Decentralized decision making under uncertainty

Aditya Mahajan Yale University

Acknowledgments

Mentors

- Prof. Demos Teneketzis (Univ of Michigan)
- Prof. Sekhar Tatikonda (Yale Univ)
- Collaborators
 - Prof. Serdar Yüksel (Queen's Univ),
 - ▶ Prof. Mingyan Liu (Univ of Michigan),
 - Prof. Mahta Moghaddam (Univ of Michigan),
 - Prof. Dara Entekhabi (MIT),
 - Ashutosh Nayyar, David Shuman (Univ of Michigan)
- Funding Agencies
 - EECS departmental and Rackham graduate school fellowships
 - NSF, ONR, NASA

IHI IHI IHI IHI IHI IHI

Decentralized systems

are ubiquitous

Challenges

- How to coordinate
- What to communicate
- How to communicate
- When to communicate

Limited resources

- Limited resources
- Noisy observations

- Limited resources
- Noisy observations
- Communication

III III III III III III

- Limited resources
- Noisy observations
- Communication
- Challenges
 - Real-time communication
 - Scheduling measurements and communication
 - Detect node failures

IHI IHI IHI IHI IHI IHI

Challenges

► Control and communication over networks (internet ⇒ delay, wireless ⇒ losses)

Challenges

- ► Control and communication over networks (internet ⇒ delay, wireless ⇒ losses)
- Distributed estimation

Challenges

- ► Control and communication over networks (internet ⇒ delay, wireless ⇒ losses)
- Distributed estimation
- Distributed learning

Multiple agents

Decision making by multiple agents in stochastic dynamic environment

Multiple agents

Decision making by multiple agents in stochastic dynamic environment

Coordination issues

All agents must coordinate to achieve a system-wide objective

Multiple agents

Decision making by multiple agents in stochastic dynamic environment

Coordination issues

All agents must coordinate to achieve a system-wide objective

Communication constraints

Data must be communicated within fixed finite delay

IHI IHI IHI IHI IHI IHI

Multiple agents

Decision making by multiple agents in stochastic dynamic environment

Coordination issues

All agents must coordinate to achieve a system-wide objective

Communication constraints

Data must be communicated within fixed finite delay

Robustness

System model may not be known completely

Multiple agents

Decision making by multiple agents in stochastic dynamic environment

Coordination issues

All agents must coordinate to achieve a system-wide objective

Communication constraints

Data must be communicated within fixed finite delay

Robustness

System model may not be known completely

Exploiting domain knowledge

Application specific modeling assumptions

IHI IHI IHI IHI IHI IHI

Real-time communication

Delay sensitive communication

Real-time communication

Delay sensitive communication

Optimal control over noisy channels

Communication and coordination

Real-time communication

Delay sensitive communication

Optimal control over noisy channels

Communication and coordination

Delay sharing pattterns

Coordination

Real-time communication

Delay sensitive communication

Optimal control over noisy channels

Communication and coordination

Delay sharing pattterns

Coordination

Communication over unknown channels
 Robustness

Real-time communication

Delay sensitive communication

Optimal control over noisy channels

Communication and coordination

Delay sharing pattterns

Coordination

- Communication over unknown channels
 Robustness
- Calibration and validation of remote sensing observations
 Exploiting domain knowledge

IHI IHI IHI IHI IHI IHI

Communication over unknown channels

Robust communication

Calibration and validation of remote sensing observations
 Exploiting domain knowledge

Real-time communication

Real-time communication

Simplest setup: A node observes a stream of data and has to communicate it to another node (over possibly noisy channels) within a fixed finite delay

- Integral component of many applications
 - Sensor and surveillance networks
 - Transportation networks
 - ► Fault diagnosis in power systems
 - Networked control systems

Importance and Challenges: An example

THE THE THE THE THE THE

Probability of error

 $\mathbb{P}(s_1 \neq \hat{s}_1) + \mathbb{P}(s_2 \neq \hat{s}_2) + \mathbb{P}(s_3 \neq \hat{s}_3)$

Probability of error

$$\mathbb{P}(s_1 \neq \hat{s}_1) + \mathbb{P}(s_2 \neq \hat{s}_2) + \mathbb{P}(s_3 \neq \hat{s}_3)$$

Memoryless coding strategies

$$x_1 = e_1(s_1), \quad x_2 = e_2(s_2), \quad x_3 = e_3(s_3)$$

 $\hat{s}_1 = e_1(y_1), \quad \hat{s}_2 = e_2(y_2), \quad \hat{s}_3 = e_3(y_3)$

Probability of error

$$\mathbb{P}(s_1 \neq \hat{s}_1) + \mathbb{P}(s_2 \neq \hat{s}_2) + \mathbb{P}(s_3 \neq \hat{s}_3)$$

Memoryless coding strategies

$$x_1 = e_1(s_1), \quad x_2 = e_2(s_2), \quad x_3 = e_3(s_3)$$

$$\hat{s}_1 = e_1(y_1), \quad \hat{s}_2 = e_2(y_2), \quad \hat{s}_3 = e_3(y_3)$$

Causal real-time coding strategies

$$x_1 = e_1(s_1), \quad x_2 = e_2(s_1, s_2), \quad x_3 = e_3(s_1, s_2, s_3)$$
$$\hat{s}_1 = e_1(y_1), \quad \hat{s}_2 = e_2(y_1, y_2), \quad \hat{s}_3 = e_3(y_1, y_2, y_3)$$

