Reinforcement learning for partially observed systems

Aditya Mahajan McGill University

ReStoq Workshop, WiOpt 18th Oct 2021

email: aditya.mahajan@mcgill.ca

homepage: http://cim.mcgill.ca/~adityam

> Algorithms based on comprehensive theory

Algorithms based on comprehensive theory

The theory is restricted almost exclusively to systems with perfect state observations.

Robotic grasping

Recent successes of RL

Algorithms based on comprehensive theory

The theory is restricted almost exclusively to systems with perfect state observations.

Many real-world applications are partially observed

- Healthcare
- Autonomous driving
- Finance (portfolio management)
- Retail and marketing

Robotic grasping

Recent successes of RL

Algorithms based on comprehensive theory

The theory is restricted almost exclusively to systems with perfect state observations.

Many real-world applications are partially observed

- Healthcare
- Autonomous driving
- Finance (portfolio management)
- Retail and marketing

How do we develop a theory for RL for partially observed systems?

- Review of MDPs and RL
- Review of POMDPs
- Why is RL for POMDPs difficult?

Approximate Planning for **POMDPs**

- Preliminaries on information state
- Approximate information state
- Approximation bounds Þ

MDP: MARKOV DECISION PROCESS Dynamics: $\mathbb{P}(S_{t+1} | S_t, A_t)$ Observations: S_t Reward $R_t = r(S_t, A_t)$. S. Action: $A_t \sim \pi_t(S_{1:t}, A_{1:t-1})$.

 $\pi = (\pi_t)_{t \geqslant 1}$ is called a policy.

The objective is to choose a policy π to maximize:

$$J(\pi) \coloneqq \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right]$$

MDP: MARKOV DECISION PROCESS Dynamics: $\mathbb{P}(S_{t+1} | S_t, A_t)$ Observations: S_t Reward $R_t = r(S_t, A_t)$. Action: $A_t \sim \pi_t(S_{1:t}, A_{1:t-1})$.

 $\pi = (\pi_t)_{t \geqslant 1}$ is called a policy.

The objective is to choose a policy π to maximize:

 ∞

Conceptual challenge

- Brute force search has an exponential complexity in time horizon.
- ▶ How to efficiently search an optimal policy?

Key simplifying ideas

Structure of

optimal policy

Principle of Irrelevant Information

There is no loss of optimality in choosing the action A_t as a function of the current state S_t

Action

 $A_t \in \mathcal{A}$

Obs.

 S_{+}

Environment State $S_t \in S$

Agent

Key simplifying ideas

Structure of

optimal policy

Principle of Irrelevant Information

There is no loss of optimality in choosing the action A_t as a function of the current state S_t

🖽 Blackwell, "Memoryless strategies in finite-stage dynamic prog.," Annals Math. Stats, 1964.

Principle of Optimality

Dynamic	The optimal control policy is given a DP with state S_t :
Program	$V(s) = \max_{a \in \mathcal{A}} \left\{ r(s, a) + \gamma \int V(s') P(ds' s, a) \right\}$

🖭 Bellman, "Dynamic Programming," 1957.

Review: Reinforcement Learning (RL)

The (online) RL setting

- > Dynamics and reward functions are unknown.
- Agent can interact with the environment and observe states and rewards.
- Design an algorithm that asymptotically identifies an optimal policy.

Review: Reinforcement Learning (RL)

The (online) RL setting

- > Dynamics and reward functions are unknown.
- Agent can interact with the environment and observe states and rewards.
- Design an algorithm that asymptotically identifies an optimal policy.

Value based methods	Estimate the Q-function $Q(s, a) = r(s, a) + \gamma \int V(s')P(ds' s, a)$ using temporal difference learning (i.e., stochastic approximation). [Watkins and Dayan, 1992; Tsitsiklis, 1994]
Policy-based methods	Use parameterized policies π_{θ} . Estimate $\nabla_{\theta}V_{\theta}(s)$ using single trajectory gradient estimates (i.e., infitesimal perturbation analysis).
	[Sutton 2000 Marback and Teiteiklie 2001] [Cap. 1985: Ho. 1987]

Why is learning difficult in partially observable environments?

