Introduction to Sequential Teams ADITYA MAHAJAN MCGILL UNIVERSITY

Joint work with: Ashutosh Nayyar and Demos Teneketzis, UMichigan

MITACS Workshop on Fusion and Inference in Networks, 2011

Decentralized systems

are ubiquitous

Real-time quantization

Objective Choose transmission and estimation policy to minimize expected total distortion (over a finite or infinite horizon)

Multiaccess broadcast

Objective Choose transmission policy to maximize throughput (over a finite or infinite horizon)

Estimating with active sensing

Objective Choose transmission and estimation policy to minimize a weighted average of expected transmission cost and expected total distortion (over a finite or infinite horizon)

Systematic design of decentralized systems

Salient Features

- Multi-stage decision problems
- Multiple decision makers (or agents) with decentralized information
- Structure of optimal policy

Can an agent, or a group of agents

- Shed available data
- Compress available data without loss of optimality?
- Search for optimal policies
 - Brute force search of an optimal policy has doubly exponential complexity with time-horizon.
 - ► How can we search for an optimal policy efficiently?

Outline

- A taxonomy of decentralized systems
- Overview of centralized stochastic control
 - Markov decision processes (MDP)
 - Partially observable Markov decision processes (POMDP)
 - Delayed state observation
- Design principle for sequential teams.
 - Delayed state observation

We are interested in

Sequential dynamic teams

with non-classical information structures

THI THI THI THI THI

A bit of history ...

TEAM DECISION PROBLEMS¹

BY R. RADNER

University of California, Berkeley

1. Introduction. In a *team decision problem* there are two or more decision variables, and these different decisions can be made to depend upon different aspects of the environment, i.e., upon different information variables. For ex-

NII NII NII NII NII NII

A bit of history ...

SIAM J. CONTROL Vol. 9, No. 2, May 1971

ON INFORMATION STRUCTURES, FEEDBACK AND CAUSALITY*

H. S. WITSENHAUSEN†

Abstract. A finite number of decisions, indexed by $\alpha \in A$, are to be taken. Each decision amounts to selecting a point in a measurable space $(U_x, \mathscr{F}_\alpha)$. Each decision is based on some information fed back from the system and characterized by a subfield \mathscr{I}_α of the product space $(\prod_{\alpha} U_{\alpha}, \prod_{\alpha} \mathscr{F}_{\alpha})$. The decision function for each α can be any function γ_α measurable from \mathscr{I}_α to \mathscr{F}_α .

proceedings of the ieee, vol. 59, no. 11, november 1971

Separation of Estimation and Control for Discrete Time Systems

HANS S. WITSENHAUSEN, MEMBER, IEEE

Invited Paper

NII NII NII NII NII NII

1557

PROBABILITY AND MATHEMATICAL STATISTICS

A Series of Monographs and Textbooks

INTRODUCTION TO STOCHASTIC DYNAMIC PROGRAMMING

SHELDON M. ROSS

O. Hernández-Lerma

Adaptive Mathematical Sciences Adaptive Markov Control Processes

DYNAMIC PROGRAMMING

Models and Applications

Overview of centralized stochastic control

CONSTRAINED MARKOV DECISION PROCESSES

Eitan Altman

CHAPMAN & HALL/CRC

Eric V. Denardo

Dynamic Programming and Optimal Control

NOTUME 2

DIMITRI P. BERTSEKAS

Centralized stochastic control

Single decision maker

with classical information structures

Structure of optimal policy

Choose current action based on current state \mathbf{X}_{t}

THU THU THU THU THU

Structure of optimal policy

Choose current action based on current state $\boldsymbol{X}_{\boldsymbol{t}}$

Structure of optimal policy

Choose current action based on current state \mathbf{X}_{t}

THI THI THI THI THI

Structure of optimal policies

Choose current action based on current info state

Pr(state of system | all data at agent)

THI THI THI THI THI

Structure of optimal policies

Choose current action based on current info state

Pr(state of system | all data at agent)

Structure of optimal policies

Choose current action based on current info state

Pr(state of system | all data at agent)

THI THI THI THI THI

Structure of optimal policies Choose control action based on: $\pi_t = \Pr(X_t | X_{1:t-d}, U_{1:t-1})$ $\equiv (X_{t-d}, U_{t-d:t-1})$