Memoryless

Prob of error

0.1346

Causal real-time 0.0564 240% better

THU THU THU THU THU THU

UHT UHT UHT UHT UHT UHT

Memoryless

Prob of error 0.1346# of strategies $(2^2 \times 2^2 \times 2^2)^2$ $0(10^3)$ 0.0564 $(2^2 \times 2^4 \times 2^8)^2$ $0(10^8)$

Causal real-time

240% better simple example

Memoryless

Prob of error 0.1346# of strategies $(2^2 \times 2^2 \times 2^2)^2$ $0(10^3)$ 0.0564 $(2^2 \times 2^4 \times 2^8)^2$ $0(10^8)$

Causal real-time

240% better simple example

Can we search for optimal real-time strategies efficiently?

Literature Overview

Encoder knows what decoder knows

Noiseless channel: Lloyd, 1977; Witsenhausen, 1979; Neuhoff and Gilbert, 1982; Linder and Lugosi, 2001; Weissman and Merhav, 2002; Linder and Zamir, 2006.

Noisy channel with noiseless feedback: Walrand and Varaiya, 1982

Literature Overview

Encoder and decoder have different information

Noisy channel with noisy feedback: Mahajan and Teneketzis, 2008

Finite Memory

Encoder $x_t = e_t(s_t, s_{t-1})$

Decoder $\hat{s}_t = d_t(y_t, y_{t-1})$

Finite Memory

EncoderDecoder $x_t = e_t(s_t, s_{t-1})$ $\hat{s}_t = d_t(y_t, y_{t-1})$

Communication Strategy

$$E = (e_1, e_2, \dots, e_T), \quad D = (d_1, d_2, \dots, d_T)$$

IHT IHT IHT IHT IHT IHT

Finite Memory

EncoderD $x_t = e_t(s_t, s_{t-1})$ \hat{s}_t

Decoder $\hat{s}_t = d_t(y_t, y_{t-1})$

Communication Strategy

$$E = (e_1, e_2, \dots, e_T), \quad D = (d_1, d_2, \dots, d_T)$$

Performance

$$\mathcal{J}(E,D) = \lim_{T \to \infty} \mathbb{E} \left\{ \sum_{t=2}^{T} \beta^{t-1} \mathbb{P}(\hat{s}_t \neq s_{t-1}) \right\}$$

IHI IHI IHI IHI IHI IHI

[Gaarder and Slepian, 1982]

Choose a time invariant strategy E = (e, e, ..., e), D = (d, d, ..., d).

[Gaarder and Slepian, 1982]

Choose a time invariant strategy E = (e, e, ..., e), D = (d, d, ..., d).

• $\{S_{t-1}, S_t, Y_{t-1}\}$ forms a Markov chain

[Gaarder and Slepian, 1982]

Choose a time invariant strategy E = (e, e, ..., e), D = (d, d, ..., d).

 $\{S_{t-1}, S_t, Y_{t-1}\} \text{ forms a Markov chain}$

Find its steady-state distribution (if it is unique)

[Gaarder and Slepian, 1982]

Choose a time invariant strategy E = (e, e, ..., e), D = (d, d, ..., d).

 $\{S_{t-1}, S_t, Y_{t-1}\} \text{ forms a Markov chain}$

Find its steady-state distribution (if it is unique)

Find the steady-state probability of error

 $\lim_{t\to\infty} \mathbb{E}\left\{ \, \mathbb{P}(\hat{s}_t \neq \hat{s}_{t-1}) \, \right\}$

[Gaarder and Slepian, 1982]

Choose a time invariant strategy E = (e, e, ..., e), D = (d, d, ..., d).

 $\{S_{t-1}, S_t, Y_{t-1}\} \text{ forms a Markov chain}$

- Find its steady-state distribution (if it is unique)
- Find the steady-state probability of error

 $\lim_{t\to\infty} \mathbb{E}\left\{ \, \mathbb{P}(\hat{s}_t \neq \hat{s}_{t-1}) \, \right\}$

Repeat for all time invariant strategies.

so we deem it best to publish now the results we do have; albeit, incomplete and unsatisfactory as they are. Perhaps others will pick up the fallen torch and run more deftly! Gaarder and Slepian, 1982

Difficulty with Gaarder and Slepian's approach

Steady-state distribution of a Markov chain is discontinuous in its transition matrix

Difficulty with Gaarder and Slepian's approach

- Steady-state distribution of a Markov chain is discontinuous in its transition matrix
 - For some (E, D), the Markov chain may not have a unique steady-state distribution
 - ► Multiple recurrence classes ⇒ uncountable steady-state distributions

Determining optimal encoders and decoders None of the existing approaches work

Brute force search is computationally challenging

Number of communication strategies: $(|\mathcal{X}|^{|\mathcal{S}|^2} |\hat{\mathcal{S}}|^{|\mathcal{Y}|^2})^T$

Brute force search is computationally challenging

Number of communication strategies: $(|\mathcal{X}|^{|\mathcal{S}|^2} |\hat{\mathcal{S}}|^{|\mathcal{Y}|^2})^T$