POMDP:PARTIALLY OBSERVABLE
MARKOV DECISION PROCESSDynamics: $\mathbb{P}(S_{t+1} | S_t, A_t)$ Observations: $\mathbb{P}(Y_t | S_t)$ Os.Reward $R_t = r(S_t, A_t)$.Action: $A_t \sim \pi_t(Y_{1:t}, A_{1:t-1})$.

 $\pi = (\pi_t)_{t \ge 1}$ is called a policy.

The objective is to choose a policy π to maximize:

$$J(\pi) \coloneqq \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right]$$

POMDP:PARTIALLY OBSERVABLE
MARKOV DECISION PROCESSDynamics: $\mathbb{P}(S_{t+1} | S_t, A_t)$ Observations: $\mathbb{P}(Y_t | S_t)$ Os. $\mathbb{P}(Y_t | S_t)$ Reward $R_t = r(S_t, A_t)$.Action: $A_t \sim \pi_t(Y_{1:t}, A_{1:t-1})$.

 $\pi = (\pi_t)_{t \ge 1}$ is called a policy.

The objective is to choose a policy of to mayimizat

Conceptual challenge

- > Action is a function of the history of observations and actions.
- > The history is increasing in time. So, the search complexity increases exponentially in time.

Key simplifying idea

Define **belief state** $B_t \in \Delta(S)$ as $B_t(s) = \mathbb{P}(S_t = s \mid Y_{1:t}, A_{1:t-1})$.

▷ Belief state updates in a state-like manner $B_{t+1} =$ function (B_t, Y_{t+1}, A_t) .

▶ Belief state is sufficient to evaluate rewards $\mathbb{E}[R_t | Y_{1:t}, A_{1:t}] = \hat{r}(B_t, A_t).$

Thus, $\{B_t\}_{t \ge 1}$ is a perfectly observed controlled Markov process.

Astrom, "Optimal control of Markov processes with incomplete information," JMAA 1965.
 Stratonovich, "Conditional Markov Processes," TVP 1960.

Key simplifying idea

RL

Define **belief state** $B_t \in \Delta(S)$ as $B_t(s) = \mathbb{P}(S_t = s \mid Y_{1:t}, A_{1:t-1})$.

- ▷ Belief state updates in a state-like manner $B_{t+1} =$ function (B_t, Y_{t+1}, A_t) .
- ▶ Belief state is sufficient to evaluate rewards $\mathbb{E}[R_t | Y_{1:t}, A_{1:t}] = \hat{r}(B_t, A_t).$

Thus, $\{B_t\}_{t \ge 1}$ is a perfectly observed controlled Markov process. Therefore:

Structure of optimal policy	There is no loss of optimality in choosing the action A_t as a function of the belief state B_t	
Dynamic Program	The optimal control policy is given a DP with belief $B_{\rm t}$ as state.	
or partially observed systems-(Mahajan)		

Implications of	tł	ne POMDP modeling framework
	⊳	Allows the use of the MDP machinery for partially observed systems

Implications for planning

Various exact and approximate algorithms to efficiently solve the DP. Exact: incremental pruning, witness algorithm, linear support algo Approximate: QMDP, point based methods, SARSOP, DESPOT, ...

Implications of the POMDP modeling framework

- Allows the use of the MDP machinery for partially observed systems.
- The construction of the belief state depends on the system model.
- So, when the system model is unknown, we cannot construct the belief state and therefore cannot use standard RL algorithms.

Implications for learning

Implications of the POMDP modeling framework

- Allows the use of the MDP machinery for partially observed systems.
- The construction of the belief state depends on the system model.
- So, when the system model is unknown, we cannot construct the belief state and therefore cannot use standard RL algorithms.

