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Alpha Go
Arcade games
Robotic grasping

Recent successes of RL
Algorithms based on comprehensive theory

The theory is restricted almost exclusively
to systemswith perfect state observations.

Many real-world applications are
partially observed

Healthcare
Autonomous driving
Finance (portfolio management)
Retail and marketing

How do we develop a theory for RL for partially observed systems?
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MDP: MARKOV DECISION PROCESS

Dynamics: ℙ(St+1 | St, At)

Observations: St
Reward Rt = r(St, At).

Action: At ∼ πt(S1:t, A1:t−1).

π = (πt)t≥1 is called a policy.

The objective is to choose a policy π to maximize:

J(π) ≔ 𝔼π

[

∞

∑
t=1

γt−1Rt]

Review: Markov decision processes (MDPs)

Agent

Environment
State St ∈ 𝒮
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St

Action
At ∈ 𝒜
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MDP: MARKOV DECISION PROCESS

Dynamics: ℙ(St+1 | St, At)

Observations: St
Reward Rt = r(St, At).

Action: At ∼ πt(S1:t, A1:t−1).

π = (πt)t≥1 is called a policy.

The objective is to choose a policy π to maximize:

J(π) ≔ 𝔼π

[

∞

∑
t=1

γt−1Rt]Conceptual challenge

Brute force search has an exponential complexity in time horizon.

How to efficiently search an optimal policy?

Review: Markov decision processes (MDPs)

Agent

Environment
State St ∈ 𝒮

Obs.
St

Action
At ∈ 𝒜
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St

Action
At ∈ 𝒜

Key simplifying ideas

Principle of Irrelevant Information

Structure of
optimal policy

There is no loss of optimality
in choosing the action At as a
function of the current state St

Newspaper Blackwell, “Memoryless strategies in finite-stage dynamic prog.,” Annals Math. Stats, 1964.

Review: Markov decision processes (MDPs)
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State St ∈ 𝒮

Obs.
St

Action
At ∈ 𝒜

Key simplifying ideas

Principle of Irrelevant Information

Structure of
optimal policy

There is no loss of optimality
in choosing the action At as a
function of the current state St

Newspaper Blackwell, “Memoryless strategies in finite-stage dynamic prog.,” Annals Math. Stats, 1964.

Principle of Optimality

Dynamic
Program

The optimal control policy is given a DP with state St:

V(s) = max
a∈𝒜{r(s, a) + γ∫V(s

′)P(ds′|s, a)}

Newspaper Bellman, “Dynamic Programming,” 1957.

Review: Markov decision processes (MDPs)
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Agent

Environment
State St ∈ 𝒮

Obs.
St

Action
At ∈ 𝒜

The (online) RL setting

Dynamics and reward functions are unknown.

Agent can interact with the environment and
observe states and rewards.

Design an algorithm that asymptotically identifies
an optimal policy.

Review: Reinforcement Learning (RL)
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Agent

Environment
State St ∈ 𝒮

Obs.
St

Action
At ∈ 𝒜

The (online) RL setting

Dynamics and reward functions are unknown.

Agent can interact with the environment and
observe states and rewards.

Design an algorithm that asymptotically identifies
an optimal policy.

Value based
methods

Estimate the Q-function Q(s, a) = r(s, a) + γ∫V(s′)P(ds′|s, a) using
temporal difference learning (i.e., stochastic approximation).

[Watkins and Dayan, 1992; Tsitsiklis, 1994]

Policy-based
methods

Use parameterized policies πθ. Estimate ∇θVθ(s) using single
trajectory gradient estimates (i.e., infitesimal perturbation analysis).

[Sutton 2000, Marback and Tsitsiklis 2001], [Cao, 1985; Ho, 1987]

Review: Reinforcement Learning (RL)



Why is learning difficult in partially
observable environments?
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POMDP: PARTIALLY OBSERVABLE
MARKOV DECISION PROCESS

Dynamics: ℙ(St+1 | St, At)

Observations: ℙ(Yt | St)

Reward Rt = r(St, At).

Action: At ∼ πt(Y1:t, A1:t−1).

π = (πt)t≥1 is called a policy.

