\tilde{\mathbb{O}}((1+\frac{1}{n})\sqrt{T})$$

Conclusion

Presented a spectral decomposition method for network-coupled subysstems which leads to scalable planning and learning

Planning solution

▷ Solve (L + 1) Riccati eqns of dims $d_x \times d_x$.

Learning solution

• Regret per agent
$$\tilde{O}((1+\frac{1}{n})\sqrt{T})$$

Future Directions

- Multiple types of agents
- Large networks, graphon limits?
- Other types of scalable network stuctures?

email: aditya.mahajan@mcgill.ca

web: http://cim.mcgill.ca/~adityam

Thank you

Funding

- NSERC Discovery
- DND IDEaS Network

References

- planning: https://arxiv.org/abs/2009.12367
- learning: https://arxiv.org/abs/2108.07970