Optimal decentralized stochastic control: A common information approach

Aditya Mahajan McGill University

Joint work: Ashutosh Nayyar (UIUC) and Demosthenis Teneketzis (Univ of Michigan)

GERAD Seminar, April 23, 2012

Common theme: multi-stage multi-agent decision making under uncertainty

Aditya Mahajan

Aditya Mahajan

Challenges

- How to coordinate?
- ⁽⁶⁾ When, what, and how to communicate?

Aditya Mahajan

Limited resources

Limited resources Noisy observations Communication

Limited resources Noisy observations Communication

Challenges

- Real-time communication
- Scheduling measurements and communication
- Detect node failures

Aditya Mahajan

Aditya Mahajan

Challenges

Sontrol and communication over networks (internet \Rightarrow delay, wireless \Rightarrow losses)

Challenges

- (internet \Rightarrow delay, wireless \Rightarrow losses)
- Distributed estimation

Challenges

- Sontrol and communication over networks (internet \Rightarrow delay, wireless \Rightarrow losses)
- Distributed estimation
- Distribued learning

Multiple decision makers

Decisions made by multiple controllers in a stochastic environment

Multiple decision makers

Decisions made by multiple controllers in a stochastic environment

Coordination issues

All controllers must coordinate to achieve a system-wide objective

Multiple decision makers

Decisions made by multiple controllers in a stochastic environment

Coordination issues

All controllers must coordinate to achieve a system-wide objective

Communication issues

Controllers can communicate either directly or indirectly

Multiple decision makers

Decisions made by multiple controllers in a stochastic environment

Coordination issues

All controllers must coordinate to achieve a system-wide objective

Communication issues

Controllers can communicate either directly or indirectly

Robustness

System model may not be completely known

Outline of this talk

Decentralized stochastic control

Classification and examples

Solution approaches

A common information based approach

Delayed sharing information structure

Structure of optimal strategies and dynamic programming decomposition

Concluding remarks

Generalizations and Connection to other results

Outline of this talk

Decentralized stochastic control Classification and examples

Solution approaches

A common information based approach

Delayed sharing information structure

Structure of optimal strategies and dynamic programming decomposition

Concluding remarks

Generalizations and Connection to other results

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

- 1. Objective
 - Team vs Games

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

1. Objective
Team vs Games2. Dynamics
Static vs Dynamic

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

1. Objective Team vs Games 2. Dynamics Static vs Dynamic

This talk will focus on Dynamic Teams

Controllers/agents are coupled in two ways:

- 1. Coupling due to cost/utility
- 2. Coupling due to dynamics

Decentralized systems may be classified according to:

1. Objective Team vs Games 2. Dynamics Static vs Dynamic

This talk will focus on Dynamic Teams

- Studied in economics and systems and control since the mid 50s.
- \circledast Unlike games, agents have no incentive to cheat.
- Instead of equilibrium, we seek globally optimal strategies.

Why is decentralized stochastic control difficult?

$$P = \begin{bmatrix} \bullet & \bullet & \bullet \end{bmatrix}$$
$$\boxed{\begin{array}{cccc} \omega_1 & \omega_2 & \omega_3 & \omega_4 \end{bmatrix}}$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \end{bmatrix}$$
$$x = \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ 1 & 1 & 2 & 2 \end{bmatrix}$$

 $u={\color{black}g}(x)\in\{1,2,3\}$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet \end{bmatrix}$$
$$x = \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 & \omega_4 \\ 1 & 1 & 2 & 2 \end{bmatrix}$$

 $u=\boldsymbol{g}(x)\in\{1,2,3\}$

 $c(\omega, u)$

$$u = 1$$

$$u = 2$$

$$u = 3$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

 $\omega_1 \quad \omega_2 \quad \omega_3 \quad \omega_4$

$$J(g) = \mathbb{E}^{g}[c(\omega, u)]$$

Brute force search

min J(g), $|g| = |\mathcal{U}|^{|\mathcal{X}|} = 9$ possibilities.