Original form of control laws $U_t = g_t(X_{1:t-d}, U_{1:t-1})$

Structure of optimal policies Choose control action based on: $\pi_t = \Pr(X_t | X_{1:t-d}, U_{1:t-1})$ $\equiv (X_{t-d}, U_{t-d:t-1})$

THU THU THU THU THU THU

Original form of control laws $U_t = g_t(X_{1:t-d}, U_{1:t-1})$

Structure of optimal policies Choose control action based on: $\pi_t = \Pr(X_t | X_{1:t-d}, U_{1:t-1})$ $\equiv (X_{t-d}, U_{t-d:t-1})$ Simplified form of control laws $U_t = g_t(X_{t-d}, U_{t-d:t-1})$

THI THI THI THI THI THI

Structural policies in stochastic control

- Structure of optimal policies
 - Shed irrelevant information
 - Compress relevant information to a compact statistic
 - ► Hopefully, the data at the agent is not increasing with time

Structural policies in stochastic control

- Structure of optimal policies
 - ▶ Shed irrelevant information
 - Compress relevant information to a compact statistic
 - ▶ Hopefully, the data at the agent is not increasing with time
- Implication of the results
 - Simplify the functional form of the decision rules
 - Simplify search for optimal decision rules
 - ► A prerequisite for deriving dynamic programming decomposition.

Extending ideas to decentralized control

 \parallel

Delayed observation of state

Original form of control laws $U_{t}^{i} = g_{t}^{i} \left(\begin{bmatrix} X_{1:t}^{i} \\ U_{1:t-1}^{i} \end{bmatrix}, \begin{bmatrix} X_{1:t-d}^{j} \\ U_{1:t-d}^{j} \end{bmatrix} \right)$

THI THI THI THI THI

Delayed observation of state

Original form of control laws $U_t^i = g_t^i \left(\begin{bmatrix} X_{1:t}^i \\ U_{1:t-1}^i \end{bmatrix}, \begin{bmatrix} X_{1:t-d}^j \\ U_{1:t-d}^j \end{bmatrix} \right)$ Is this structure correct? $U_{t}^{i} = g_{t}^{i} \left(\begin{bmatrix} X_{t-d:t}^{i} \\ U_{t-d:t-1}^{i} \end{bmatrix}, \begin{bmatrix} X_{t-d}^{j} \\ U_{t-d}^{j} \end{bmatrix} \right)$

Lets consider delay d = 2

At Agent 1

$$U_{1}^{1} = g_{1}^{1}(X_{1}^{1})$$

$$U_{2}^{1} = g_{2}^{1}(X_{1:2}^{1}, U_{1}^{1})$$

$$U_{3}^{1} = g_{3}^{1}(X_{1:3}^{1}, U_{1:2}^{1}, X_{1}^{2}, U_{1}^{2})$$

$$U_{4}^{1} = g_{4}^{1}(X_{1:4}^{1}, U_{1:3}^{1}, X_{1:2}^{2}, U_{1:2}^{2})$$

Lets consider delay d = 2

At Agent 1

$$U_{1}^{1} = g_{1}^{1}(X_{1}^{1})$$

$$U_{2}^{1} = g_{2}^{1}(X_{1:2}^{1}, U_{1}^{1})$$

$$U_{3}^{1} = g_{3}^{1}(X_{1:3}^{1}, U_{1:2}^{1}, X_{1}^{2}, U_{1}^{2})$$

$$U_{4}^{1} = g_{4}^{1}(X_{1:4}^{1}, U_{1:3}^{1}, X_{1:2}^{2}, U_{1:2}^{2})$$

$$U_{1}^{2} = g_{1}^{2}(X_{1}^{2})$$

$$U_{2}^{2} = g_{2}^{2}(X_{1:2}^{2}, U_{1}^{2})$$

$$U_{3}^{2} = g_{3}^{2}(X_{1:3}^{2}, U_{1:2}^{2}, X_{1}^{1}, U_{1}^{1})$$

$$U_{4}^{2} = g_{4}^{2}(X_{1:4}^{2}, U_{1:3}^{2}, X_{1:2}^{1}, U_{1:2}^{1})$$

THI THI THI THI THI THI

Lets consider delay d = 2

At Agent 1

At time 4, agent 1 can't remove X_1^1 because X_1^1 gives some information about U_4^2 .