On the theoretical side:

- Propose alternative methods: PSRs (predictive state representations), bisimulation metrics, . . .
- Good theoretical guarantees, but difficult to scale.

RL for partially observed systems-(Mahajan)

Implications for learning Implications of the POMDP modeling framework

- Allows the use of the MDP machinery for partially observed systems.
- The construction of the belief state depends on the system model.
- So, when the system model is unknown, we cannot construct the belief state and therefore cannot use standard RL algorithms.

On the theoretical side:

- Propose alternative methods: PSRs (predictive state representations), bisimulation metrics, ...
- Good theoretical guarantees, but difficult to scale.

On the practical side:

- Simply stack the previous k observations and treat it as a "state".
- ▶ Instead of a CNN, use an RNN to model policy and action-value fn.
- Can be made to work but lose theoretical guarantees and insights.

RL for partially observed systems-(Mahajan)

Implications for learning

Our result: A <u>theoretically grounded</u> method for RL in partially observable models which has <u>strong empirical performance</u> for high-dimensional environments.

- co-authors: J. Subramanian, A. Sinha, and R. Seraj.
- paper: https://arxiv.org/abs/2010.08843
- code: https://github.com/info-structures/ais

System model

In many RL settings, unobserved state space may no
 So, we work directly with input-output model

System model

In many RL settings, unobserved state space may no
 So, we work directly with input-output model

System model

Control input:
$$A_t \longrightarrow Stochastic \\ System \longrightarrow Reward: R_t$$

 $Y_t = f_t(A_{1:t}, W_{1:t}),$
 $R_t = r_t(A_{1:t}, W_{1:t}).$

H_t = (Y_{1:t-1}, A_{1:t-1}) denotes the history of all data available to the agent at time t.

▷ Agent chooses an $A_t \sim \pi_t(H_t)$.

▷ $\pi = (\pi_1, \pi_2, ...)$ denotes the control policy.

The objective is to choose a policy π to maximize:

 $J(\pi) \coloneqq \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right]$

In many RL settings, unobserved state space may no
 So, we work directly with input-output model

Key solution concept: Information state

Informally, an information state is a compression of information which is sufficient for performance evaluation and predicting itself.

Key solution concept: Information state

Informally, an information state is a compression of information which is sufficient for performance evaluation and predicting itself.

Historical overview

- **Old concept**. May be viewed as as generalization of the notion of state (Nerode, 1958).
- Informal definitions given in Kwakernaak (1965), Bohlin (1970), Davis and Varaiya (1972), Kumar and Varaiya (1986) but no formal analysis.
- Related to but different from concepts such bisimulation, predictive state representations (PSR), and ε -machines.

Information state: Definition

Given a Banach space \mathcal{Z}_{r} an INFORMATION STATE GENERATOR is a tuple of

- ▶ history compression functions $\{\sigma_t: \mathcal{H}_t \to \mathcal{I}\}_{t \ge 1}$
- $\blacktriangleright \text{ reward function } \hat{r}: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}$
- ▶ transition kernel $\hat{P} : \mathcal{Z} \times \mathcal{A} \to \Delta(\mathcal{Z})$
- which satisfies two properties:
Information state: Definition

Given a Banach space \mathcal{Z}_{r} an INFORMATION STATE GENERATOR is a tuple of

- \blacktriangleright history compression functions $\{\sigma_t \colon \mathcal{H}_t \to \mathcal{Z}\}_{t \geqslant 1}$
- $\blacktriangleright \text{ reward function } \hat{r}: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}$
- ▶ transition kernel $\hat{P} : \mathcal{Z} \times \mathcal{A} \to \Delta(\mathcal{Z})$
- which satisfies two properties:

(P1) The reward function \hat{r} is sufficient for performance evaluation:

$$\mathbb{E}[R_t \mid H_t = h_t, A_t = a_t] = \hat{r}(\sigma_t(h_t), a_t).$$

Information state: Definition

Given a Banach space \mathcal{Z}_{r} an INFORMATION STATE GENERATOR is a tuple of