$$P = [\bullet \bullet \bullet \bullet] \qquad c(\omega, u) \qquad u = 1 \qquad u = 2 \qquad u = 2 \qquad u = 3 \qquad$$

$$P = [\bullet \bullet \bullet \bullet] \qquad c(\omega, u) \qquad u = 1 \qquad$$

$$P = \begin{bmatrix} \bullet & \bullet & \bullet \end{bmatrix}$$
$$\boxed{\begin{array}{c|c} \omega_1 & \omega_2 & \omega_3 & \omega_4 \end{bmatrix}}$$

$$u = g(x) \in \{1, 2, 3\}$$
 $v = h(y) \in \{1, 2\}$

 $u = g(x) \in \{1, 2, 3\}$ $v = h(y) \in \{1, 2\}$

$$J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$$

 $c(\omega, u, v)$

 $u = g(x) \in \{1, 2, 3\} \quad v = h(y) \in \{1, 2\}$

 $J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$

Brute force search $\min_{g,h} J$

 $\min_{g,h} J(g,h), \quad |g| = |\mathcal{U}|^{|\mathcal{X}|}, |h| = |\mathcal{V}|^{|\mathcal{Y}|},$ $9 \times 4 = 36 \text{ possibilities.}$

 $u = g(x) \in \{1, 2, 3\} \quad v = h(y) \in \{1, 2\}$

 $J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$

Brute force search $\min_{g,h} J(g), \quad |g| = |\mathcal{U}|^{|\mathcal{X}|}, \ |h| = |\mathcal{V}|^{|\mathcal{Y}|},$ $9 \times 4 = 36 \text{ possibilities}.$

For one controller/agent to choose an optimal action, it must second guess the other controller's/agent's policy

 $c(\omega, u, v)$

 $u = g(x) \in \{1, 2, 3\} \quad v = h(y) \in \{1, 2\}$

 $J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$

Orthogonal search

- 1. Suppose *h* is fixed: $\min_{u_i} \mathbb{E}^h[c(\omega, u_i, v) \mid x = i], \quad i = 1, 2, 3.$
- 2. Suppose g is fixed: $\min_{v_j} \mathbb{E}^{g}[c(\omega, u, v_j) \mid y = j], \quad j = 1, 2.$

 $u = g(x) \in \{1, 2, 3\} \quad v = h(y) \in \{1, 2\}$

 $J(g,h) = \mathbb{E}^{g,h}[c(\omega,u,v)]$

Orthogonal search yields person-by-person opt strategy

- 1. Suppose *h* is fixed: $\min_{u_i} \mathbb{E}^h[c(\omega, u_i, v) \mid x = i], \quad i = 1, 2, 3.$
- 2. Suppose g is fixed: $\min_{v_j} \mathbb{E}^{g}[c(\omega, u, v_j) \mid y = j], \quad j = 1, 2.$

To find globally optimal strategies, in general, we cannot do better than brute force search

ω_1	ω2	ω3	ω ₄
ω_5	ω ₆	ω ₇	ω_8

ω_1	ω2	ω3	ω ₄	$y_1 = 1$
ω_5	ω ₆	ω ₇	ω ₈	$y_1 = 2$

ω_1	ω2	ω3	ω_4	$y_1 = 1$	$u_1 = g_1(y_1) \in \{1, 2\}$
ω_5	ω ₆	ω ₇	ω ₈	$y_1 = 2$	

 $J(g_1, g_2) = \mathbb{E}^{g_1, g_2} [c_1(\omega, u_1) + c_2(\omega, u_2)]$

 $J(g_1, g_2) = \mathbb{E}^{g_1, g_2} [c_1(\omega, u_1) + c_2(\omega, u_2)]$

$$J(g_1, g_2) = \mathbb{E}^{g_1, g_2}[c_1(\omega, u_1) + c_2(\omega, u_2)]$$

Critical Assumption: Centralized information

$$d_1 \subseteq d_2$$

Brute force search $\min_{g_1,g_2} J(g_1,g_2).$ $|g_1| = |\mathcal{U}_1|^{|\mathcal{Y}_1|}, |g_2| = |\mathcal{U}_2|^{|\mathcal{Y}_1| \times |\mathcal{Y}_2| \times |\mathcal{U}_1|}. 2^2 \times 2^8 = 1024 \text{ possiblities.}$

Brute force search $\min_{g_1,g_2} J(g_1,g_2).$ $|g_1| = |\mathcal{U}_1|^{|\mathcal{Y}_1|}, |g_2| = |\mathcal{U}_2|^{|\mathcal{Y}_1| \times |\mathcal{Y}_2| \times |\mathcal{U}_1|}. 2^2 \times 2^8 = 1024 \text{ possiblities.}$

Dynamic programming decomposition

$$V_2(d_2) = \min_{u_2} \mathbb{E}[c_2(\omega, u_2) \mid d_2, u_2]$$
$$V_1(d_1) = \min_{u_1} \mathbb{E}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1]$$

Brute force search $\min_{g_1,g_2} J(g_1,g_2)$. (functional opt.) $|g_1| = |\mathcal{U}_1|^{|\mathcal{Y}_1|}, |g_2| = |\mathcal{U}_2|^{|\mathcal{Y}_1| \times |\mathcal{Y}_2| \times |\mathcal{U}_1|}. 2^2 \times 2^8 = 1024$ possiblities.