The objective is to choose a policy π to maximize:

J(π) ≔ 𝔼π

[

∞

∑
t=1

γt−1Rt]

Review: Planning in partially observable environments
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POMDP: PARTIALLY OBSERVABLE
MARKOV DECISION PROCESS

Dynamics: ℙ(St+1 | St, At)

Observations: ℙ(Yt | St)

Reward Rt = r(St, At).

Action: At ∼ πt(Y1:t, A1:t−1).

π = (πt)t≥1 is called a policy.

The objective is to choose a policy π to maximize:

J(π) ≔ 𝔼π

[

∞

∑
t=1

γt−1Rt]
Conceptual challenge

Action is a function of the history of observations and actions.

The history is increasing in time. So, the search complexity increases exponentially in time.

Review: Planning in partially observable environments

Agent

Environment
State St ∈ 𝒮

Obs.
Yt ∈ 𝒴

Action
At ∈ 𝒜
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Agent

Environment
State St ∈ 𝒮

Obs.
Yt ∈ 𝒴

Action
At ∈ 𝒜

Key simplifying idea

Define belief state Bt ∈ Δ(𝒮) as Bt(s) = ℙ(St = s | Y1:t, A1:t−1).

Belief state updates in a state-like manner
Bt+1 = function(Bt, Yt+1, At).

Belief state is sufficient to evaluate rewards

𝔼[Rt | Y1:t, A1:t] = r̂(Bt, At).

Thus, {Bt}t≥1 is a perfectly observed controlled Markov process.

Newspaper Astrom, “Optimal control of Markov processes with incomplete information,” JMAA 1965.
Newspaper Stratonovich, “Conditional Markov Processes,” TVP 1960.

Review: Planning in partially observable environments
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Agent

Environment
State St ∈ 𝒮

Obs.
Yt ∈ 𝒴

Action
At ∈ 𝒜

Key simplifying idea

Define belief state Bt ∈ Δ(𝒮) as Bt(s) = ℙ(St = s | Y1:t, A1:t−1).

Belief state updates in a state-like manner
Bt+1 = function(Bt, Yt+1, At).

Belief state is sufficient to evaluate rewards

𝔼[Rt | Y1:t, A1:t] = r̂(Bt, At).

Thus, {Bt}t≥1 is a perfectly observed controlled Markov process. Therefore:

Structure of
optimal policy

There is no loss of optimality in choosing the action At as a function
of the belief state Bt

Dynamic
Program

The optimal control policy is given a DP with belief Bt as state.

Review: Planning in partially observable environments
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Implications of the POMDP modeling framework

Implications
for planning

Allows the use of the MDP machinery for partially observed systems.

Various exact and approximate algorithms to efficiently solve the DP.

Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .



RL for partially observed systems–(Mahajan)
8

Implications of the POMDP modeling framework

Implications
for planning

Allows the use of the MDP machinery for partially observed systems.

Various exact and approximate algorithms to efficiently solve the DP.

Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .

Implications
for learning

The construction of the belief state depends on the system model.

So, when the system model is unknown, we cannot construct the
belief state and therefore cannot use standard RL algorithms.



RL for partially observed systems–(Mahajan)
8

Implications of the POMDP modeling framework

Implications
for planning

Allows the use of the MDP machinery for partially observed systems.

Various exact and approximate algorithms to efficiently solve the DP.

Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .

Implications
for learning

The construction of the belief state depends on the system model.

So, when the system model is unknown, we cannot construct the
belief state and therefore cannot use standard RL algorithms.

On the theoretical side:
Propose alternative methods: PSRs (predictive state representa-
tions), bisimulation metrics, . . .

Good theoretical guarantees, but difficult to scale.



RL for partially observed systems–(Mahajan)
8

Implications of the POMDP modeling framework

Implications
for planning

Allows the use of the MDP machinery for partially observed systems.

Various exact and approximate algorithms to efficiently solve the DP.

Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .

Implications
for learning

The construction of the belief state depends on the system model.

So, when the system model is unknown, we cannot construct the
belief state and therefore cannot use standard RL algorithms.

On the theoretical side:
Propose alternative methods: PSRs (predictive state representa-
tions), bisimulation metrics, . . .