- \blacktriangleright history compression functions $\{\sigma_t \colon \mathcal{H}_t \to \mathcal{Z}\}_{t \geqslant 1}$
- $\blacktriangleright \text{ reward function } \hat{r}: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}$
- ▶ transition kernel $\hat{P} : \mathcal{Z} \times \mathcal{A} \to \Delta(\mathcal{Z})$

which satisfies two properties:

(P1) The reward function \hat{r} is sufficient for performance evaluation:

$$\mathbb{E}[R_t \mid H_t = h_t, A_t = a_t] = \hat{r}(\sigma_t(h_t), a_t).$$

(P2) The transition kernel \hat{P} is sufficient for predicting the info state: $\mathbb{P}(Z_{t+1} \in B \mid H_t = h_t, A_t = a_t) = \hat{P}(B \mid \sigma_t(h_t), a_t).$

Information state: Key result

An information state **always** leads to a dynamic programming decomposition.

Information state: Key result

An information state **always** leads to a dynamic programming decomposition.

Let $\{Z_t\}_{t \ge 1}$ be any information state process. Let \hat{V} be the fixed point of:

$$\hat{V}(z) = \max_{a \in \mathcal{A}} \left\{ \hat{r}(z, a) + \gamma \int_{\mathcal{Z}} \hat{V}(z_{+}) \hat{P}(dz_{+}|z, a) \right\}$$

Let $\pi^*(z)$ denote the arg max of the RHS. Then, the policy $\pi = (\pi_t)_{t \ge 1}$ given by $\pi_t = \pi^* \circ \sigma_t$ is optimal.

Examples of information state

Markov decision processes (MDP)

Current state \boldsymbol{S}_t is an info state

POMDP

Belief state is an info state

Examples of information state

Markov decision processes (MDP)

Current state \boldsymbol{S}_t is an info state

MDP with delayed observations

 $(S_{t-\delta+1}, A_{t-\delta+1:t-1})$ is an info state

POMDP

Belief state is an info state

POMDP with delayed observations

$$(\mathbb{P}(S_{t-\delta}|Y_{1:t-\delta},A_{1:t-\delta}),A_{t-\delta+1:t-1})$$
 is info state

Examples of information state

Markov decision processes (MDP)

Current state S_t is an info state

MDP with delayed observations

 $(S_{t-\delta+1}, A_{t-\delta+1:t-1})$ is an info state

POMDP

Belief state is an info state

POMDP with delayed observations

$$(\mathbb{P}(S_{t-\delta}|Y_{1:t-\delta},A_{1:t-\delta}),A_{t-\delta+1:t-1})$$
 is info state

Linear Quadratic Gaussian (LQG)

The state estimate $\mathbb{E}[\boldsymbol{S}_t|\boldsymbol{H}_t]$ is an info state

RL for partially observed systems-(Mahajan)

Machine Maintenance

 $(\tau, S^+_\tau) \text{ is info state,} \\$ where τ is the time of last maintenance

An (ε, δ) -APPROXIMATE INFORMATION STATE (AIS) generator is a tuple $(\sigma_t, \hat{r}, \hat{P})$ which approximately satisfies (P1) and (P2):

An (ε, δ) -APPROXIMATE INFORMATION STATE (AIS) generator is a tuple $(\sigma_t, \hat{r}, \hat{P})$ which approximately satisfies (P1) and (P2): (AP1) \hat{r} is sufficient for approximate performance evaluation: $\left|\mathbb{E}[\mathsf{R}_{t} \mid \mathsf{H}_{t} = \mathsf{h}_{t}, \mathsf{A}_{t} = \mathfrak{a}_{t}] - \hat{r}(\sigma_{t}(\mathsf{h}_{t}), \mathfrak{a}_{t})\right| \leq \varepsilon$