Dynamic programming decomposition

(parametric opt.)

$$V_2(d_2) = \min_{u_2} \mathbb{E}[c_2(\omega, u_2) \mid d_2, u_2]$$
$$V_1(d_1) = \min_{u_1} \mathbb{E}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1]$$

Brute force search $\min_{g_1,g_2} J(g_1,g_2)$. (functional opt.) $|g_1| = |\mathcal{U}_1|^{|\mathcal{Y}_1|}, |g_2| = |\mathcal{U}_2|^{|\mathcal{Y}_1| \times |\mathcal{Y}_2| \times |\mathcal{U}_1|}. 2^2 \times 2^8 = 1024$ possiblities.

Dynamic programming decomposition

(parametric opt.)

$$V_2(d_2) = \min_{u_2} \mathbb{E}[c_2(\omega, u_2) \mid d_2, u_2]$$
$$V_1(d_1) = \min_{u_1} \mathbb{E}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1]$$

Step 1 works because P(ω | d₂) does not depend on g₁.
 Step 2 works because P(d₂ | d₁, u₁) does not depend on g₁.

Brute force search $\min_{g_1,g_2} J(g_1,g_2)$. (functional opt.) $|g_1| = |\mathcal{U}_1|^{|\mathcal{Y}_1|}, |g_2| = |\mathcal{U}_2|^{|\mathcal{Y}_1| \times |\mathcal{Y}_2| \times |\mathcal{U}_1|}. 2^2 \times 2^8 = 1024$ possiblities.

Dynamic programming decomposition

(parametric opt.)

$$V_2(d_2) = \min_{u_2} \mathbb{E}[c_2(\omega, u_2) \mid d_2, u_2]$$
$$V_1(d_1) = \min_{u_1} \mathbb{E}[c_1(\omega, u_1) + V_2(d_2) \mid d_1, u_1]$$

Step 1 works because $\mathbb{P}(\omega \mid d_2)$ does not depend on g_1 .

Step 2 works because $\mathbb{P}(d_2 \mid d_1, u_1)$ does not depend on g_1 .

I Both steps work because $d_1 \subseteq d_2$

 $J(g_1, g_2) = \mathbb{E}^{g_1, g_2}[c_1(\omega, u_1) + c_2(\omega, u_2)]$

$$J(g_1, g_2) = \mathbb{E}^{g_1, g_2} [c_1(\omega, u_1) + c_2(\omega, u_2)]$$

Critical Assumption: Decentralized information

$$d_1 \not\subseteq d_2$$

Can we do better than brute force search?

Usual Dynamic programming does not work?

 $V_{2}(d_{2}) \stackrel{?}{=} \min_{u_{2}} \mathbb{E}^{g_{1}}[c_{2}(\omega, u_{2}) \mid d_{2}, u_{2}]$ $V_{1}(d_{1}) \stackrel{?}{=} \min_{u_{1}} \mathbb{E}^{g_{1}}[c_{1}(\omega, u_{1}) + V_{2}(d_{2}) \mid d_{1}, u_{1}]$

Usual Dynamic programming does not work?

$$V_{2}(d_{2}) \stackrel{?}{=} \min_{u_{2}} \mathbb{E}^{g_{1}}[c_{2}(\omega, u_{2}) \mid d_{2}, u_{2}]$$
$$V_{1}(d_{1}) \stackrel{?}{=} \min_{u_{1}} \mathbb{E}^{g_{1}}[c_{1}(\omega, u_{1}) + V_{2}(d_{2}) \mid d_{1}, u_{1}]$$

A sequential decomposition is possible (Witsenhausen, 1973) Define $\pi_t = \mathbb{P}(\omega \mid g_{1:t-1})$.

$$V_t(\pi_t) = \min_{g_t} \mathbb{E}^{g_t} [c_t(\omega, u_t) + V_{t+1}(\pi_{t+1}) \mid \pi_t]$$

But, the worst case complexity remains the same.

Can we obtain a systematic approach to find optimal strategies that does better than brute force search?