Good theoretical guarantees, but difficult to scale.

On the practical side:
Simply stack the previous k observations and treat it as a “state”.
Instead of a CNN, use an RNN to model policy and action-value fn.

Can be made to work but lose theoretical guarantees and insights.



co-authors: J. Subramanian, A. Sinha, and R. Seraj.
paper: https://arxiv.org/abs/2010.08843
code: https://github.com/info-structures/ais

Our result: A theoretically grounded method
for RL in partially observable models

which has strong empirical performance
for high-dimensional environments.
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In many RL settings, unobserved state space may not be known
So, we work directly with input-output model

System model



RL for partially observed systems–(Mahajan)
10

Stochastic
System

Control input: At

Stochastic input: Wt

Output: Yt

Reward: Rt

Yt = ft(A1:t,W1:t),

Rt = rt(A1:t,W1:t).

A1W1

(Y1, R1)

A2W2

(Y2, R2)

AtWt

(Yt, Rt)

In many RL settings, unobserved state space may not be known
So, we work directly with input-output model

System model
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Stochastic
System

Control input: At

Stochastic input: Wt

Output: Yt

Reward: Rt

Yt = ft(A1:t,W1:t),

Rt = rt(A1:t,W1:t).

A1W1

(Y1, R1)

A2W2

(Y2, R2)

AtWt

(Yt, Rt)

Ht = (Y1:t−1, A1:t−1) denotes the history
of all data available to the agent at time t.

Agent chooses an At ∼ πt(Ht).

π = (π1, π2, . . . ) denotes the control policy.

The objective is to choose a policy π to maximize:

J(π) ≔ 𝔼π

[

∞

∑
t=1

γt−1Rt]

In many RL settings, unobserved state space may not be known
So, we work directly with input-output model

System model



RL for partially observed systems–(Mahajan)
11

Key solution concept: Information state

Informally, an information state is a compression
of information which is sufficient for

performance evaluation and predicting itself.



RL for partially observed systems–(Mahajan)
11

Key solution concept: Information state

Informally, an information state is a compression
of information which is sufficient for

performance evaluation and predicting itself.

Historical overview

Old concept. May be viewed as as generalization of the notion of state (Nerode, 1958).
Informal definitions given in Kwakernaak (1965), Bohlin (1970), Davis and Varaiya (1972), Kumar
and Varaiya (1986) but no formal analysis.

Related to but different from concepts such bisimulation, predictive state representations (PSR),
and ε-machines.
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Given a Banach space 𝒵, an INFORMATION STATE GENERATOR is a tuple of

history compression functions {σt∶ ℋt → 𝒵}t≥1

reward function r̂ : 𝒵 × 𝒜 → ℝ

transition kernel P̂ : 𝒵 × 𝒜 → Δ(𝒵)
which satisfies two properties:

Information state: Definition
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Given a Banach space 𝒵, an INFORMATION STATE GENERATOR is a tuple of

history compression functions {σt∶ ℋt → 𝒵}t≥1

reward function r̂ : 𝒵 × 𝒜 → ℝ

transition kernel P̂ : 𝒵 × 𝒜 → Δ(𝒵)
which satisfies two properties:

(P1) The reward function 𝐫 is sufficient for performance evaluation:

𝔼[Rt | Ht = ht, At = at] = r̂(σt(ht), at).

(P2) The transition kernel �̂� is sufficient for predicting the info state:

ℙ(Zt+1 ∈ B | Ht = ht, At = at) = P̂(B | σt(ht), at).

Information state: Definition
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Information state: Key result

An information state always leads to a
dynamic programming decomposition.
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Let {Zt}t≥1 be any information state process. Let V̂ be the fixed point of:

V̂(z) = max
a∈𝒜{r̂(z, a) + γ∫𝒵

V̂(z+)P̂(dz+|z, a)}

Let π∗(z) denote the arg max of the RHS. Then, the policy 𝛑 = (𝛑𝐭)𝐭≥𝟏 given
by 𝛑𝐭 = 𝛑∗ ∘ σ𝐭 is optimal.