An (ε, δ) -APPROXIMATE INFORMATION STATE (AIS) generator is a tuple $(\sigma_t, \hat{r}, \hat{P})$ which approximately satisfies (P1) and (P2): (AP1) \hat{r} is sufficient for approximate performance evaluation: $\left|\mathbb{E}[R_t \mid H_t = h_t, A_t = a_t] - \hat{r}(\sigma_t(h_t), a_t)\right| \leq \varepsilon$ (AP2) \hat{P} is sufficient for approximately predicting next AIS: $d_{\mathfrak{F}}(\mathbb{P}(Z_{t+1} = \cdot \mid H_t = h_t, A_t = a_t), \hat{P}(\cdot | \sigma_t(h_t), a_t)) \leq \delta$

An (ε, δ) -APPROXIMATE INFORMATION STATE (AIS) generator is a tuple $(\sigma_t, \hat{r}, \hat{P})$ which approximately satisfies (P1) and (P2): (AP1) \hat{r} is sufficient for approximate performance evaluation: $\left|\mathbb{E}[\mathsf{R}_{t} \mid \mathsf{H}_{t} = \mathsf{h}_{t}, \mathsf{A}_{t} = \mathfrak{a}_{t}] - \hat{r}(\sigma_{t}(\mathsf{h}_{t}), \mathfrak{a}_{t})\right| \leq \varepsilon$ (AP2) \hat{P} is sufficient for approximately predicting next AIS: $\mathbf{d}_{\mathfrak{F}}(\mathbb{P}(\mathsf{Z}_{t+1} = \cdot \mid \mathsf{H}_t = \mathsf{h}_t, \mathsf{A}_t = \mathfrak{a}_t), \hat{\mathsf{P}}(\cdot \mid \sigma_t(\mathsf{h}_t), \mathfrak{a}_t)) \leq \delta$

Results depend on the choice of metric on probability spaces

Let V denote the optimal value and \hat{V} denote the fixed point of the following equations:

$$\hat{\mathbf{V}}(z) = \max_{\mathbf{a} \in \mathcal{A}} \left\{ \hat{\mathbf{r}}(z, \mathbf{a}) + \gamma \int_{\mathcal{Z}} \hat{\mathbf{V}}(z_{+}) \hat{\mathbf{P}}(dz_{+}|z, \mathbf{a}) \right\}$$

Let V denote the optimal value and \hat{V} denote the fixed point of the following equations:

$$\hat{\mathbf{V}}(z) = \max_{\mathbf{a} \in \mathcal{A}} \left\{ \hat{\mathbf{r}}(z, \mathbf{a}) + \gamma \int_{\mathcal{Z}} \hat{\mathbf{V}}(z_{+}) \hat{\mathbf{P}}(\mathrm{d}z_{+}|z, \mathbf{a}) \right\}$$

The value function \hat{V} is approximately optimal, i.e.,

Value function approximation $|V_t(h_t) - \hat{V}(\sigma_t(h_t))| \leq \alpha := \frac{\epsilon + \gamma \rho_{\mathfrak{F}}(\hat{V})\delta}{1 - \gamma}.$

Let V denote the optimal value and \hat{V} denote the fixed point of the following equations:

$$\widehat{\mathbf{V}}(z) = \max_{\mathbf{a} \in \mathcal{A}} \left\{ \widehat{\mathbf{r}}(z, \mathbf{a}) + \gamma \int_{\mathcal{Z}} \widehat{\mathbf{V}}(z_{+}) \widehat{\mathbf{P}}(dz_{+}|z, \mathbf{a}) \right\}$$

Depends on metric

The value function \hat{V} is approximately optimal, i.e.,

Value function approximation

$$|V_t(h_t) - \hat{V}(\sigma_t(h_t))| \leq \alpha := \frac{\varepsilon + \gamma \rho_{\mathfrak{F}}(\hat{V})\delta}{1 - \gamma}.$$