- Information theory is not appropriate
 - Based on law of large numbers for long sequences
 - ► Long sequences introduce delay and require big memory

Brute force search is computationally challenging

Number of communication strategies: $(|\mathcal{X}|^{|\mathcal{S}|^2} |\hat{\mathcal{S}}|^{|\mathcal{Y}|^2})^T$

- Information theory is not appropriate
 - Based on law of large numbers for long sequences
 - Long sequences introduce delay and require big memory
- Markov decision theory does not apply

Brute force search is computationally challenging

Number of communication strategies: $(|\mathcal{X}|^{|\mathcal{S}|^2} |\hat{\mathcal{S}}|^{|\mathcal{Y}|^2})^T$

- Information theory is not appropriate
 - Based on law of large numbers for long sequences
 - ► Long sequences introduce delay and require big memory
- Markov decision theory does not apply

- Orthogonal search (Coordinate descent)
 - May not converge
 - ► Gives only local optima

THU THU THU THU THU THU

Global Optimization

Global Optimization

0

the standing of the sector

- Sequential decomposition
- Sequential search algorithm
- Exponentially reduces the search complexity

- Sequential decomposition
 - Sequential search algorithm
 - Exponentially reduces the search complexity
 - Information state
 - No existing methodology
 - Provided an axiomatic approach

- Sequential decomposition
 - Sequential search algorithm
 - Exponentially reduces the search complexity
- Information state
- No existing methodology
- Provided an axiomatic approach
- Common knowledge
 - ▶ What can two agents with different information agree upon?
 - ▶ Key notion in finding information states

IHI IHI IHI IHI IHI IHI

Sequential decomposition

- Sequential search algorithm
- Exponentially reduces the search complexity
- Information state
 - No existing methodology
 - Provided an axiomatic approach
- Common knowledge
 - What can two agents with different information agree upon?
 - Key notion in finding information states
 - Finite or infinite time-steps
 - No priori approach for infinite time-steps
 - Proposed approach works for both

IHI IHI IHI IHI IHI IHI

Sequential decomposition

Divide and Conquer

Algorithm: One step optimization \rightarrow sequence of nested optimizations

Sequential decomposition

Divide and Conquer

Algorithm: One step optimization \rightarrow sequence of nested optimizations

- Information state
 - **For each time** t, an information state π_t

Compression: All the past relevant to the future

IHI IHI IHI IHI IHI IHI

Sequential decomposition

Divide and Conquer

Algorithm: One step optimization \rightarrow sequence of nested optimizations

- Information state
 - **For each time** t, an information state π_t

Compression: All the past relevant to the future

For each info state π_t , a value function $V_t(\pi_t)$

Represents: minimum probability of error in the future

Sequential decomposition

I Divide and Conquer

Algorithm: One step optimization \rightarrow sequence of nested optimizations

- Information state
 - **For each time** t, an information state π_t

Compression: All the past relevant to the future

• For each info state π_t , a value function $V_t(\pi_t)$

Represents: minimum probability of error in the future

Recursion

Express: $V_t(\pi_t)$ in terms of $V_{t+1}(\pi_{t+1})$

Sequential decomposition

Divide and Conquer

Algorithm: One step optimization \rightarrow sequence of nested optimizations

- Information state
 - For each time t, an information state π_t

Compression: All the past relevant to the future

For each info state π_t , a value function $V_t(\pi_t)$

Represents: minimum probability of error in the future

Recursion

Express: $V_t(\pi_t)$ in terms of $V_{t+1}(\pi_{t+1})$

Backward Induction

Evaluate: $V_t(\pi_t)$ for each π_t moving backward in time

Sequential decomposition

Recursion

Express: $V_t(\pi_t)$ in terms of $V_{t+1}(\pi_{t+1})$

Backward Induction

Evaluate: $V_t(\pi_t)$ for each π_t moving backward in time

Sequential Decomposition

First example of sequential decomposition for optimal solution of general non-linear decentralized systems

Sequential Decomposition

First example of sequential decomposition for optimal solution of general non-linear decentralized systems

• How do we choose information state π_t

No previous known technique for finding information states for decentralized systems

An axiomatic approach to choosing information state

[Mahajan, 2008, Mahajan and Teneketzis 2008, 2009b]

Do not think in terms of encoders or decoders; think in terms of a system designer

[Mahajan, 2008, Mahajan and Teneketzis 2008, 2009b]

Do not think in terms of encoders or decoders; think in terms of a system designer

Controlled input-output system

- Control inputs: encoding and decoding functions
- Stochastic inputs:
 - source output and channel noise
- Output: source estimates and prob of error

[Mahajan, 2008, Mahajan and Teneketzis 2008, 2009b]

Do not think in terms of encoders or decoders; think in terms of a system designer

Controlled input-output system

- Control inputs: encoding and decoding functions
- Stochastic inputs:
 - source output and channel noise
- Output: source estimates and prob of error

From the point-of-view of the designer, find

[Mahajan, 2008, Mahajan and Teneketzis 2008, 2009b]

Do not think in terms of encoders or decoders; think in terms of a system designer

