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Interconnected Power Systems

Region 1 Region 2
l Interconnec L
Controller 1 < Controller 2

ommunication

Challenges

® How to coordinate?

@ When, what, and how to communicate?
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Sensor and Surveillance Networks

Limited resources  Noisy observations
Communication

Challenges
® Real-time communication
® scheduling measurements and communication

© Detect node failures
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Networked Control Systems

Challenges

@ Control and communication over networks
(internet = delay, wireless = losses)
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Networked Control Systems

Challenges

@® Control and communication over networks
(internet = delay, wireless = losses)

@ Distributed estimation

© Distribued learning F' :
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Salient features in
decentralized decision making

Multiple decision makers
Decisions made by multiple controllers in a stochastic environment
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Salient features in
decentralized decision making

Multiple decision makers
Decisions made by multiple controllers in a stochastic environment

Coordination issues
All controllers must coordinate to achieve a system-wide objective

Communication issues
Controllers can communicate either directly or indirectly

Robustness
System model may not be completely known

1y
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Outline of this talk

Decentralized stochastic control
Classification and examples

Solution approaches
A common information based approach

Delayed sharing information structure
Structure of optimal strategies and dynamic programming decomposition

Concluding remarks
Generalizations and Connection to other results
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Aditya Mahajan Optimal decentralized stochastic control
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Decentralized stochastic control
Classification and examples

Solution approaches
A common information based approach

Delayed sharing information structure
Structure of optimal strategies and dynamic programming decomposition
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Classification of decentralized systems

Controllers/agents are coupled in two ways:
1. Coupling due to cost/utility

2. Coupling due to dynamics
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Classification of decentralized systems

Controllers/agents are coupled in two ways:

1.| Coupling due to cost/utility

2. Coupling due to dynamics

Decentralized systems may be classified according to:

1. Objective
Team vs Games
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Classification of decentralized systems

Controllers/agents are coupled in two ways:
1. Coupling due to cost/utility

2. Coupling due to dynamics

Decentralized systems may be classified according to:

1. Objective 2. Dynamic
Team |vs Games Static vs| Dynamic

This talk will focus on Dynamic Teams

© Sstudied in economics and systems and control since the mid 50s.
© Unlike games, agents have no incentive to cheat.

© Instead of equilibrium, we seek globally optimal strategies.
Ill/é
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Why is decentralized
stochastic control difficult?



An example of centralized static optimization

P=[ o

° ]

w1

(%]

w3

Wy
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P=[ ° . ° ° ]
W1 | Wy | W3 | Wy
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An example of centralized static optimization

W1 | Wy | W3 | Wy

u=g(x)€e{1,23}

Ill/é
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An example of centralized static optimization

P = [ ° . ° °
W1 | Wy | W3 | Wy
x =| 1 1 2 2

u=g(x)€e{1,23}

]

c(w,u)

Aditya Mahajan

W1 Wy W3 Wy

u=1 e ° ° °

uU=2 e ° ° °

u=23 e ° ° °

J(9) = E[c(w,w)]

Ill/é
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An example of centralized static optimization

w1

(%]

w3

Wy

u=g(x)€e{1,23}

Brute force search

min J(g),
g

]

c(w,u)

lg| = |U|™! = 9 possibilities.

Aditya Mahajan

W

w3

Wy

W1
u=1| -«
u=2 e
u=3| e

J(9) = E[c(w,w)]
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An example of centralized static optimization

W1 Wy W3z Wy

P = . . . . c(w,u
Wy | Wy | W3 | Wy u=2 e
=1 1 2 2
x u:3 °

u=g(x) €123}

Brute force search mgin J(9), gl = |U|*! = 9 possibilities.

Systematic search 3 + 3 = 6 possibilities

u; =g() u;, = g(2)

min E[c(w,uq) | x = 1] min E[c(w,uy) | x = 2]
U Uz

Aditya Mahajan Optimal decentralized stochastic control
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An example of centralized static optimization

W1 Wy W3z Wy

P=[ o o o o] c(wu) u=1/ o | o | o | o

Wy | Wy | w3 | Wy u=2 ool

u=23 e ° ° °

u=g(x)€{1,23} J(9) = E9c(w,u)]
(functional opt.)
Brute force search mgin J(9), gl = |U|*! = 9 possibilities.