Let V denote the optimal value and \hat{V} denote the fixed point of the following equations:

$$\widehat{\mathbf{V}}(z) = \max_{\mathbf{a} \in \mathcal{A}} \left\{ \widehat{\mathbf{r}}(z, \mathbf{a}) + \gamma \int_{\mathcal{Z}} \widehat{\mathbf{V}}(z_{+}) \widehat{\mathbf{P}}(dz_{+}|z, \mathbf{a}) \right\}$$

Depends on metric

The value function \hat{V} is approximately optimal, i.e.,

Value function
approximation
$$|V_t(h_t) - \hat{V}(\sigma_t(h_t))| \leq \alpha := \frac{\varepsilon + \gamma \rho_{\mathfrak{F}}(\hat{V})\delta}{1 - \gamma}.$$

Policy	Let $\hat{\pi}^*: \mathcal{Z} \to \Delta(\mathcal{A})$ be an optimal policy for \hat{V} .
	Then, the policy $\pi = (\pi_1, \pi_2,)$ where $\pi_t = \hat{\pi}^* \circ \sigma_t$ is approx. optimal:
approximation	$V_t(h_t) - V_t^{\pi}(h_t) \leqslant 2\alpha.$

appro

Some remarks on AIS

- > Two ways to interpret the results:
 - \blacktriangleright Given the information state space 2, find the best compression $\sigma_t \colon \mathcal{H}_t \to \mathcal{Z}$
 - ▷ Given any compression function $\sigma_t: \mathcal{H}_t \to \mathcal{Z}$, find the approximation error.

Some remarks on AIS

- > Two ways to interpret the results:
 - \blacktriangleright Given the information state space 2, find the best compression $\sigma_t \colon \mathcal{H}_t \to \mathcal{Z}$
 - ▷ Given any compression function $\sigma_t: \mathcal{H}_t \to \mathbb{Z}$, find the approximation error.
- > Most of the existing literature on approximate DPs focuses on the first interpretation
- > The second interpretation allows us to develop AIS-based RL algorithms

Some remarks on AIS

- > Two ways to interpret the results:
 - ▷ Given the information state space \mathcal{Z} , find the best compression $\sigma_t: \mathcal{H}_t \to \mathcal{Z}$
 - ▷ Given any compression function $\sigma_t: \mathcal{H}_t \to \mathbb{Z}$, find the approximation error.
- > Most of the existing literature on approximate DPs focuses on the first interpretation
- > The second interpretation allows us to develop AIS-based RL algorithms
- Results depend on the choice of metric on probability spaces.
- The bounds use what are known as integral probability metrics (IPM), which include many commonly used metrics:
 - Total variation
 - Wasserstein distance
 - Maximum mean discrepancy (MMD)

Examples of AIS

What is the loss in performance if we choose a policy using the simulation model and use it in the real world?

What is the loss in performance if we choose a policy using the simulation model and use it in the real world?

Model mismatch as an AIS

 $\blacktriangleright \text{ (Identity, } \hat{P}, \hat{r}) \text{ is an } (\varepsilon, \delta) \text{-AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(s, a) \right| \text{ and } \delta_{\mathfrak{F}} = \sup_{s, a} d_{\mathfrak{F}}(P(\cdot | s, a), \hat{P}(\cdot | s, a)).$

Müller, "How does the value function of a Markov decision process depend on the transition probabilities?" MOR 1997.

Model mismatch as an AIS

$$\blacktriangleright \text{ (Identity, } \hat{P}, \hat{r}) \text{ is an } (\varepsilon, \delta) \text{-AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(s, a) \right| \text{ and } \delta_{\mathfrak{F}} = \sup_{s, a} d_{\mathfrak{F}}(P(\cdot | s, a), \hat{P}(\cdot | s, a)).$$

$d_{\mathfrak{F}}$ is total variation

$$V(s) - V^{\pi}(s) \leqslant rac{2\varepsilon}{1-\gamma} + rac{\gamma\delta\operatorname{span}(r)}{(1-\gamma)^2}$$

Recover bounds of Müller (1997).