Outline of this talk

Decentralized stochastic control

Classification and examples

Solution approaches

A common information based approach

Delayed sharing information structure

Structure of optimal strategies and dynamic programming decomposition

Concluding remarks

Generalizations and Connection to other results

Dynamical Model

Aditya Mahajan

Optimal decentralized stochastic control

Dynamical Model

Dynamical Model

Dynamical Model

Dynamical Model

Intrinsic Model

Optimal decentralized stochastic control

The intrinsic model for controlled dynamical systems

Optimal decentralized stochastic control

The intrinsic model for controlled dynamical systems

Dynamical Model

Intrinsic Model

The intrinsic model for controlled dynamical systems

Optimal decentralized stochastic control

In a centralized system, i.e., $d_t \subseteq d_{t+1}$, a function $\pi_t = \pi_t(d_t)$ is an information state if it satisfies:

1. The controller Markov property

 $\mathbb{E}^{\boldsymbol{g}}[\pi_{t+1} \mid d_t, u_t] = \mathbb{E}[\pi_{t+1} \mid \pi_t, u_t]$

2. The expected cost property

 $\mathbb{E}^{\boldsymbol{g}}[c_t \mid d_t, u_t] = \mathbb{E}[c_t \mid \pi_t, u_t]$

In a centralized system, i.e., $d_t \subseteq d_{t+1}$, a function $\pi_t = \pi_t(d_t)$ is an information state if it satisfies:

1. The controller Markov property

 $\mathbb{E}^{\boldsymbol{g}}[\pi_{t+1} \mid d_t, u_t] = \mathbb{E}[\pi_{t+1} \mid \pi_t, u_t]$

2. The expected cost property

 $\mathbb{E}^{\boldsymbol{g}}[c_t \mid d_t, u_t] = \mathbb{E}[c_t \mid \pi_t, u_t]$

 Info-state in MDPs: current state
 Info-state in POMDPs: posterior belief on current state

In a centralized system, i.e., $d_t \subseteq d_{t+1}$, a function $\pi_t = \pi_t(d_t)$ is an information state if it satisfies:

1. The controller Markov property

 $\mathbb{E}^{\boldsymbol{g}}[\pi_{t+1} \mid d_t, u_t] = \mathbb{E}[\pi_{t+1} \mid \pi_t, u_t]$

2. The expected cost property

 $\mathbb{E}^{\boldsymbol{g}}[c_t \mid d_t, u_t] = \mathbb{E}[c_t \mid \pi_t, u_t]$

 Info-state in MDPs: current state
 Info-state in POMDPs: posterior belief on current state

Structure of optimal strategy

Restricting attention to control strategies of the form

$$u_t = g_t(\pi_t)$$

is without any loss.

In a centralized system, i.e., $d_t \subseteq d_{t+1}$, a function $\pi_t = \pi_t(d_t)$ is an information state if it satisfies:

1. The controller Markov property

 $\mathbb{E}^{\boldsymbol{g}}[\pi_{t+1} \mid d_t, u_t] = \mathbb{E}[\pi_{t+1} \mid \pi_t, u_t]$

2. The expected cost property

 $\mathbb{E}^{\boldsymbol{g}}[c_t \mid d_t, u_t] = \mathbb{E}[c_t \mid \pi_t, u_t]$

 Info-state in MDPs: current state
 Info-state in POMDPs: posterior belief on current state

Structure of optimal strategy

Restricting attention to control strategies of the form

$$u_t = g_t(\pi_t)$$

is without any loss.

Search of optimal strategy

An optimal strategy of the form above is given by the solution of the following dynamic program:

$$V_t(\pi_t) = \min_{u_t} \mathbb{E}[c_t + V_{t+1}(\pi_{t+1}) \mid \pi_t, u_t]$$

How do we define an information state for a decentralized system?