Systematic search 3 + 3 = 6 possibilities (parametric opt.)
u; =g(1) u; = 9(2)
min E[c(w,uq) | x = 1] min E[c(w,uy) | x = 2]
Uy Uz
1y,
g 2
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An example of decentralized
static optimization
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An example of decentralized
static optimization

P:[ ° ° . o]

W | Wy | w3 | wy

x =1 1 2 2

y=l2|1]|1]2

u=g(x)€{1,2,3} v=h(y €{l,2}

<
N\
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An example of decentralized
static optimization

P = [ ) ) ) ) ] W, Wy W3 Wy
c(w,u,v)

W1 | Wy | W3 | Wy U=1|e|o|e|e|e|e|e]|e

x =1 1 2 2 U=2|o|o|o|o|o|e|e]|e

y = 2 1 1 2 U=3|e|o|e|e|e|e|e]|e

u=g(x)€{1,2,3} v=h(y) €{1,2}

J(9. 1) = B c(w,u,v)]

<
N\

O =
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An example of decentralized
static optimization

P = [ ) ) ) ) ] W, Wy W3 Wy
c(w,u,v)

W1 | Wy | W3 | Wy =1|e|e|e|e|e|e|e]|e

x =1 1 2 2 U=2|o|o|o|o|o|e|e]|e

y = 2 1 1 2 U=3|e|o|e|e|e|e|e]|e

v=12121212
u=g(x)€{1,2,3} v=h(y) €{1,2}

J(g,h) = E9"[c(w,u,v)]

Brute force search rg%ln J(g,h), gl =u|™, |h| = |v|IY],

9 x 4 = 36 possibilities.

Aditya Mahajan Optimal decentralized stochastic control

<
N\

O =



An example of decentralized
static optimization

el o 0o o o W Wy W3 Wy
c(w,u,v)

W1 | Wy | W3 | Wg U=1|e|o|o|e|e|e|e|e

x =| 1 1 2 2 U=2|e|o|o|o|e|eo|e|e

y = 2 1 1 2 U=3|e|o|o|o|e|e|e|e

u=g(x)€{1,23} v=h) e{l2}

J(g,h) = E2"c(w,u,v)]

Brute force search Igi}{l I, gl = U™, |n| = |v|Yl,
I 9 x 4 = 36 possibilities.

For one controller/agent to choose an optimal action, it must
second guess the other controller’s/agent’s policy

<
N\

O =
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An example of decentralized
static optimization

P:[ ° ° ° °

W1 | Wy | W3 | Wy
x =| 1 1 2 2
y=l2|1|1]2

]

c(w,u,v)

u=g(x)€{1,23} v=h) e{l2}

Orthogonal search

=1
u=2
u=3
v =

J(g,h) = E2"c(w,u,v)]

1. Suppose h is fixed: min E"[c(w,u;,v) |x =i], i=1,2,3.
Ui

2. Suppose g is fixed: min E[c(w,u,v}) |y =j], J
vj

Aditya Mahajan
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An example of decentralized
static optimization

P=[ o o o« o] W1 Wy W3 Wy
c(w,u,v)

W1 | Wy | W3 | Wg U=1|e|o|o|e|e|e|e|e

x =| 1 1 2 2 U=2|e|o|o|o|e|eo|e|e

y =| 2 1 1 2 U=3|e|o|o|o|e|e|e|e

u=g(x)€{1,23} v=h)e{l2}
J(g,h) = E¥"[c(w,u,v)]
Orthogonal search  yields person-by-person opt strategy
1. Suppose h is fixed: min E"[c(w,u;,v) |x =i], i=1,2,3.
uj

2. Suppose g is fixed: min EY[c(w,u,v)) |y =j], j=1,2.
vj

<
N\

O =
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To find globally optimal strategies,
in general, we cannot do
better than brute force search



An example of centralized
multi-stage optimization

W1 | Wy | W3 | Wy

Ws | Wg | W7 | Wg
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An example of centralized
multi-stage optimization

w1

Wy

w3

Wy

Ws

We

w7

wg

n=1
=2

1y,

S
N
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An example of centralized
multi-stage optimization

w1

Wy

w3

Wy

Ws

We

w7

wg

n=1 u =g,0n) €{1,2}

1y,

S
N
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An example of centralized
multi-stage optimization