Information state: Key result

An information state always leads to a
dynamic programming decomposition.
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Markov decision processes (MDP)

Current state St is an info state

MDP with delayed observations

(St−δ+1, At−δ+1:t−1) is an info state

POMDP

Belief state is an info state

POMDP with delayed observations

(ℙ(St−δ|Y1:t−δ, A1:t−δ), At−δ+1:t−1)
is info state

Linear Quadratic Gaussian (LQG)

The state estimate 𝔼[St|Ht] is an info state

Machine Maintenance

(τ, S+τ ) is info state,
where τ is the time of last maintenance

Examples of information state
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Info state is defined in terms of two properties (P1) & (P2).
An AIS is a process which safisfies these approximately

And now to Approximate Information States . . .
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Main idea

Info state is defined in terms of two properties (P1) & (P2).
An AIS is a process which safisfies these approximately

Show that AIS always leads to approx. DP
Recover (and improve up on) many existing results

And now to Approximate Information States . . .
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An (ε, δ)-APPROXIMATE INFORMATION STATE (AIS) generator is a tuple
(σt, r̂, P̂) which approximately satisfies (P1) and (P2):

Approximate Information state: Definition
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An (ε, δ)-APPROXIMATE INFORMATION STATE (AIS) generator is a tuple
(σt, r̂, P̂) which approximately satisfies (P1) and (P2):

(AP1) 𝐫 is sufficient for approximate performance evaluation:

|𝔼[Rt | Ht = ht, At = at] − r̂(σt(ht), at)| ≤ ε

(AP2) �̂� is sufficient for approximately predicting next AIS:

d𝔉(ℙ(Zt+1 = ⋅ | Ht = ht, At = at), P̂(⋅ |σt(ht), at)) ≤ δ

Results depend on the choice of metric on probability spaces

Approximate Information state: Definition
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Let V denote the optimal value and V̂ denote the fixed point of the following equations:

V̂(z) = max
a∈𝒜{r̂(z, a) + γ∫𝒵

V̂(z+)P̂(dz+|z, a)}

AIS based approximation bounds
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Depends on metric

Let V denote the optimal value and V̂ denote the fixed point of the following equations:

V̂(z) = max
a∈𝒜{r̂(z, a) + γ∫𝒵

V̂(z+)P̂(dz+|z, a)}

Value function
approximation

The value function V̂ is approximately optimal, i.e.,

|Vt(ht) − V̂(σt(ht))| ≤ α ≔ ε + γρ𝔉(V̂)δ
1 − γ .

Policy
approximation

Let π̂∗∶ 𝒵 → Δ(𝒜) be an optimal policy for V̂.
Then, the policy π = (π1, π2, . . . ) where πt = π̂∗ ∘ σt is approx. optimal:

Vt(ht) − Vπ
t (ht) ≤ 2α.

AIS based approximation bounds
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Given any compression function σt∶ ℋt → 𝒵, find the approximation error.

Some remarks on AIS
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Two ways to interpret the results:
Given the information state space 𝒵, find the best compression σt∶ ℋt → 𝒵
Given any compression function σt∶ ℋt → 𝒵, find the approximation error.

Most of the existing literature on approximate DPs focuses on the first interpretation

The second interpretation allows us to develop AIS-based RL algorithms

Results depend on the choice of metric on probability spaces.

The bounds use what are known as integral probability metrics (IPM), which include
many commonly used metrics:

Total variation
Wasserstein distance
Maximum mean discrepancy (MMD)

Some remarks on AIS
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(P, r) (P̂, r̂)(P, r) (P̂, r̂)
Real-world
model

Simulation
model

What is the loss in performance if we
choose a policy using the simulation
model and use it in the real world?

Example 1: Robustness to model mismatch in MDPs
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Real-world
model

Simulation
model

What is the loss in performance if we
choose a policy using the simulation
model and use it in the real world?

𝐝𝕱 is total variation

V(s) − Vπ(s) ≤ 2ε
1 − γ +

γδ span(r)
(1 − γ)2

Recover bounds of Müller (1997).

Example 1: Robustness to model mismatch in MDPs

Model mismatch as an AIS

(Identity, P̂, r̂) is an (ε, δ)-AIS with ε = sup
s,a

|r(s, a) − r̂(s, a)| and δ𝔉 = sup
s,a

d𝔉(P(⋅ |s, a), P̂(⋅ |s, a)).