$$U_{1}^{1} = g_{1}^{1}(X_{1}^{1})$$

$$U_{2}^{1} = g_{2}^{1}(X_{1:2}^{1}, U_{1}^{1})$$

$$U_{3}^{1} = g_{3}^{1}(X_{1:3}^{1}, U_{1:2}^{1}, X_{1}^{2}, U_{1}^{2})$$

$$U_{4}^{1} = g_{4}^{1}(X_{1:4}^{1}, U_{1:3}^{1}, X_{1:2}^{2}, U_{1:2}^{2})$$

$$U_{1}^{2} = g_{1}^{2}(X_{1}^{2})$$

$$U_{2}^{2} = g_{2}^{2}(X_{1:2}^{2}, U_{1}^{2})$$

$$U_{3}^{2} = g_{3}^{2}(X_{1:3}^{2}, U_{1:2}^{2}, X_{1}^{1}, U_{1}^{1})$$

$$U_{4}^{2} = g_{4}^{2}(X_{1:4}^{2}, U_{1:3}^{2}, X_{1:2}^{1}, U_{1:2}^{1})$$

How does agent 1 figure out how agent 2 will interpret his (agent 1's) actions?

How does agent 1 figure out how agent 2 will interpret his (agent 1's) actions?

61

Solution Approach

[Mahajan 2008, 2009; Nayyar Mahajan Teneketzis 2008, 2011]

Adapt based on common knowledge

Solution Approach

JHT JHT JHT JHT JHT JHT

[Mahajan 2008, 2009; Nayyar Mahajan Teneketzis 2008, 2011]

- Adapt based on common knowledge
- Split observations into two parts:
 - Common data: $C_t = (X_{1:t-2}^1, X_{1:t-2}^2, U_{1:t-2}^1, U_{1:t-2}^2)$

• Local data:
$$L_t^i = (X_{t-1}^i, X_t^i, U_{t-1}^i).$$

Solution Approach

[Mahajan 2008, 2009; Nayyar Mahajan Teneketzis 2008, 2011]

- Adapt based on common knowledge
- Split observations into two parts:
 - Common data: $C_t = (X_{1:t-2}^1, X_{1:t-2}^2, U_{1:t-2}^1, U_{1:t-2}^2)$
 - ▶ Local data: $L_t^i = (X_{t-1}^i, X_t^i, U_{t-1}^i).$
 - A three step approach:
 - 1. Consider a coordinated system
 - 2. Show that the coordinated system is equivalent to the original system
 - 3. Simplify the coordinated system

Original System

Coordinated System

Coordinated System

- Observations: $C_t = (X_{1:t-2}^1, X_{1:t-2}^2, U_{1:t-2}^1, U_{1:t-2}^2)$
- Control "actions": Function sections γ_t^1 , γ_t^2

 $\gamma_t^i(\cdot) = g_t^i(\cdot, C_t)$

Agents are dumb and simply follow the prescription

$$U_{t}^{i} = \gamma_{t}^{i}(L_{t}^{i}) = \gamma_{t}^{i}(X_{t-1}^{i}, X_{t}^{i}, U_{t-1}^{i})$$

Coordinated System

- Observations: $C_t = (X_{1:t-2}^1, X_{1:t-2}^2, U_{1:t-2}^1, U_{1:t-2}^2)$
- Control "actions": Function sections γ_t^1 , γ_t^2

 $\gamma_t^i(\cdot) = g_t^i(\cdot, C_t)$

Agents are dumb and simply follow the prescription

$$U_{t}^{i} = \gamma_{t}^{i}(L_{t}^{i}) = \gamma_{t}^{i}(X_{t-1}^{i}, X_{t}^{i}, U_{t-1}^{i})$$

The two systems are equivalent

 $(\gamma_t^1, \gamma_t^2) = \psi_t(Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2), \text{ where } Z_t = (X_t^1, X_t^2, U_t^1, U_t^2)$

 $(\gamma_t^1, \gamma_t^2) = \psi_t(Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2), \text{ where } Z_t = (X_t^1, X_t^2, U_t^1, U_t^2)$

Sufficient statistic

 $\pi_t = \Pr(\text{state}|\text{all past data})$

 $(\gamma_t^1, \gamma_t^2) = \psi_t(Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2), \text{ where } Z_t = (X_t^1, X_t^2, U_t^1, U_t^2)$