V2=

V2=

V2=
V2=

W1 | Wy | W3 | Wy
Ws | Wg | W7 | Wg
1 1 2 2
1 1 2 2
1 2 2 1
1 2 2 1

n=1 u =g,0n) €{1,2}
=2

1y,
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An example of centralized
multi-stage optimization

V2=

V2=

V2=
V2=

W1 | Wy | W3 | Wy
Ws | Wg | W7 | Wg
1 1 2 2
1 1 2 2
1 2 2 1
1 2 2 1

n=1 u =g,0n) €{1,2}
=2

U, = g2, y2,uq) € {1,2}

1y,
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An example of centralized
multi-stage optimization

Wy | Wy | W3 | Wy

Ws | We | W7 | Wg
v=| 1 |1]2]2
y=| 1| 1]2]2
v=| 12|21
v=| 12|21

n=1 u =g,0n) €{1,2}
=2

U, = g2, y2,uq) € {1,2}

c1(w,ug) + cz(w,uy)

191, 92) = E9%92[ci(w,uy) + cz(w,uy)]

1y,

Aditya Mahajan
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An example of centralized
multi-stage optimization

Wy | Wy | W3 | Wy

Ws | We | W7 | Wg
y=| 1| 1]2]2
y=| 1| 1]2]2
v=| 12|21
v=| 12|21

n=1
=2

u; =g:01) €{1,2}

di={n}

U, = g2, y2,uq) € {1,2}

dy = {y1, ¥2,uq}

c1(w,ug) + cz(w,uy)

191, 92) = E9%92[ci(w,uy) + cz(w,uy)]

Aditya Mahajan
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An example of centralized
multi-stage optimization

W1 | Wy | W3 | Wy
W5 | We | W7 | Wg
w=1 = y=[ 1|1 |2]2
w=1 = y=[1|1|2]2
w=2 = y=[ 12|21
w=2 = y=[ 12|21

b1
1

1
2

u; = g1(n) € {1,2}

di, = {y1}

U = g2V, Y2, up) € {1,2}

d; = {y1,¥2,uq}

1 (w,uq) + (W, uy)

191, 92) = E9%92[cy(w,uy) + cz(w,uy)]

Critical Assumption: Centralized information d, €d,

Aditya Mahajan
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Solution approach for centralized
multi-stage optimization

Brute force search min J(g1, g2).
91,92

lg1l = |‘u1||'y1|’ lg2| = |u2||'y1|><|'yz|x|u1|.

22 x 28 = 1024 possiblities.

Aditya Mahajan
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Solution approach for centralized

multi-stage optimization
Brute force search ;ni}n 1(91, 92).

lg1l = |‘u1||'y1|’ lg2| = |u2||'y1|><|'yz|x|u1|.

22 x 28 = 1024 possiblities.

Dynamic programming decomposition

h(dy) = H&lzn E[cy(w,uz) | da, uz]

Vi(dy) = n}tlln E[ci(w,uy) + V5(d3) | dy,u4q]

Aditya Mahajan
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Solution approach for centralized
multi-stage optimization

Brute force search min J(g1, g2).
91,92

(functional opt.)
lg1l = |‘u1||'y1|’ lg2| = |u2||'y1|><|'yz|><|111|.

22 x 28 = 1024 possiblities.

Dynamic programming decomposition (parametric opt.)
Va(dz) = H&lzn Efcy(w,uz) | d2, us]

Vi(dy) = n;illn E[ci(w,uy) + V5(d3) | dy,u4q]

Aditya Mahajan
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Solution approach for centralized
multi-stage optimization

Brute force search min J(g1, g2).
91,92

(functional opt.)
lg1l = |‘u1||'y1|’ lg2| = |u2||'y1|><|'yz|><|111|.

22 x 28 = 1024 possiblities.

Dynamic programming decomposition (parametric opt.)
Va(dz) = H&lzn Efcy(w,uz) | d2, us]

Vi(dy) = n;illn E[ci(w,uy) + V5(d3) | dy,u4q]

@ Step 1 works because P(w | d;) does not depend on g;.