Controlled input-output system

- Control inputs: encoding and decoding functions
- Stochastic inputs:
 - source output and channel noise
- Output: source estimates and prob of error
- From the point-of-view of the designer, find
 - common knowledge between encoder and decoder

[Mahajan, 2008, Mahajan and Teneketzis 2008, 2009b]

Do not think in terms of encoders or decoders; think in terms of a system designer

Controlled input-output system

- Control inputs: encoding and decoding functions
- Stochastic inputs:
 - source output and channel noise
- Output: source estimates and prob of error
- From the point-of-view of the designer, find
 - **common knowledge** between encoder and decoder $(e_{1:t-1}, d_{1:t-1})$

[Mahajan, 2008, Mahajan and Teneketzis 2008, 2009b]

Do not think in terms of encoders or decoders; think in terms of a system designer

Controlled input-output system

- Control inputs: encoding and decoding functions
- Stochastic inputs:
 - source output and channel noise
- Output: source estimates and prob of error
- From the point-of-view of the designer, find
 - **common knowledge** between encoder and decoder $(e_{1:t-1}, d_{1:t-1})$

IHT IHT IHT IHT IHT IHT

state sufficient for input-output mapping

[Mahajan, 2008, Mahajan and Teneketzis 2008, 2009b]

Do not think in terms of encoders or decoders; think in terms of a system designer

Controlled input-output system

- Control inputs: encoding and decoding functions
- Stochastic inputs: source output and channel noise
- Output: source estimates and prob of error
- .
- Stochastic inputs Controlled Input-Output System Control Inputs Control Inputs Control Inputs Designer
- From the point-of-view of the designer, find
 - **common knowledge** between encoder and decoder $(e_{1:t-1}, d_{1:t-1})$
 - ► state sufficient for input-output mapping (s_t, s_{t-1}, y_{t-1})

[Mahajan, 2008, Mahajan and Teneketzis 2008, 2009b]

From the point-of-view of the designer, find

common knowledge between encoder and decoder $(e_{1:t-1}, d_{1:t-1})$

► state sufficient for input-output mapping (s_t, s_{t-1}, y_{t-1})

[Mahajan, 2008, Mahajan and Teneketzis 2008, 2009b]

From the point-of-view of the designer, find

common knowledge between encoder and decoder $(e_{1:t-1}, d_{1:t-1})$

► state sufficient for input-output mapping (s_t, s_{t-1}, y_{t-1}) $\mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W}$

Information state Seq decomposition [Mahajan and Teneketzis, 2009b]

Finite horizon: An optimal communication strategy can be determined by the solution of the following nested optimality equations

$$V_{T}(\pi_{T}) = \min_{e_{T},d_{T}} \mathbb{E} \left[\mathbb{P}(\hat{s}_{T} \neq s_{T-1}) \mid \pi_{T}, e_{T}, d_{T} \right]$$
$$V_{t}(\pi_{t}) = \min_{e_{t},d_{t}} \mathbb{E} \left[\mathbb{P}(\hat{s}_{t} \neq s_{t-1}) + \beta V_{t+1}(\pi_{t+1}) \mid \pi_{t}, e_{t}, d_{t} \right]$$
where $\pi_{t} = \mathbb{P}(s_{t-1}, s_{t}, y_{t-1} \mid e_{1:t-1}, d_{1:t-1})$

Information state Seq decomposition [Mahajan and Teneketzis, 2009b]

Finite horizon: An optimal communication strategy can be determined by the solution of the following nested optimality equations

$$V_{T}(\pi_{T}) = \min_{e_{T},d_{T}} \mathbb{E} \left[\mathbb{P}(\hat{s}_{T} \neq s_{T-1}) \mid \pi_{T}, e_{T}, d_{T} \right]$$
$$V_{t}(\pi_{t}) = \min_{e_{t},d_{t}} \mathbb{E} \left[\mathbb{P}(\hat{s}_{t} \neq s_{t-1}) + \beta V_{t+1}(\pi_{t+1}) \mid \pi_{t}, e_{t}, d_{t} \right]$$
where $\pi_{t} = \mathbb{P}(s_{t-1}, s_{t}, y_{t-1} \mid e_{1:t-1}, d_{1:t-1})$

Infinite horizon: ... fixed point equation

$$\boldsymbol{V}(\pi) = \min_{\boldsymbol{e},\boldsymbol{d}} \mathbb{E}\left[\mathbb{P}(\hat{s}_t \neq s_{t-1}) + \beta \boldsymbol{V}(\pi_+) \, \big| \, \pi, \boldsymbol{e}, \boldsymbol{d} \, \right]$$

Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	<i>s</i> ₁	s ₂	<i>S</i> 3	S ₄	<i>S</i> 5	<i>s</i> ₆	<i>S</i> ₇
Encoder							
Decoder							
Estimate	_	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	<i>S</i> 5	<i>s</i> ₆

Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> 3	S ₄	<i>S</i> 5	<i>s</i> ₆	<i>S</i> ₇
Encoder	<i>s</i> ₁						
Decoder	0						
Estimate	_	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	<i>S</i> 5	<i>s</i> ₆

Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	<i>s</i> ₁	s ₂	<i>s</i> ₃	S ₄	<i>S</i> 5	s ₆	<i>S</i> ₇
Encoder	<i>s</i> ₁	$s_1 \oplus s_2$					
Decoder	0	$y_1 \oplus y_2$					
Estimate	_	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	S ₄	<i>S</i> ₅	<i>s</i> ₆

Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	<i>s</i> ₁	s ₂	<i>s</i> ₃	S ₄	<i>S</i> 5	s ₆	<i>S</i> ₇
Encoder	<i>s</i> ₁	$s_1 \oplus s_2$	<i>s</i> ₂				
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$				
Estimate	_	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	<i>S</i> ₅	<i>s</i> ₆

Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	<i>s</i> ₁	s ₂	<i>s</i> ₃	S ₄	<i>S</i> 5	s ₆	<i>S</i> ₇
Encoder	<i>s</i> ₁	$s_1 \oplus s_2$	<i>s</i> ₂	S ₄			
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$	0			
Estimate	_	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	S ₄	<i>S</i> ₅	<i>s</i> ₆

Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	<i>s</i> ₁	s ₂	<i>s</i> ₃	S ₄	<i>S</i> 5	<i>s</i> ₆	<i>S</i> ₇
Encoder	<i>s</i> ₁	$s_1 \oplus s_2$	s ₂	S ₄	$s_4 \oplus s_5$		
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$	0	$y_4 \oplus y_5$		
Estimate	_	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	S ₄	<i>S</i> ₅	<i>s</i> ₆

Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	<i>s</i> ₁	s ₂	<i>s</i> ₃	S ₄	<i>S</i> 5	<i>s</i> ₆	<i>S</i> ₇
Encoder	<i>s</i> ₁	$s_1 \oplus s_2$	<i>s</i> ₂	S ₄	$s_4 \oplus s_5$	<i>S</i> 5	
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$	0	$y_4 \oplus y_5$	$y_5 \oplus y_6$	
Estimate	_	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	S ₄	<i>S</i> 5	<i>s</i> ₆

Example with $\beta = 0.9$

$$(e_t, d_t) = \begin{pmatrix} s_t & , & \mathbf{0} \\ s_{t-1} \oplus s_t & , & y_{t-1} \oplus y_t \\ s_{t-1} & , & y_{t-1} \oplus y_t \end{pmatrix}_{t \pmod{3}}$$

Source	<i>s</i> ₁	s ₂	<i>s</i> ₃	S ₄	<i>S</i> 5	<i>s</i> ₆	<i>S</i> ₇
Encoder	<i>s</i> ₁	$s_1 \oplus s_2$	<i>s</i> ₂	S ₄	$s_4 \oplus s_5$	<i>S</i> 5	<i>S</i> ₇
Decoder	0	$y_1 \oplus y_2$	$y_2 \oplus y_3$	0	$y_4 \oplus y_5$	$y_5 \oplus y_6$	0
Estimate	_	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	S ₄	<i>S</i> 5	<i>s</i> ₆

Although the system is time homogeneous, time-invariant strategies need not be optimal

Time homogeneous meta-strategy $(e_t, d_t) = \Delta(\pi_t)$

Although the system is time homogeneous, time-invariant strategies need not be optimal

Time homogeneous meta-strategy $(e_t, d_t) = \Delta(\pi_t)$

Gaarder and Slepian assumed time-invariant strategies

This restriction made their setup extremely difficult to solve.

Although the system is time homogeneous, time-invariant strategies need not be optimal

Time homogeneous meta-strategy $(e_t, d_t) = \Delta(\pi_t)$

Gaarder and Slepian assumed time-invariant strategies

This restriction made their setup extremely difficult to solve.

Design of decentralized systems requires a paradigm shift

Summary

Highly non-trivial problem

No existing technique was directly applicable

Summary

Highly non-trivial problem

No existing technique was directly applicable

- Novel way to approach system design
 - System designer
 - Common knowledge
 - Information information

Summary

Highly non-trivial problem

No existing technique was directly applicable

- Novel way to approach system design
 - System designer
 - Common knowledge
 - Information information
- Qualitative difference in results

Even for infinite horizon problems, time-invariant strategies may not be optimal

THE LIFE THE THE THE THE

Generality of the approach

Generality of the approach

- General model for real-time communication
 - Full-memory encoder or decoder (Mahajan and Teneketzis, 2009b)
 - Channels with memory (Mahajan and Teneketzis, 2009b)
 - ▶ Higher order Markov sources (Mahajan and Teneketzis, 2009b)
 - Presence of noisy feedback (Mahajan and Teneketzis, 2008)
Generality of the approach

- General model for real-time communication
 - ► Full-memory encoder or decoder (Mahajan and Teneketzis, 2009b)
 - ► Channels with memory (Mahajan and Teneketzis, 2009b)
 - ► Higher order Markov sources (Mahajan and Teneketzis, 2009b)
 - Presence of noisy feedback (Mahajan and Teneketzis, 2008)
- Towards a theory of real-time network communication

Generality of the approach

- General model for real-time communication
 - **Full-memory encoder or decoder (Mahajan and Teneketzis, 2009b)**
 - ► Channels with memory (Mahajan and Teneketzis, 2009b)
 - ► Higher order Markov sources (Mahajan and Teneketzis, 2009b)
 - Presence of noisy feedback (Mahajan and Teneketzis, 2008)
- Towards a theory of real-time network communication
- Optimal control over noisy channels