 $\sigma(X)\cap\sigma(Y)$

 $\sigma(X)\cap\sigma(Y)$

ω ₅	ω ₆	ω7	ω ₈
ω_1	ω2	ω3	ω_4

ω_5	ω ₆	ω7	ω_8
ω_1	ω2	ω3	ω_4

ω_5	ω ₆	ω ₇	ω ₈
ω_1	ω2	ω ₃	ω_4

$\sigma(X)\cap\sigma(Y)$

ω ₅	ω ₆	ω ₇	ω ₈
ω_1	ω2	ω3	ω_4

ω_5	ω ₆	ω7	ω ₈
ω_1	ω2	ω3	ω_4

ω ₅	ω ₆	ω7	ω ₈
ω_1	ω2	ω3	ω_4

ú) ₅	ω ₆	ω ₇	ω ₈
ú) ₁	ω2	ω3	ω_4
	-	1	I	3

ω

 ω_1

 ω_{4}

$$u = g(x), \quad v = h(y)$$
$$I(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

 $u = g(x), \quad v = h(y)$ $J(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$

Let *k* denote the common knowledge between *x* and *y*. Write:

$$x \equiv (k, p), \quad y \equiv (k, q),$$
$$u = \tilde{g}(k, p), \quad v = \tilde{h}(k, q).$$

$$u = g(x), \quad v = h(y)$$
$$V(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let *k* denote the common knowledge between *x* and *y*. Write:

$$\tilde{g}: (k,p) \mapsto u, \quad \tilde{g}: k \mapsto \underbrace{(p \mapsto u)}_{\gamma}$$

$$\begin{aligned} x &\equiv (k,p), \quad y &\equiv (k,q), \\ u &= \tilde{g}(k,p). \quad v &= \tilde{h}(k,q). \end{aligned}$$

ω5	ω ₆	ω7	ω ₈
ω_1	ω2	ω_3	ω_4
1	1	I	3

$$u = g(x), \quad v = h(y)$$
$$T(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let *k* denote the common knowledge between *x* and *y*. Write:

$$\tilde{g}: (k,p) \mapsto u, \quad \tilde{g}: k \mapsto \underbrace{(p \mapsto u)}_{\gamma}$$

Let $\gamma(\cdot) = \tilde{g}(k, \cdot)$ and $\eta(\cdot) = \tilde{h}(k, \cdot)$

$$x \equiv (k, p), \quad y \equiv (k, q),$$

 $u = \tilde{g}(k, p), \quad v = \tilde{h}(k, q).$

ω_5	ω_6	ω7	ω_8	
ω_1	ω_2	ω3	ω_4	
_	_	_		1
ω_5	ω ₆	ω7	ω ₈	
ω_1	ω2	ω_3	ω_4	

ω_5	ω_6	ω ₇	ω ₈	
ω_1	ω2	ω_3	ω_4	
A	4	I	3	

$$u = g(x), \quad v = h(y)$$
$$(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)$$

Let *k* denote the common knowledge between *x* and *y*. Write:

$$\tilde{g}: (k,p) \mapsto u, \quad \tilde{g}: k \mapsto \underbrace{(p \mapsto u)}_{\gamma}$$

$$x \equiv (k, p), \quad y \equiv (k, q),$$
$$u = \tilde{g}(k, p), \quad v = \tilde{h}(k, q).$$

Let $\gamma(\cdot) = \tilde{g}(k, \cdot)$ and $\eta(\cdot) = \tilde{h}(k, \cdot)$ A common knowledge based solution

 $\min_{\gamma,\eta} \mathbb{E}^{\gamma,\eta}[c(\omega,u,v)|k]$

 \tilde{g} :

ω_5	ω_6	ω7	ω ₈	
ω_1	ω2	ω_3	ω_4	
1	1	1	3	,

$$u = g(x), \quad v = h(y)$$
$$(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let *k* denote the common knowledge between *x* and *y*. Write:

 $x \equiv (k, p), \quad y \equiv (k, q),$

 $u = \tilde{g}(k, p)$. $v = \tilde{h}(k, q)$.

$$(k,p) \mapsto u, \quad \tilde{g}: k \mapsto \underbrace{(p \mapsto u)}_{\gamma}$$

Let $\gamma(\cdot) = \tilde{g}(k, \cdot)$ and $\eta(\cdot) = \tilde{h}(k, \cdot)$ A common knowledge based solution

(functional opt. over smaller space)

$$\min_{\gamma,\eta} \mathbb{E}^{\gamma,\eta} [c(\omega, u, v)|k]$$

ω_5	ω ₆	ω7	ω ₈
ω_1	ω2	ω_3	ω_4
1	1	1	3

$$u = g(x), \quad v = h(y)$$
$$(g,h) = \mathbb{E}^{g,h}[c(\omega, u, v)]$$

Let k denote the common knowledge between x and y. Write:

$$x \equiv (k, p), \quad y \equiv (k, q),$$
$$u = \tilde{g}(k, p), \quad v = \tilde{h}(k, q).$$