Newspaper Müller, “How does the value function of a Markov decision
process depend on the transition probabilities?” MOR 1997.

Newspaper Asadi, Misra, Littman, “Lipscitz continuity in model-based
reinfocement learning,” ICML 2018.

𝐝𝕱 is Wasserstein distance

V(s) − Vπ(s) ≤ 2ε
1 − γ +

2γδLr
(1 − γ)(1 − γLp)

Recover bounds of Asadi, Misra, Littman (2018).
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𝒮 �̂�

φ

(P̂, r̂) is determined from (P, r) using φ

What is the loss in performance if we
choose a policy using the abstract model

and use it in the original model?

Example 2: Feature abstraction in MDPs



RL for partially observed systems–(Mahajan)
20

𝒮 �̂�

φ

(P̂, r̂) is determined from (P, r) using φ

What is the loss in performance if we
choose a policy using the abstract model

and use it in the original model?

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(φ, P̂, r̂) is an (ε, δ)-AIS with ε = sup
s,a

|r(s, a) − r̂(φ(s), a)|

and δ𝔉 = sup
s,a

d𝔉(P(φ−1(⋅)|s, a), P̂(⋅ |φ(s), a).
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and use it in the original model?

𝐝𝕱 is total variation

V(s) − Vπ(s) ≤ 2ε
1 − γ +

γδ𝔉 span(r)
(1 − γ)2

Improve bounds of Abel et al. (2016)

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(φ, P̂, r̂) is an (ε, δ)-AIS with ε = sup
s,a

|r(s, a) − r̂(φ(s), a)|

and δ𝔉 = sup
s,a

d𝔉(P(φ−1(⋅)|s, a), P̂(⋅ |φ(s), a).

Newspaper Abel, Hershkowitz, Littman, “Near optimal behavior via
approximate state abstraction,” ICML 2016.
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1 − γ +

γδ𝔉 span(r)
(1 − γ)2

Improve bounds of Abel et al. (2016)

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(φ, P̂, r̂) is an (ε, δ)-AIS with ε = sup
s,a

|r(s, a) − r̂(φ(s), a)|

and δ𝔉 = sup
s,a

d𝔉(P(φ−1(⋅)|s, a), P̂(⋅ |φ(s), a).

Newspaper Abel, Hershkowitz, Littman, “Near optimal behavior via
approximate state abstraction,” ICML 2016.

Newspaper Gelada, Kumar, Buckman, Nachum, Bellemare, “DeepMDP:
Learning continuous latent spacemodels for representation
learning,” ICML 2019.

𝐝𝕱 is Wasserstein distance

V(s) − Vπ(s) ≤ 2ε
1 − γ +

2γδ𝔉‖V̂‖Lip
(1 − γ)2

Recover bounds of Gelada et al. (2019).
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Belief space Quantized beliefs

What is the loss in performance if we
choose a policy using the approximate
beliefs and use it in the original model?

Example 3: Belief approximation in POMDPs



RL for partially observed systems–(Mahajan)
21

Belief space Quantized beliefs

What is the loss in performance if we
choose a policy using the approximate
beliefs and use it in the original model?

Example 3: Belief approximation in POMDPs

Belief approximation in POMDPs

Quantized cells of radius ε (in terms of total variation) are (ε‖r‖∞, 3ε)-AIS.
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Belief space Quantized beliefs

What is the loss in performance if we
choose a policy using the approximate
beliefs and use it in the original model?

V(s) − Vπ(s) ≤ 2ε‖r‖∞
1 − γ + 6γε‖r‖∞(1 − γ)2

Improve bounds of Francois Lavet et al. (2019) by a factor of 1/(1 − γ).

Example 3: Belief approximation in POMDPs

Belief approximation in POMDPs

Quantized cells of radius ε (in terms of total variation) are (ε‖r‖∞, 3ε)-AIS.

Newspaper Francois-Lavet, Rabusseau, Pineau, Ernst, Fonteneau, “On
overfitting and asymptotic bias in batch reinforcement
learning with partial observability,” JAIR 2019.



Thus, the notion of AIS unifies many
of the approximation results in the

literature, both for MDPs and POMDPs.