Generality of the approach

- General model for real-time communication
 - ▶ Full-memory encoder or decoder (Mahajan and Teneketzis, 2009b)
 - ► Channels with memory (Mahajan and Teneketzis, 2009b)
 - ▶ Higher order Markov sources (Mahajan and Teneketzis, 2009b)
 - Presence of noisy feedback (Mahajan and Teneketzis, 2008)
- Towards a theory of real-time network communication
- Optimal control over noisy channels
- Delayed sharing patterns
 - A 40 year old open problem

THU THU THU THU THU THU

THU THU THU THU THU THU

 $U_t^i = g_t^i(C_t, L_t^i)$

 $U_t^i = g_t^i(C_t, L_t^i)$

where

$$C_{t} = \left(\begin{bmatrix} Y_{1}^{1} \\ \vdots \\ Y_{t-n}^{1} \end{bmatrix}, \begin{bmatrix} Y_{1}^{2} \\ \vdots \\ Y_{t-n}^{2} \end{bmatrix}, \begin{bmatrix} U_{1}^{1} \\ \vdots \\ U_{t-n}^{1} \end{bmatrix}, \begin{bmatrix} U_{1}^{2} \\ \vdots \\ U_{t-n}^{2} \end{bmatrix} \right) \quad L_{t}^{i} = \left(\begin{bmatrix} Y_{t-n+1}^{1} \\ \vdots \\ Y_{t}^{1} \end{bmatrix}, \begin{bmatrix} U_{t-n+1}^{1} \\ \vdots \\ U_{t-1}^{1} \end{bmatrix} \right)$$

Common Information

Local Information

THI THI THI THI THI THI

Design Difficulty

Common information C_t is increasing with time

IHI IHI IHI IHI IHI IHI

Design Difficulty

Common information C_t is increasing with time

Conjecture (Witsenhausen, 1971)

Without loss of optimality, each controller can replace C_t by $\mathbb{P}(X_{t-n} | C_t)$

IHI IHI IHI IHI IHI IHI

Design Difficulty

Common information C_t is increasing with time

Conjecture (Witsenhausen, 1971)

Without loss of optimality, each controller can replace C_t by $\mathbb{P}(X_{t-n} | C_t)$

Varaiya and Walrand (1979)

• True for n = 1

• False for n > 1

Open problem for 40 years

Does a information state for C_t exist? How do we find such a information state?

Importance of the problem

- Applications (of one step delay sharing)
 - Power systems: Altman et. al, 2009
 - Queueing theory: Kuri and Kumar, 1995
 - **Communication networks:** Grizzle *et. al*, 1982
 - Stochastic games: Papavassilopoulos, 1982; Chang and Cruz, 1983
 - **Economics**: Li and Wu, 1991

IHI IHI IHI IHI IHI IHI

Importance of the problem

- Applications (of one step delay sharing)
 - Power systems: Altman et. al, 2009
 - Queueing theory: Kuri and Kumar, 1995
 - **Communication networks:** Grizzle *et. al,* 1982
 - **Stochastic games:** Papavassilopoulos, 1982; Chang and Cruz, 1983
 - Economics: Li and Wu, 1991
- Conceptual significance
 - Understanding the design of networked control systems
 - **Bridge** between centralized and decentralized systems
 - Insights for the design of general decentralized systems

IHI IHI IHI IHI IHI IHI

[Nayyar, Mahajan, and Teneketzis, 2010]

Common knowledge between all agents

[Nayyar, Mahajan, and Teneketzis, 2010]

Common knowledge between all agents

$$(C_t, g_{1:t-1}^1, g_{1:t-1}^2)$$

[Nayyar, Mahajan, and Teneketzis, 2010]

Common knowledge between all agents

$$(C_t, g^1_{1:t-1}, g^2_{1:t-1})$$

State sufficient for i/o mapping

[Nayyar, Mahajan, and Teneketzis, 2010]

Common knowledge between all agents

$$(C_t, g_{1:t-1}^1, g_{1:t-1}^2)$$

State sufficient for i/o mapping

 (X_t, L^1_t, L^2_t)

[Nayyar, Mahajan, and Teneketzis, 2010]

Common knowledge between all agents

$$(C_t, g_{1:t-1}^1, g_{1:t-1}^2)$$

State sufficient for i/o mapping

 (X_t,L^1_t,L^2_t)

Information state

THU THU THU THU THU THU

[Nayyar, Mahajan, and Teneketzis, 2010]

Common knowledge between all agents

$$(C_t, g_{1:t-1}^1, g_{1:t-1}^2)$$

State sufficient for i/o mapping

 (X_t,L^1_t,L^2_t)

Information state

 $\pi_t = \mathbb{P}(\text{state for i/o mapping} \mid \text{common knowledge})$

[Nayyar, Mahajan, and Teneketzis, 2010]

Common knowledge between all agents

$$(C_t, g^1_{1:t-1}, g^2_{1:t-1})$$

State sufficient for i/o mapping

 (X_t,L^1_t,L^2_t)