Let $\gamma(\cdot) = \tilde{g}(k, \cdot)$ and $\eta(\cdot) = \tilde{h}(k, \cdot)$

 $\tilde{g}: (k,p) \mapsto u, \quad \tilde{g}: k \mapsto \underbrace{(p \mapsto u)}_{v}$

A common knowledge based solution

(functional opt. over smaller space)

 $\min_{\gamma,\eta} \mathbb{E}^{\gamma,\eta} [c(\omega, u, v)|k]$

Brute force: $2^4 \times 2^4$ possiblities.CK-based soln: $2 \cdot (2^2 \times 2^2)$ possibilities.Aditya MahajanOptimal decentralized stochastic control

Main idea: Extend CK-based approach to decentralized multi-stage systems. Main idea: Extend CK-based approach to decentralized multi-stage systems.

(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

Split data at each controller/agent into two parts:

(a) Common information: $k_t = \bigcap_{s \ge t} d_s$

(a) Private information: $p_t = d_t \setminus k_t$

(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

Split data at each controller/agent into two parts:

(a) Common information: $k_t = \bigcap_{s \ge t} d_s$

(a) Private information: $p_t = d_t \setminus k_t$

Objective Choose $u_t = g_t(k_t, p_t)$ to minimize

 $J(g_{1:T}) = \mathbb{E}^{g_{1:T}}[c(\omega, u_{1:T})]$

(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

Split data at each controller/agent into two parts:

(a) **Common information**: $k_t = \bigcap_{s \ge t} d_s$ $k_t \subseteq k_{t+1}$

Private information: $p_t = d_t \setminus k_t$

Objective Choose $u_t = g_t(k_t, p_t)$ to minimize

 $J(g_{1:T}) = \mathbb{E}^{g_{1:T}}[c(\omega, u_{1:T})]$

(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

Split data at each controller/agent into two parts:

(6) **Common information**: $k_t = \bigcap_{s \ge t} d_s$ $k_t \subseteq k_{t+1}$

(a) Private information: $p_t = d_t \setminus k_t$

Objective Choose $u_t = g_t(k_t, p_t)$ to minimize

 $J(g_{1:T}) = \mathbb{E}^{g_{1:T}}[c(\omega, u_{1:T})]$

Solution approach

- 1. Construct a coordinated system (that has classical info-struct.)
- 2. Show that coordinated system \equiv original system.
- 3. Find a solution to coordinated system using centralized stoc. control.
- 4. Translate the result back to original system

Prescription: $\gamma_t : p_t \mapsto u_t$, chosen according to

$$\gamma_t = \psi_t(k_t, \gamma_{1:t-1})$$
$$u_t = \gamma_t(p_t)$$

Prescription: $\gamma_t : p_t \mapsto u_t$, chosen according to

$$\gamma_t = \psi_t(k_t, \gamma_{1:t-1})$$
$$u_t = \gamma_t(p_t)$$

The two systems are equivalent

$$g_t(k_t, p_t) = \underbrace{\gamma_t(p_t)}_{\psi_t(k_t, \gamma_{1:t-1})}$$

Prescription: $\gamma_t : p_t \mapsto u_t$, chosen according to

$$\gamma_t = \psi_t(k_t, \gamma_{1:t-1})$$
$$u_t = \gamma_t(p_t)$$

The two systems are equivalent $g_t(k_t, p_t) = \underbrace{\gamma_t}_{\psi_t(k_t, \gamma_{1:t-1})} \psi_t(k_t, \gamma_{1:t-1})$

Coordinated system is centralized Find **information state** π_t .

(a) Without loss of optimality, choose $\gamma_t = \psi_t(\pi_t)$ (b) Write DP in terms of π_t : $V_t(\pi_t) = \min_{\gamma_t} \mathbb{E}[c_t(\cdot) + V_{t+1}(\pi_{t+1}) | \pi_t, \gamma_t]$

Prescription: $\gamma_t : p_t \mapsto u_t$, chosen according to

$$\gamma_t = \psi_t(k_t, \gamma_{1:t-1})$$
$$u_t = \gamma_t(p_t)$$

The two systems are equivalent $g_t(k_t, p_t) = \underbrace{\gamma_t}_{\psi_t(k_t, \gamma_{1:t-1})} \psi_t(k_t, \gamma_{1:t-1})$

Coordinated system is centralized Find information state π_t .