© Step 2 works because P(d, | d;,u;) does not depend on g;.

Aditya Mahajan
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Solution approach for centralized
multi-stage optimization
Brute force search ;nign 1(91, 92). (functional opt.)

lg1] = UYL | ga| = U, Y2 IXIY2lXItal - 22 x 28 = 1024 possiblities.

Dynamic programming decomposition (parametric opt.)
Wh(d,) = Htltlzn Efcz(w,up) | d2, uz]

(dy) = H&lln E[ci(w,uq) + V5(d3) | dy,uq]

© step 1 works because P(w | dy) does not depend on g;.

@®© Step 2 works because P(d, | d;,u;) does not depend on g;.

@| Both steps work because d; € d,

=g
N
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An example of decentralized
multi-stage optimization

w1 | Wy | W3 |wg|y1=1 uy=g:(01) €{1,2}

ws | We | W7 | Wg [V =2 di = {y1}

u=1 = y,=| 1 1 2 2 U = 92(}’2) € {1'2}

W=l = y= 11122 d; = {y2}

w=2 = y,=| 12|21

=2 = Y= 1|2 2|1 c1(w,uq) + cx(w, uy)

191, 92) = E9%92[ci(w,uy) + cz(w,uy)]
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An example of decentralized
multi-stage optimization

w1 | Wy | W3 |wg|y1=1 uy=g:(01) €{1,2}

ws | We | W7 | Wg |V =2 di = {y1}

w=l = y=1|12]2 u; = g2(v2) €{1,2}
u1=1 - y2= 1 1 2 2 d2={y2}

wW=2 = y,= 12|21

u=2 = y,=| 1 2 12 |1 c1(w,uq) + c3(w,uy)

J(91,92) = E9*92[cy(w,uy) + ¢z (w,up)]

Critical Assumption: Decentralized information d, £d,

. Can we do better than brute force search?

Aditya Mahajan Optimal decentralized stochastic control



Usual Dynamic programming does not work?

V,(dy) = n"}in lEgl[cz(w' uy) | da, up]
2)

Vi(dy) = nllllln E7 [c1(w,uy) + Va(dy) | dq,u4]

Aditya Mahajan
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Usual Dynamic programming does not work?

V,(dy) = nlltlzn lEgl[cz(w' uy) | da, up]
Vi(dy) = nllllln E7 [cq(w,up) + V3(d3) | dq, u4]

A sequential decomposition is possible (Witsenhausen, 1973)
Deflne Ty = HD((U | gl:f—l)‘

Vi(me) = rI;itn E9[cp(w,ue) + Vigq (Ter) | ]

But, the worst case complexity remains the same.

Aditya Mahajan

S
N

Optimal decentralized stochastic control

—_
w

U



Can we obtain a systematic
approach to find optimal
strategies that does better
than brute force search?



Outline of this talk

Decentralized stochastic control
Classification and examples

Solution approaches
A common information based approach

Delayed sharing information structure
Structure of optimal strategies and dynamic programming decomposition

Concluding remarks
Generalizations and Connection to other results
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The intrinsic model for
controlled dynamical systems
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Dynamical Model
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controlled dynamical systems

The intrinsic model for

Dynamical
system

Controller

Dynamical Model
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The intrinsic model for
controlled dynamical systems

Dynamical
system

Controller Ve

Dynamical Model
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The intrinsic model for
controlled dynamical systems

Ut

Dynamical |—=¢t
system
Controller Ve

Dynamical Model
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The intrinsic model for
controlled dynamical systems

w
Dynamical [——=¢t
system
™ Controller Ve
Dynamical Model Intrinsic Model
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The intrinsic model for
controlled dynamical systems

Dynamical

system

<

Controller

<

Dynamical Model

— ¢

Ve
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The intrinsic model for
controlled dynamical systems

Dynamical

system

Controller

Dynamical Model

Ve

all obs data

Ct+1

Ct+2

Intrinsic Model
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The intrinsic model for
controlled dynamical systems

w
Dynamical |——=>¢t
system
w Controller Ve
Ce41 Ct+_21
Dynamical Model Intrinsic Model
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Information state and a general solution
approach for centralized stochastic systems