Information state

 $\pi_t = \mathbb{P}(\text{state for i/o mapping} \mid \text{common knowledge})$ $= \mathbb{P}(X_t, L_t^1, L_t^2 \mid C_t, g_{1:t-1}^1, g_{1:t-1}^2)$

[Nayyar, Mahajan, and Teneketzis, 2010]

<u>Common knowledge hetween all agents</u>

Structure of optimal control law

Without loss of optimality, each controller can replace C_t by $\mathbb{P}(X_t, L_t^1, L_t^2 \mid C_t, g_{1:t-1}^1, g_{1:t-1}^2)$

Can also write a sequential decomposition based on this information state

THI THI THI THI THI THI

A systematic approach can easily resolve long-standing conceptual difficulties in decentralized systems

Conclusions Optimal design of decentralized systems

Decentralized system: Salient features

Multiple agents

Decision making by multiple agents in stochastic dynamic environment

Coordination issues

All agents must coordinate to achieve a system-wide objective

Communication constraints

Data must be communicated within fixed finite delay

Robustness

System model may not be known completely

Exploiting domain knowledge

Application specific modeling assumptions

IHI IHI IHI IHI IHI IHI

Decentralized systems: Research directions

Real-time communication

Delay sensitive communication

Optimal control over noisy channels

Communication and coordination

Delay sharing pattterns

Coordination

- Communication over unknown channels
 Robustness
- Calibration and validation of remote sensing observations
 Exploiting domain knowledge

Systematic approach to design decentralized systems

THE THE THE THE THE IM

- Systematic approach to design decentralized systems
- Algorithm to sequentially synthesize optimal controllers
 - Based on information states

THE THE THE THE THE IN

- Systematic approach to design decentralized systems
- Algorithm to sequentially synthesize optimal controllers Based on information states
 - Axiomatic approach to find information states
 - ► Find common knowledge
 - Find state for i/o mapping
 - P(state for i/o mapping | common knowledge)

IHI IHI IHI IHI IHI IHI

- Systematic approach to design decentralized systems
- Algorithm to sequentially synthesize optimal controllers Based on information states
 - Axiomatic approach to find information states
 - ► Find common knowledge
 - ▶ Find state for i/o mapping
 - P(state for i/o mapping | common knowledge)
 - Delayed sharing pattern

Able to resolve a long standing open conjecture

IHI IHI IHI IHI IHI IIII

Future Directions

- Control of power systems
 - Renewable energy:
 unpredictable generation

Energy markets: Game theoretic considerations

Future Directions

- Control of power systems
 - Renewable energy: unpredictable generation

- Energy markets: Game theoretic considerations
- Environmental sensor networks
 - Climate change: cheap yet reliable monitoring
 - Calibration validation of remote sensing observations
 Time varying sampling

1411 JHT JHT JHT JHT JHT

Future Directions

- Control of power systems
 - Renewable energy: unpredictable generation
 - Energy markets: Game theoretic considerations
- Environmental sensor networks
 - Climate change: cheap yet reliable monitoring
 - Calibration validation of remote sensing observations
 Time varying sampling
- Control and coordination
 - Transportation networks
 - Bioscience and medicine

References: real-time communication

- ► A. Mahajan and D. Teneketzis, Optimal design of sequential real-time communication systems, *IEEE Trans Information Theory*, Nov 2009.
- A. Mahajan and D. Teneketzis, On the design of globally optimal communication strategies for noisy real-time communication systems with noisy feedback, IEEE Selected Areas in Comm, May 2008
- A. Mahajan, Structure of optimal block Markov superposition coding for multiple access channel with feedback, *Information Theory and Applications* (ITA) Workshop, 2010
- A. Mahajan, Optimal sequential transmission over broadcast channels with nested feedback, 47th Allerton Conference, 2009
- A. Mahajan and D. Teneketzis, Fixed delay optimal joint source-channel coding for finite-memory systems, IEEE Int. Symp. of Information Theory (ISIT), 2006
- A. Mahajan and D. Teneketzis, "Real-time communication systems with noisy feedback," IEEE Information Theory Workshop (ITW), 2007.

References: control over noisy channels

- A. Mahajan and D. Teneketzis, Optimal performance of networked control systems with non-classical information structures, SIAM Journal of Control and Optimization, 2009
- A. Mahajan and D. Teneketzis, Optimal performance of feedback control systems with limited communication over noisy channels, 45th IEEE Conference on Decision and Control (CDC), 2006

References: General decentralized control problem

- A. Nayyar, A. Mahajan and D. Teneketzis, Optimal control strategies om delayed sharing information structures, *IEEE Transactions on Automatic Control*, Feb 2010 (submitted)
- A. Nayyar, A. Mahajan, and D. Teneketzis, A separation result for delayed sharing information structures, American Control Conference (ACC), 2010
- A. Mahajan and S. Yüksel, Measure and cost dependent properties of information structures, American Control Conference (ACC), 2010
- A. Mahajan and S. Tatikonda, Sequential team form and its simplification using graphical models, 47th Allerton Conference, 2009
- A. Mahajan, Sequential decomposition of systems with non-classical information structures: Some examples, Information Theory and Applications (ITA) Workshop, 2009.
Thank you