(a) Without loss of optimality, choose $\gamma_t = \psi_t(\pi_t) \equiv u_t = g_t(\pi_t, p_t)$ (b) Write DP in terms of π_t : $V_t(\pi_t) = \min_{\gamma_t} \mathbb{E}[c_t(\cdot) + V_{t+1}(\pi_{t+1}) | \pi_t, \gamma_t]$

Outline of this talk

Decentralized stochastic control

Classification and examples

Solution approaches

A common information based approach

Delayed sharing information structure

Structure of optimal strategies and dynamic programming decomposition

Concluding remarks

Generalizations and Connection to other results

 $X_{t+1} = f(X_t, U_t^{1:2}, W_t) \qquad Y_t^i = h^i(X_t, N_t^i)$

 $X_{t+1} = f(X_t, U_t^{1:2}, W_t)$ $Y_t^i = h^i(X_t, N_t^i)$

0

$$X_{t+1} = f(X_t, U_t^{1:2}, W_t) \qquad Y_t^i = h^i(X_t, N_t^i)$$

(a) n-step delayed info sharing
(b) Perfect recall at controller $J(g_{1:T}^{1,2}) = \mathbb{E}^{g_{1:T}^{1,2}}[c(X_t, U_t^{1,2})]$

Literature Overview

(Witsenhausen, 1971):

- Proposed delayed-sharing information structure.
- **Asserted** a structure of optimal control law (without proof).

Literature Overview

(Witsenhausen, 1971):

Proposed delayed-sharing information structure.

Asserted a structure of optimal control law (without proof).

- (Varaiya and Walrand, 1978):
 - ▶ Proved Witsenhausen's assertion for n = 1.
 - **\triangleright** Counter-example to **disproved** the assertion for delay n > 2.

Literature Overview

(Witsenhausen, 1971):

Proposed delayed-sharing information structure.

► Asserted a structure of optimal control law (without proof).

- (Varaiya and Walrand, 1978):
 - ▶ Proved Witsenhausen's assertion for n = 1.
 - **\triangleright** Counter-example to **disproved** the assertion for delay n > 2.
- $^{(0)}$ The result of one-step delayed sharing used in various applications:
 - Queueing theory: Kuri and Kumar, 1995
 - Communication networks: Altman et. al, 2009, Grizzle et. al, 1982
 - Stochastic games: Papavassilopoulos, 1982; Chang and Cruz, 1983
 - Economics: Li and Wu, 1991

Solution based on common information approach

Common information

$$K_t = (Y_{1:t-n}^{1,2}, U_{1:t-n}^{1,2}).$$

Private information

$$P_t^{i} = (Y_{t-n+1:t}^{i}, U_{t-n+1:t-1}^{i})$$

Control actions

$$U_t^1 = g^1(K_t, P_t^2), \qquad U_t^2 = g^2(K_t, P_t^2)$$

Solution based on common information approach

Common information

 $K_t = (Y_{1:t-n}^{1,2}, U_{1:t-n}^{1,2}).$

Private information

$$P_t^{i} = (Y_{t-n+1:t}^{i}, U_{t-n+1:t-1}^{i})$$

Control actions

$$U_t^1 = g^1(K_t, P_t^2), \qquad U_t^2 = g^2(K_t, P_t^2)$$

Coordinated System

Data observerd K_t (increasing with time)

Control actions (γ_t^1, γ_t^2) , where $\gamma_t^i : P_t^i \mapsto U_t^i$

Solution based on common information approach

Common information

$$K_t = (Y_{1:t-n}^{1,2}, U_{1:t-n}^{1,2}).$$

Private information

$$P_t^{i} = (Y_{t-n+1:t}^{i}, U_{t-n+1:t-1}^{i})$$

Control actions

$$U_t^1 = g^1(K_t, P_t^2), \qquad U_t^2 = g^2(K_t, P_t^2)$$

Coordinated System

Data observerd K_t (increasing with time)

Control actions (γ_t^1, γ_t^2) , where $\gamma_t^i : P_t^i \mapsto U_t^i$

Find a solution to the coordinated system and translate it back to the original system.

The coordinated system: state for I/O mapping

The coordinated system: state for I/O mapping

State for I/O mapping: (X_t, P_t^1, P_t^2)

The coordinated system is a centralized partially observed system.

Info state = $\mathbb{P}(\text{state for I/O mapping} | \text{data at controller})$

The coordinated system is a centralized partially observed system.