- Müller, "How does the value function of a Markov decision process depend on the transition probabilities?" MOR 1997.
- E Asadi, Misra, Littman, "Lipscitz continuity in model-based reinfocement learning," ICML 2018.

Model mismatch as an AIS

 $\blacktriangleright \text{ (Identity, } \hat{P}, \hat{r}) \text{ is an } (\varepsilon, \delta) \text{-AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(s, a) \right| \text{ and } \delta_{\mathfrak{F}} = \sup_{s, a} d_{\mathfrak{F}}(P(\cdot | s, a), \hat{P}(\cdot | s, a)).$

$d_{\mathfrak{F}}$ is total variation

$$V(s) - V^{\pi}(s) \leqslant rac{2arepsilon}{1-\gamma} + rac{\gamma\delta\, ext{span}(r)}{(1-\gamma)^2}$$

Recover bounds of Müller (1997).

RL for partially observed systems-(Mahajan)

$d_{\mathfrak{F}}$ is Wasserstein distance

$$V(s) - V^{\pi}(s) \leq \frac{2\varepsilon}{1 - \gamma} + \frac{2\gamma \delta L_{r}}{(1 - \gamma)(1 - \gamma L_{p})}$$

Recover bounds of Asadi, Misra, Littman (2018).

 $(\widehat{P}, \widehat{r})$ is determined from (P, r) using ϕ

What is the loss in performance if we choose a policy using the abstract model and use it in the original model?

Feature abstraction as AIS

What is the loss in performance if we choose a policy using the abstract model and use it in the original model?

►
$$(\phi, \hat{\mathbf{P}}, \hat{\mathbf{r}})$$
 is an (ε, δ) -AIS with $\varepsilon = \sup_{s, a} |\mathbf{r}(s, a) - \hat{\mathbf{r}}(\phi(s), a)|$

and $\delta_{\mathfrak{F}} = \sup_{s,a} d_{\mathfrak{F}}(P(\phi^{-1}(\cdot)|s,a), \hat{P}(\cdot|\phi(s),a)).$

E Abel, Hershkowitz, Littman, "Near optimal behavior via approximate state abstraction," ICML 2016.

and
$$\delta_{\mathfrak{F}} = \sup_{s,a} d_{\mathfrak{F}}(P(\varphi^{-1}(\cdot)|s,a), \hat{P}(\cdot|\varphi(s),a)).$$

- Abel, Hershkowitz, Littman, "Near optimal behavior via approximate state abstraction," ICML 2016.
- Gelada, Kumar, Buckman, Nachum, Bellemare, "DeepMDP: Learning continuous latent space models for representation learning," ICML 2019.

$$\triangleright \ (\varphi, \hat{\mathbf{P}}, \hat{\mathbf{r}}) \text{ is an } (\varepsilon, \delta) \text{-AIS with } \varepsilon = \sup_{s, a} \left| r(s, a) - \hat{r}(\varphi(s), a) \right|$$

$$\mathrm{d}_{\mathfrak{F}}$$
 is total variation

$$V(s) - V^{\pi}(s) \leqslant \frac{2\varepsilon}{1-\gamma} + \frac{\gamma \delta_{\mathfrak{F}} \operatorname{span}(r)}{(1-\gamma)^2}$$

Improve bounds of Abel et al. (2016)

RL for partially observed systems-(Mahajan)

and
$$\delta_{\mathfrak{F}} = \sup d_{\mathfrak{F}}(\mathsf{P}(\varphi^{-1}(\cdot)|s, \mathfrak{a}), \widehat{\mathsf{P}}(\cdot|\varphi(s), \mathfrak{a})).$$

0

 $d_{\mathfrak{F}}$ is Wasserstein distance

$$\mathsf{V}(s) - \mathsf{V}^{\pi}(s) \leqslant \frac{2\varepsilon}{1 - \gamma} + \frac{2\gamma \delta_{\mathfrak{F}} \|\hat{\mathsf{V}}\|_{\mathsf{Lip}}}{(1 - \gamma)^2}$$

Recover bounds of Gelada et al. (2019).