Backup Slides

Contents

Main Slides

- Real-time communication
- Memory and delay considerations
- Research contributions
- Delayed sharing patterns
- Conclusions
- Backup slides
 - Towards a theory of real-time network communication
 - Optimal control over noisy channels
 - Communication over unknown channels
 - Calibration and validation of remote sensing observations
 III III III III III III

Towards a theory of real-time network communication

Towards a theory of real-time network communication

A surprisingly related problem

Simplest example of optimal control of networked systems

THI THI THI THI THI THI

[M and Teneketzis, 2009a]

- Salient features
 - ► Noisy channel

Performance optimization

[M and Teneketzis, 2009a]

- Salient features
 - Noisy channel

- Performance optimization
- Control vs (real-time) communication

[M and Teneketzis, 2009a]

- Salient features
 - Noisy channel

- Performance optimization
- Control vs (real-time) communication
 - ► Similar design difficulties
 - non-comparable information

- No brute force
- No Markov decision theory
- ▶ No orthogonal search

THI THI THI THI THI THI

[M and Teneketzis, 2009a]

- Salient features
 - Noisy channel

- Performance optimization
- Control vs (real-time) communication
 - Similar design difficulties
 - non-comparable information
 - Similar solution approach works

- ► No brute force
- No Markov decision theory
- No orthogonal search

Algorithm to sequentially search for the optimal encoding and control strategies

IHI IHI IHI IHI IHI IHI

Trade off between learning and communication

Trade off between learning and communication

Performance criterion:

Error exponent $E = \lim_{n \to \infty} \mathbb{P}_{error}^{(n)}$

Trade off between learning and communication

Performance criterion:

Error exponent $E = \lim_{n \to \infty} \mathbb{P}_{error}^{(n)}$

- Training based scheme
 - Send training sequence
 - Estimate channel and communicate

Proposed coding scheme

 $E_{\text{proposed}} = \alpha E_{\text{known}}$

Proposed coding scheme

$$E_{\text{proposed}} = \alpha E_{\text{known}}$$

Main insights

- Need to send multiple training sequences
- Channel estimation for each training sequence should be done independently

Proposed coding scheme

$$E_{\text{proposed}} = \alpha E_{\text{known}}$$

Main insights

- Need to send multiple training sequences
- Channel estimation for each training sequence should be done independently

Reference

A. Mahajan and S. Tatikonda, Opportunistic capacity and error exponents of compound channel with feedback, *IEEE Trans of Info Theory*, 2010 (submitted)

Calibration and Validation of Remote sensing observations

Monitoring soil moisture

Measurement need for earth science

NASA Earth Science focus: climate, carbon, weather, water, surface, and atmosphere

Challenges

- Complicated variation
 Depends on temperature, vegetation, precipitation, soil texture, topology, etc.
- Remote sensing gives coarse estimates
 O(1km) to O(10km)

Variation of Soil Moisture

Variation of Soil Moisture

Radar measurements

Backscattering coefficient

Depends on incidence angle, soil depth, soil type, and vegetation cover

Sensor Scheduling

Limited battery life

Measurement and communication consumes energy

Sleep scheduling

Does the sensor need to switch on its radio to determine when to take a measurement?

Sensor placement

Need to cover a large area to match satellite footprint

THI THI THI THI THI THI

Physical model

Use a community standard numerical model developed over 35 years (SWAP)

Physical model

Use a community standard numerical model developed over 35 years (SWAP)

- Measurement model
 - Forward model for electromagnetic backscattering
 - Sensor observation model based on calibration curves

Physical model

Use a community standard numerical model developed over 35 years (SWAP)

- Measurement model
 - Forward model for electromagnetic backscattering
 - Sensor observation model based on calibration curves
- Optimal control formulation

Use physical and measurement model to guide sensor scheduling and measurement

IHI IHI IHI IHI IHI IHI

- Sensor observation model based on calibration curves
- I Optimal control formulation

Use physical and measurement model to guide sensor scheduling and measurement

Field Testing

Location

Matthaei Botanical Gardens, Ann Arbor, MI

Multiple nodes at 3 depths

http://soilscape.eecs.umich.edu

References: Soil moisture measurement

- M. Moghaddam, D. Entekhabi, Y. Goykhman, K. Li, M. Liu, A. Mahajan, A. Nayyar, D. Shuman, and D. Teneketzis, A wireless soil moisture smart sensor web using physics-based optimal control: concept and initial demonstrations, *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 2010 (accepted)
- D. Shuman, A. Nayyar, A. Mahajan, Y. Goykhman, K. Li, M. Liu, D. Teneketzis, M. Moghaddam, D. Entekhabi, Measurement scheduling for soil moisture sensing: From physical models to optimal control, *Proceedings of the IEEE*, (in revision)
- M. Moghaddam, D. Entekhabi, Y. Goykhman, M. Liu, A. Mahajan, A. Nayyar,
 D. Shuman, and D. Teneketzis, Soil moisture smart sensor web using data assimilation and optimal control: formulation and first laboratory demonstration, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2008.

Contents

Main Slides

- Real-time communication
- Memory and delay considerations
- Research contributions
- Delayed sharing patterns
- Conclusions
- Backup slides
 - ▶ Towards a theory of real-time network communication
 - Optimal control over noisy channels
 - Communication over unknown channels
 - Calibration and validation of remote sensing observations