Info state = $\mathbb{P}(\text{state for I/O mapping} | \text{data at controller})$

$$\pi_t = \mathbb{P}(X_t, P_t^1, P_t^2 \mid K_t, \gamma_t^1, \gamma_t^2)$$

Structural Result There is no loss of optimality in restricting prescriptions of the form

$$\gamma_t = \psi_t(\pi_t)$$
 and hence, $U_t^i = g_t^i(\pi_t, P_t^i)$

The coordinated system is a centralized partially observed system.

Info state = $\mathbb{P}(\text{state for I/O mapping} \mid \text{data at controller})$

$$\pi_t = \mathbb{P}(X_t, P_t^1, P_t^2 \mid K_t, \gamma_t^1, \gamma_t^2)$$

Structural Result There is no loss of optimality in restricting prescriptions of the form

$$\gamma_t = \psi_t(\pi_t)$$
 and hence, $U_t^i = g_t^i(\pi_t, P_t^i)$

Dynamic Programming decomposition An optimal coordination strategy is given by the solution to the following dynamic program

$$V_t(\pi_t) = \min_{\gamma_t^1, \gamma_t^2} \mathbb{E}[c(X_t, \gamma_t^1(P_t^1), \gamma_t^2(P_t^2)) + V_{t+1}(\pi_{t+1} \mid \pi_t, \gamma_t^1, \gamma_t^2]$$

The coordinated system is a centralized partially observed system.

Info state = $\mathbb{P}(\text{state for I/O mapping} \mid \text{data at controller})$

$$\pi_t = \mathbb{P}(X_t, P_t^1, P_t^2 \mid K_t, \gamma_t^1, \gamma_t^2)$$

Structural Result There is no loss of optimality in restricting prescriptions of the form

$$\gamma_t = \psi_t(\pi_t)$$
 and hence, $U_t^i = g_t^i(\pi_t, P_t^i)$

Dynamic Programming decomposition An optimal coordination strategy is given by the solution to the following dynamic program

$$V_t(\pi_t) = \min_{\substack{\gamma_t^1, \gamma_t^2}} \mathbb{E}[c(X_t, \gamma_t^1(P_t^1), \gamma_t^2(P_t^2)) + V_{t+1}(\pi_{t+1} \mid \pi_t, \gamma_t^1, \gamma_t^2]$$

Setting $g_t^i(\pi_t, P_t^i) = \psi_t^i(\pi_t)(P_t^i)$ gives optimal control strategy.

An easy solution to long standing open problem

Outline of this talk

Decentralized stochastic control

Classification and examples

Solution approaches

A common information based approach

Delayed sharing information structure

Structure of optimal strategies and dynamic programming decomposition

Concluding remarks

Generalizations and Connection to other results

Connections

Many existing results on decentralized control are special cases

- Delayed state sharing (Aicardi *et al*, 1987)
- Periodic sharing information structures (Ooi *et al*, 1997)
- Control sharing (Bismut, 1972; Sandell and Athans, 1974; Mahajan 2011)
- Finite sate memory controllers (Sandell, 1974, Mahajan, 2008)

Connections

Many existing results on decentralized control are special cases

- Delayed state sharing (Aicardi *et al*, 1987)
- Periodic sharing information structures (Ooi *et al*, 1997)
- Control sharing (Bismut, 1972; Sandell and Athans, 1974; Mahajan 2011)
- Finite sate memory controllers (Sandell, 1974, Mahajan, 2008)

Generalization to other models

- Infinite horizon (discounted and average cost) models using standard results for POMDPs
- **Computation algorithms** based on algorithms for POMDPs
- Extend results to systems with unknown models based on Q-learning and adaptive control algorithms

Conclusion

Summary of the main idea

- Find common information at the controllers
- Solution Section Se
- Find information state for the coordinated system and use it to set up a dynamic program

Conclusion

Summary of the main idea

- Ind common information at the controllers
- Solution Service Se
- Sind information state for the coordinated system and use it to set up a dynamic program

Future Directions

- Computational algorithms
- Sconnections with sequential games
- Sconnections with large scale systems/mean field theory

Thank you

References

- A. Nayyar, A. Mahajan, D. Teneketzis, Optimal control strategies for delayed sharing information structures, *IEEE Trans. on Automatic Control*, vol. 56, no. 7, pp. 1606-1620, July 2011.
- 2. A. Nayyar, A. Mahajan, D. Teneketzis,

Dynamic programming for decentralized stochastic control with partial information sharing: a common information approach, submitted to *IEEE Trans. on Automatic Control*, Dec 2011.