In a centralized system, i.e., d; S d¢4q, @
function m; = m.(d;) is an information
state if it satisfies:

1. The controller Markov property
E9[mey | deyue] = E[meqs | 7w
2. The expected cost property

E9c, | deue] = E[ce | me,ue]
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Information state and a general solution
approach for centralized stochastic systems

In a centralized system, i.e., d; S d¢4q, @
function m; = m.(d;) is an information
state if it satisfies:

1. The controller Markov property
E9[mey | deyue] = E[meqs | 7w
2. The expected cost property

E9c, | deue] = E[ce | me,ue]

& Info-state in MDPs: current state
& Info-state in POMDPs:
posterior belief on current state
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Information state and a general solution
approach for centralized stochastic systems

In a centralized system, i.e, d; € d;4,,a Structure of optimal strategy
function m; = m.(d;) is an information Restricting attention to control strategies

state if it satisfies: of the form
1. The controller Markov property ur = ge(1e)
E9 (141 | deue] = E[mesq | e ue] is without any loss.

2. The expected cost property

E9c, | deue] = E[ce | me,ue]

& Info-state in MDPs: current state
e= Info-state in POMDPs:
posterior belief on current state
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Information state and a general solution
approach for centralized stochastic systems

In a centralized system, i.e, d; € d;4,,a Structure of optimal strategy
function m; = m.(d;) is an information Restricting attention to control strategies

state if it satisfies: of the form
1. The controller Markov property ur = ge(1e)
E9 (141 | deue] = E[mesq | e ue] is without any loss.

2. The expected cost property
Search of optimal strategy

E9lce | de,ue] = Elce | e, ue] An optimal strategy of the form
above is given by the solution of the

B Info-state in MDPs: current state followmg dynamlc g

B Info-state in POMDPs: Vi(m,) = nﬁin E[c,+V p1(Tprr) | e ue]
posterior belief on current state ¢

Aditya Mahajan Optimal decentralized stochastic control



How do we define an information
state for a decentralized system?



Common Knowledge (Aumann, 1976)
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Common Knowledge (Aumann, 1976)

cX)na(Y)
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Common Knowledge (Aumann, 1976)

ocX)na(y)

Wsg We ﬂ w7 wg
i wq w2 ! w3 Wy i
Ws We w7 wg

Ws We w7 wg

wq w2 w3 Wy
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Common Knowledge (Aumann, 1976)

cX)na(y)

Y(w)

Aditya Mahajan Optimal decentralized stochastic control s



Exploiting common knowledge to
simplify decentralized static optimization

u=g(x), v=~hy)
J(g,h) = E?"c(w,u,v)]

§
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Exploiting common knowledge to
simplify decentralized static optimization

u=g(), v=hy)
. EOEO - J(g,h) = B [e(w,u,v)]

=] Let k denote the common knowledge
between x and y. Write:

x=(kp) y=(kq)
u=gl,p). v=hkaq.

§
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Exploiting common knowledge to
simplify decentralized static optimization

u=g(x), v=~hy)
J(g,h) = E?"c(w,u,v)]

o J——J  Let k denote the common knowledge
L between x and y. Write:

x=(kp), y=(kq),
g:(kp)~u, gG:kvo@-u

— u=gk,p). v=nhkq).

§
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Exploiting common knowledge to
simplify decentralized static optimization

u=gx), v=hy)

7 Clolol- J(g, 1) = E?*[c(w,u,v)]
- o =] Let k denote the common knowledge
- between x and y. Write:

x=(kp), y=(kq),
g:(kp)~u, gG:kvo@-u

— u=gk,p). v=nhkq).

Let y() = g(k,") and n() = h(k, ")

§
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Exploiting common knowledge to
simplify decentralized static optimization

u=g(x), v=~hQy)
== J(g.h) = E¥"[c(w,u,v)]

Let k denote the common knowledge
between x and y. Write:

= (k,p), = (k,q),
g:(kkp)pu J:kep@pru x=(k,p) y=(kq)

— u=gk,p). v=nhkq.