Example 3: Belief approximation in POMDPs

What is the loss in performance if we choose a policy using the approximate beliefs and use it in the original model?

Belief space

Quantized beliefs

Example 3: Belief approximation in POMDPs

What is the loss in performance if we choose a policy using the approximate beliefs and use it in the original model?

Belief space Quantized beliefs
Belief approximation in POMDPs

▷ Quantized cells of radius ε (in terms of total variation) are $(\varepsilon ||r||_{\infty}, 3\varepsilon)$ -AIS.

Example 3: Belief approximation in POMDPs

Francois-Lavet, Rabusseau, Pineau, Ernst, Fonteneau, "On overfitting and asymptotic bias in batch reinforcement learning with partial observability," JAIR 2019.

Belief spaceQuantized beliefsBelief approximation in POMDPs

▶ Quantized cells of radius ε (in terms of total variation) are $(\varepsilon ||r||_{\infty}, 3\varepsilon)$ -AIS.

$$V(s) - V^{\pi}(s) \leq \frac{2\varepsilon \|\mathbf{r}\|_{\infty}}{1 - \gamma} + \frac{6\gamma\varepsilon \|\mathbf{r}\|_{\infty}}{(1 - \gamma)^2}$$

Improve bounds of Francois Lavet et al. (2019) by a factor of $1/(1 - \gamma)$.

Thus, the notion of AIS unifies many of the approximation results in the literature, both for MDPs and POMDPs.

Outline

- ▶ Use a NN to approx. action-value function $Q: \mathcal{Z} \times \mathcal{A} \rightarrow \mathbb{R}.$
- Update the parameters to minimize temporal difference loss

RL for partially observed systems-(Mahajan)

24

Update the parameters to minimize temporal difference loss

RL for partially observed systems-(Mahajan)

Numerical Experiments

MiniGrid Environments

Simple Crossing

Lava Crossing

Key Corridor

- Features ▷ Partially observable 2D grids. Agent has a view of a 7 × 7 field in front of it.Observations are obstructed by walls.
 - Multiple entities (agents, walls, lava, boxes, doors, and keys)
 - Multiple actions (Move Forward, Turn Left, Turn Right, Open Door/Box, ...)

MiniGrid Environments

RL for partially observed systems-(Mahajan)

25

Simple Crossing

Simple Crossing S9N3

RL for partially observed systems-(Mahajan)

Simple Crossing S11N5

Key Corridor

Key Corridor S3R2

27

RL for partially observed systems-(Mahajan)

Key Corridor S3R3

Obstructed Maze

Obstructed Maze 1Dl

28

RL for partially observed systems-(Mahajan)

Obstructed Maze 1Dlh

Summary

A conceptually clean framework for approximate DP and online RL in partially observed systems

RL for partially observed systems-(Mahajan)

Summary

A conceptually clean framework for approximate DP and online RL in partially observed systems

Approximation results generalize to

- observation compression
- action quantization
- lifelong learning
- multi-agent teams

RL for partially observed systems-(Mahajan)

Summary

A conceptually clean framework for approximate DP and online RL in partially observed systems

Approximation results generalize to

- observation compression
- action quantization
- lifelong learning
- multi-agent teams

Ongoing work

- Other RL settings such as offline RL, model based RL, inverse RL.
- A building block for multi-agent RL.
- > Approximations in dynamic games
- ▶ ...

email: aditya.mahajan@mcgill.ca

web: http://cim.mcgill.ca/~adityam

Thank you

Funding: NSERC, DND

paper: https://arxiv.org/abs/2010.08843
code: https://github.com/info-structures/ais