Sufficient statistic

 $\pi_t = \Pr(\text{state}|\text{all past data})$

 $= \Pr(X_t^1, X_t^2, L_t^1, L_t^2 | Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2)$

 $(\gamma_t^1, \gamma_t^2) = \psi_t(Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2), \text{ where } Z_t = (X_t^1, X_t^2, U_t^1, U_t^2)$

Sufficient statistic

 $\pi_t = \Pr(\text{state}|\text{all past data})$

 $= \Pr(X_t^1, X_t^2, L_t^1, L_t^2 | Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2)$

$$= \Pr(X_t^1, X_t^2, Z_{t-1} | Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2)$$

THI THI THI THI THI THI

 $(\gamma_t^1, \gamma_t^2) = \psi_t(Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2), \text{ where } Z_t = (X_t^1, X_t^2, U_t^1, U_t^2)$

Sufficient statistic

 $\pi_{t} = \Pr(\text{state}|\text{all past data})$ = $\Pr(X_{t}^{1}, X_{t}^{2}, L_{t}^{1}, L_{t}^{2}|Z_{1:t-2}, \gamma_{1:t-1}^{1}, \gamma_{1:t-1}^{2})$ = $\Pr(X_{t}^{1}, X_{t}^{2}, Z_{t-1}|Z_{1:t-2}, \gamma_{1:t-1}^{1}, \gamma_{1:t-1}^{2})$

Structural result:

 $(\gamma_t^1, \gamma_t^2) = \psi_t(\pi_t)$

 $(\gamma_t^1, \gamma_t^2) = \psi_t(Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2), \text{ where } Z_t = (X_t^1, X_t^2, U_t^1, U_t^2)$

Sufficient statistic

 $\pi_t = \Pr(\text{state}|\text{all past data})$ = $\Pr(X_t^1, X_t^2, L_t^1, L_t^2 | Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2)$ = $\Pr(X_t^1, X_t^2, Z_{t-1} | Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2)$

Structural result:

$$(\gamma_t^1, \gamma_t^2) = \psi_t(\pi_t)$$

Or equivalently,

 $U_t^i = g_t^i(\pi_t, L_t^i)$

THI THI THI THI THI THI

Further Simplification

THI THI THI THI THI THI

Further Simplification

We can show that

$$\pi_t = \Pr(X_t^1, X_t^2, Z_{t-1} | Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2) \equiv (Z_{t-2}, \hat{\gamma}_{t-1}^1, \hat{\gamma}_{t-1}^2)$$

Further Simplification

 $\pi_t = \Pr(X_t^1, X_t^2, Z_{t-1} | Z_{1:t-2}, \gamma_{1:t-1}^1, \gamma_{1:t-1}^2) \equiv (Z_{t-2}, \hat{\gamma}_{t-1}^1, \hat{\gamma}_{t-1}^2)$

Equivalent structural result

$$U_t^i = g_t^i \left(\begin{bmatrix} X_{t-2:t}^i \\ U_{t-2:t-1}^i \end{bmatrix}, \begin{bmatrix} X_{t-2}^j \\ U_{t-2}^j \end{bmatrix}, \hat{\gamma}_{t-1}^1, \hat{\gamma}_{t-1}^2 \right)$$

JHT JHT JHT JHT JHT IHT

Recap: Solution approach

[Mahajan 2008, 2009; Nayyar Mahajan Teneketzis 2008, 2011]

- Adapt based on common knowledge
- Split observations into two parts:
 - ► Common data: $C_t = (X_{1:t-2}^1, X_{1:t-2}^2, U_{1:t-2}^1, U_{1:t-2}^2)$
 - ► Local data: $L_t^i = (X_{t-1}^i, X_t^i, U_{t-1}^i).$
 - A three step approach:
 - 1. Consider a coordinated system
 - 2. Show that the coordinated system is equivalent to the original system
 - 3. Simplify the coordinated system

THE THE THE THE THE IN

Applications

- Delayed sharing info structure (Open problem for 40 years) [Nayyar Mahajan Teneketzis 2011]
- real-time communication, feedback communication, multi-user communication, decentralized sequential hypothesis testing, multiaccess broadcast, active sensing, ...

Future directions

- Randomized decision rules
- Unknown model