Let y(-) = §(k,) and n(-) = h(k, ")
A common knowledge based solution

min EY"[c(w, u, v)|k]
iz
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Exploiting common knowledge to
simplify decentralized static optimization

u=gx), v=hy)
J(g,h) = E2*c(w,u,v)]

Let k denote the common knowledge
between x and y. Write:

= (k,p), = (k,q),
g:(kkp)pu J:kep@pru x=(k,p) y=(kq)

— u=gk,p). v=nhkq.

Let y(-) = §(k,) and n(-) = h(k, ")
A common knowledge based solution (functional opt. over smaller space)

min EY"[c(w, u, v)|k]
iz
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Exploiting common knowledge to
simplify decentralized static optimization

u=gx), v=hy)

OO J(g,h) = E*"[c(w,u,v)]
e T ===l Let k denote the common knowledge
between x and y. Write:

G G x = (kp), y=(kq,
g:tkp)ru gG:ko@@»-u (k,p), y=(kq)

v u=gk,p). v="hkq.

Let y(-) = g(k,-) and () = h(k,-)
A common knowledge based solution  (functional opt. over smaller space)

min E""[c(w, u, v)|k]
iz

Brute force: 2* x 2% possiblities.  CK-based soln: 2 - (22 x 22) possibilities.

K2
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Main idea: Extend CK-based
approach to decentralized
multi-stage systems.



Main idea: Extend CK-based
approach to decentralized
multi-stage systems.



A common information based approach

for decentralized multi-stage systems
(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

Split data at each controller/agent into two parts:

@ Common information: k, = [ d

s=t

@ Private information: p, =d, \ k;

Iy,
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A common information based approach

for decentralized multi-stage systems
(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

Split data at each controller/agent into two parts:

© common information: k, = [ ds
szt

® Private information: p, = d; \ k;

Objective Choose u; = g;(k, p.) to minimize

J(g1:1) = E9¥T [c(w, uy.1)]

iy,
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A common information based approach

for decentralized multi-stage systems
(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

Split data at each controller/agent into two parts:

@© Common information: k; = [ d ke € keyq

s=t

© Pprivate information: p, = d, \ k,

Objective Choose u; = g;(k, p.) to minimize

J(g1:1) = E9¥T [c(w, uy.1)]
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A common information based approach

for decentralized multi-stage systems
(Nayyar, 2010; Nayyar, Mahajan, Teneketzis, 2011)

Split data at each controller/agent into two parts:

® Common information: k; = [ ds ke € keyq

s=t

© Pprivate information: p, = d; \ k;

Objective Choose u; = g;(k, p.) to minimize
J(91.1) = E91T[c(w, uy.1)]

Solution approach

1. Construct a coordinated system (that has classical info-struct.)

2. Show that coordinated system = original system.

3. Find a solution to coordinated system using centralized stoc. control.
4. Translate the result back to original system

Ill/é

§
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A common information based approach
for decentralized multi-stage systems

Uy U ur
dl g1 de gt dr gr

Wry,
z
205
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A common information based approach
for decentralized multi-stage systems

Prescription: y; : p, » ug,

u u u

) y v chosen according to
d - d d Ve = Ye(ke, V1ie-1)
Yoo £ g T ogr

ur = ¥e(pr)

Wry,
z
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A common information based approach
for decentralized multi-stage systems

Uy Ut Uur
| A
dl g1 de gt dr gr

{0 Ver o}

!

Coordinator

(ol

Prescription: y; : p, » ug,
chosen according to
Ye = Ye(ke, Vie-1)
ur = ¥ (pe)

The two systems are equivalent

ge(ke,pe) = ):E(Pt)
Ye(kev1:e-1)

Wry,
z
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A common information based approach
for decentralized multi-stage systems

Prescription: y; : p, » ug,

u u u
\ y a  chosen according to
d d d Ye = Ye(ke, V1e-1)
1 t T
91 It gr

ur = ¥ (pe)
Lo Yo o} The two systems are equivalent
} 9e(kepe) = 1 (Po)

Ye(ke,V1e-1)

—_— 1 a Q .
{ ke, o} Coondingtor Coordinated system is centralized

Find information state ;.