RL for partially observed systems–(Mahajan)
22

Outline

Background
Review of MDPs and RL
Review of POMDPs
Why is RL for POMDPs difficult?

Approximate
Planning for

POMDPs

Preliminaries on information state
Approximate information state
Approximation bounds

RL for POMDPs
From approximation bounds to RL
Numerical experiments



RL for partially observed systems–(Mahajan)
23

Main idea

AIS is defined in terms of two losses ε and δ.
Minimizing ε and δ will minimize the AIS approximation loss.

From approximation bounds to reinforcement learning . . .
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Main idea

AIS is defined in terms of two losses ε and δ.
Minimizing ε and δ will minimize the AIS approximation loss.

Use λε2 + (1 − λ)δ2 as surrogate loss for the AIS generator
. . . and combine it with standard actor-critic algorithm
using multi-timescale stochastic approximation.

From approximation bounds to reinforcement learning . . .
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AIS Generator

Use LSTM for σt∶ ℋt → 𝒵 and
a NN for functions r̂ and P̂.

Use λ(R̃t−Rt)2+ (1−λ)d𝔉(μt, νt)2 as surrogate loss.

We show that ∇d𝔉(μt, νt)2 can be computed effi-
ciently for Wasserstein distance and MMD.

Reinforcement learning setup

AIS
Encoder

AIS
Decoder

Zt

AIS Generator
At

At−1

Yt−1

R̃t

νt
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AIS Generator

Use LSTM for σt∶ ℋt → 𝒵 and
a NN for functions r̂ and P̂.

Use λ(R̃t−Rt)2+ (1−λ)d𝔉(μt, νt)2 as surrogate loss.

We show that ∇d𝔉(μt, νt)2 can be computed effi-
ciently for Wasserstein distance and MMD.

Value approximator

Use a NN to approx. action-value function
Q∶𝒵 × 𝒜 → ℝ.

Update the parameters to minimize tem-
poral difference loss

Policy approximator

Use a NN to approx. policy π∶ 𝒵 → Δ(𝒜).

Use policy gradient theorem to efficiently
compute ∇J(π).

Reinforcement learning setup

AIS
Encoder

AIS
Decoder

Zt

AIS Generator
At

At−1

Yt−1

R̃t

νt

Value
approx.

Critic

AtPolicy
approx.

Actor

Convergence Guarantees

Use multi-timescale stochastic approximation to simultaneously
learn AIS generator, action-value function, and policy.

Under appropriate technical assumptions, converges to the sta-
tionary point corresponding to the choice of function approxima-
tors.



Numerical Experiments
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Simple Crossing Lava Crossing Key Corridor

MiniGrid Environments

Features Partially observable 2D grids. Agent has a view of a 7 × 7 field in front of it.
Observations are obstructed by walls.

Multiple entities (agents, walls, lava, boxes, doors, and keys)

Multiple actions (Move Forward, Turn Left, Turn Right, Open Door/Box, . . . )
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Simple Crossing Lava Crossing Key Corridor

MiniGrid Environments

Algorithms

AIS + MMD

AIS with MMD as IPM

AIS + KL

AIS with KL as upper bound
of Wasserstein distance

PPO + LSTM

Baseline proposed in paper
introducing minigrid envs
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Simple Crossing S9N3

Simple Crossing S11N5

Simple Crossing
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Key Corridor S3R2

Key Corridor S3R3

Key Corridor



RL for partially observed systems–(Mahajan)
28

Obstructed Maze 1Dl

Obstructed Maze 1Dlh

Obstructed Maze
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Summary

A conceptually clean framework for approximate DP
and online RL in partially observed systems
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Approximation results generalize to

observation compression
action quantization
lifelong learning
multi-agent teams

Summary

A conceptually clean framework for approximate DP
and online RL in partially observed systems
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Approximation results generalize to

observation compression
action quantization
lifelong learning
multi-agent teams

Ongoing work

Other RL settings such as offline RL, model
based RL, inverse RL.
A building block for multi-agent RL.
Approximations in dynamic games
. . .

Summary

A conceptually clean framework for approximate DP
and online RL in partially observed systems
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