@ Without loss of optimality, choose y; = 1, (;)

®© Write DP in terms of m,: ~ Vi(1r,) = min E[c;(*) + Vi1 (Ter1) | 7o Vel
Ye

Wry,
z
205
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A common information based approach
for decentralized multi-stage systems

Prescription: y; : p, » ug,

u u u
- . ' chosen according to
_ ,‘C aﬁ ,‘ = bk e
a4 d, dr T Ye = Ye(ke, Vie-1)
91 gt gr _
ur = ¥ (pe)

ool e The two systems are equivalent

| 9e(ke,pe) = 1eP0)
Ye(keV1:e-1)

{ ke, o} Coondingtor Coordinated system is centralized

Find information state ;.

®@ Without loss of optimality, choose y; = ¥.(r;) = |u; = g¢(ms,pr)

® Write DP in terms of my:  Vi(my) = min E[c; (") + Vg1 (Tes1) | 7020 V2]
Ye

Wry,
z
205
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Outline of this talk

Decentralized stochastic control
Classification and examples

Solution approaches
A common information based approach

Delayed sharing information structure
Structure of optimal strategies and dynamic programming decompositio

Concluding remarks
Generalizations and Connection to other results

Iy,
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Delayed sharing information structure

Obs channel

ytl
Controller 1

i

f Sys Xt

Obs channel

yZ

Controller 2

.
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Uz

Ill/é
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Delayed sharing information structure

Y} J
Obs channel |[——=2 Controller 1 U}

Obs channel Controller 2 o

Xev1 = f(Xe Ut:'L:Z'VVt) Yti = hi(Xt’ Nti)

Ill/é
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Delayed sharing information structure

Yl
Obs channel =3 Controller 1 U}
Sys X¢
A%
Obs channel Controller 2 U?

Xew1 = f(Xe, U2 W) Yti = hi(X,, Ntl)

© n-step delayed info sharing © Perfect recall at controller

Ill/é
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Delayed sharing information structure

Obs channel |— Controller 1 7—, U}

Yl

Y2

Obs channel Controller 2 /&H U?

Xewr = fX UFAL W) Y= hi (X, N))

© n-step delayed info sharing © Perfect recall at controller

1.2
J(91F) = B9 [c(X,, U?)]

Ill/é
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Literature Overview

© (Witsenhausen, 1971):

e= Proposed delayed-sharing information structure.
B Asserted a structure of optimal control law (without proof).

Iy,
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Literature Overview

® (Witsenhausen, 1971):

&= Proposed delayed-sharing information structure.
B= Asserted a structure of optimal control law (without proof).

© (Varaiya and Walrand, 1978):

B> Proved Witsenhausen’s assertion for n = 1.
B= Counter-example to disproved the assertion for delay n > 2.
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Literature Overview

® (Witsenhausen, 1971):

& Proposed delayed-sharing information structure.
& Asserted a structure of optimal control law (without proof).

@ (Varaiya and Walrand, 1978):

B Proved Witsenhausen’s assertion for n = 1.
B Counter-example to disproved the assertion for delay n > 2.

@ The result of one-step delayed sharing used in various applications:

B Queueing theory: Kuri and Kumar, 1995

B Communication networks: Altman et. al, 2009, Grizzle et. al, 1982
B Stochastic games: Papavassilopoulos, 1982; Chang and Cruz, 1983
& Economics: Li and Wu, 1991

208
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Solution based on common
information approach

Common information Ke = (Y1 UTi—n).

. . . i _ i i
Private information Pr= 1o Uicniti-1)

Control actions

U =g' (K PP, UE=g*(Ke, P?)
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Solution based on common
information approach

Common information Ke = (Y1 UTi—n).

. . . i _ i i
Private information Pr= 1o Uicniti-1)

Control actions
Ul = g"(K, PP), UZ = g*(K:, P?)

Coordinated System
Data observerd K, (increasing with time)

Control actions  (y},y2), where y! : B} - U}
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Solution based on common
information approach

q q A2 1,2
Common information Ky = (Y1t Utt—n)-
. . . l _ l l
Private information Pr= 1o Uicnire-1)
Control actions

Ut1 = gl(Kt'Ptz)' Utz = gz(Kt'Ptz)

Coordinated System
Data observerd K, (increasing with time)

Control actions  (y},y2), where y! : P} - U}

Find a solution to the coordinated system and translate it back to
the original system.

224§
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The coordinated system:
state for I/0 mapping

ft Xt (Ytl' Ytz)

————— - . T R W R W W W W W W R W - —— — — — !
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The coordinated system:
state for I/0 mapping

fe

Ve

LY

78%)

State for 1/0 mapping: (X, P}, P?)
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Information state for coordinated system

The coordinated system is a centralized partially observed system.

Info state = P(state for I/O mapping | data at controller)

N

B
=
U

Q\\\l 1173
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Information state for coordinated system

The coordinated system is a centralized partially observed system.

Info state = P(state for I/O mapping | data at controller)
Ty = ]P(Xt' Ptlrptz | K, ytl' ytz)

Structural Result ~ There is no loss of optimality in restricting

prescriptions of the form

¥ = ¥¢(m;) and hence, U! = gi(m,, P)

RS
Sl
= S

S
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Information state for coordinated system

The coordinated system is a centralized partially observed system.

Info state = P(state for I/O mapping | data at controller)
Ty = llj)(Xt' Pt1:Pt2 | Ktv ytl' ytZ)

Structural Result ~ There is no loss of optimality in restricting

prescriptions of the form
Ye = Ye(m) and hence, Uti = gé(”t, Pti)

Dynamic Programming decomposition  An optimal coordination strategy
is given by the solution to the following dynamic program

V() = min E[c(Xe, v (B, V2 (PA)) + Vi1 (Tear | me v V7
tre

RS
Sl
= S

S
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Information state for coordinated system

The coordinated system is a centralized partially observed system.
Info state = P(state for I/O mapping | data at controller)
. = P(Xe, PL PP | K vE VD)

Structural Result ~ There is no loss of optimality in restricting

prescriptions of the form
¥ = Ye(my) and hence, U} = gi(m, PY)
An optimal coordination strategy

Dynamic Programming decomposition
is given by the solution to the following dynamic program

Vi(me) = }{{1;@ E[C(Xt:ytl(ﬂl)%z(ﬂz)) + Vi1 (egq | ”t:th:Vtz]
tre

Setting gt (m;, PY) = ¥i(m,)(P) gives optimal control strategy.

RS
Sl
= S

S
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An easy solution to long
standing open problem



Outline of this talk

Decentralized stochastic control
Classification and examples

Solution approaches
A common information based approach

Delayed sharing information structure
Structure of optimal strategies and dynamic programming decomposition

Concluding remarks
Generalizations and Connection to other results
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Connections

Many existing results on decentralized control are special cases

&= Delayed state sharing (Aicardi et al, 1987)

&= Periodic sharing information structures (Ooi et al, 1997)

&= Control sharing (Bismut, 1972; Sandell and Athans, 1974; Mahajan 2011)
&= Finite sate memory controllers (Sandell, 1974, Mahajan, 2008)

ez
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Connections

Many existing results on decentralized control are special cases

&= Delayed state sharing (Aicardi et al, 1987)
&= Periodic sharing information structures (Ooi et al, 1997)

B> Control sharing (Bismut, 1972; Sandell and Athans, 1974; Mahajan 2011)

&= Finite sate memory controllers (Sandell, 1974, Mahajan, 2008)

Generalization to other models
B> Infinite horizon (discounted and average cost) models using
standard results for POMDPs

& Computation algorithms based on algorithms for POMDPs

B Extend results to systems with unknown models based on
Q-learning and adaptive control algorithms

ez
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Conclusion

Summary of the main idea
@ Find common information at the controllers

© Look from the point of view of a coordinator that observes common
information and chooses prescriptions to the controllers

©® Find information state for the coordinated system and use it to set
up a dynamic program

Sy,
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Conclusion

Summary of the main idea

© Find common information at the controllers

@ Look from the point of view of a coordinator that observes common
information and chooses prescriptions to the controllers

© Find information state for the coordinated system and use it to set
up a dynamic program

Future Directions

© Computational algorithms
® Connections with sequential games

@ Connections with large scale systems/mean field theory

Sy,
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Thank you
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