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r Outline of this talk

What is the conceptual difficulty with
multi-agent decision making? How to resolve it?

© Modeling decision making under uncertainty
© oOverview of single-agent decision making

© Delayed sharing information structure:
A “simple” model for multi-agent decision making

& History of the problem
= Our approach
= Main results

© Conclusion
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Model of uncertainty Model of information

@ Stochastic dynamics

X =f (X, U, W;)

@© Noisy observations o
Model of objective

Y, =h(X, N,)

© state disturbance and noise are
i.i.d. stochastic processes with known
distribution.

@ System dynamics f and observation

L function h are known.
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Model of objective
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r Modeling multi-stage decision
making under uncertainty

Model of uncertainty Model of information
@ Stochastic dynamics @© Single DM with perfect recall
Xt+1 :f(Xt»Ut»Wt) Ut zgt(yl:trUl:t—l)

@ Noisy observations o
Model of objective

Y, =h(X, N,)

. . ® Costattimet=c(Xt,Ut).
© state disturbance and noise are

i.i.d. stochastic processes with known @ Objective: minimize expected total
distribution. cost

T
@ System dynamics f and observation
E [Z e (X¢) Ut)]
t=1

L function h are known.
I/ J



r More general setups

@ Model of uncertainty

e Non-i.i.d. dynamics (Markov, ergodic, etc.)
= Unknown distribution
= Unknown model, unknown cost, etc.

© Model of information

= Fixed memory/complexity at decision maker
= More than one decision maker

© Model of objective

= Worse-case performance (instead of expected performance)
= Minimize regret (instead of minimizing total cost)
= Remain in a desirable set (rather than minimize total cost)
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r Outline of this talk

What is the conceptual difficulty with
multi-agent decision making? How to resolve it?

© Modeling decision making under uncertainty

g @ overview of single-agent decision making %

@ Delayed sharing information structure:
A “simple” model for multi-agent decision making

e History of the problem
> Our approach
= Main results

@® Conclusion
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r Single-agent decision making

Design difficulties
® U, =9:(V1.tU1:e-1)
o © min IE[ZC(Xt,Ut)

Domain of control laws increases (g
1,29T)

with time Search of optlmal control policy
is a functional optimization problem
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Design difficulties
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Domain of control laws increases ® g‘imfng E[Z c(Xe, Ut)]

with time Search of optlmal control policy
is a functional optimization problem

Structural results Dynamic Programming
Define, information state: The following recursive equations
rovide an optimal control polic
e =PX¢ | Yie, Urie—1) P P POTICY
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in restricting attention to control
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Estimation

Structural results
Define, information state:

Ty = PX: | Y1 Urie—1)

Then, there is no loss of optimality
in restricting attention to control
laws of the form

Ug = g¢ (1)

M

Single-agent decision making

——— __———

Control

Dynamic Programming
The following recursive equations
provide an optimal control policy

Vi(me) = min E|c(X,, Uy)
t

+ Vi1 (e41) | Tt Ut]
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r Single-agent decision making

> 1, is policy independent

d Estimation Control

Structural results Dynamic Programming
Define, information state: The following recursive equations
rovide an optimal control polic
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r Single-agent decision making

= 1, IS policy independent = Each step of DP is a parameter
optimization.

Estimation Control

Structural results Dynamic Programming
Define, information state: The following recursive equations

rovide an optimal control polic
e = PX¢e [ Y16 Ugie—1) P PH POTicY

Then, there is no loss of optimality Velmm:) = rr}}tn [E[C(Xt» Ut)

in restricting attention to control
laws of the form

Ug = g¢ (1)
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r (One-way) separation between
estimation and control

In single-agent decision making, estimation is separated from control.
This separation is critical for decomposing the search of optmial
control policy into a sequence of parameter optimization problems.

Does this separation extend

to multi-agent decision making?
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r Delayed-sharing information structure

©

Model of uncertainty
Stochastic dynamics

Xess = f(Xe, UF?, W)
Noisy observations

v =n< (X, N
Model of information

Each DM has perfect recall

Each DM observes n-step delayed
information (observation and actions)
of other DMs

Ml

Model of objective
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Model of uncertainty Model of objective
@ Stochastic dynamics

Xess = f(Xe, UF?, W)
@© Noisy observations

Yf = (X, NF)

Model of information

©

Each DM has perfect recall

vli, Ul __
U} =g,}< 1t 1:t 1)

© Each DM observes n-step delayed Yz, ., Ui, .,
information (observation and actions)

of other DMs
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r Delayed-sharing information structure

Model of uncertainty Model of objective
© Sstochastic dynamics

Xt+1=f(Xt;Ug:2,Wt) 0 COStattimet=c(Xt,Ut112).

. . © oObjective: minimize
@© Noisy observations j

T
Yk = hk (Xt' Ntk) E [Z e (X, Utl:Z)]
t=1
Model of information

© Each DM has perfect recall v Ui
Utl — g;:l< 21:t’ %:t—l)

@© Each DM observes n-step delayed VG

information (observation and actions)

of other DMs
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r Delayed-sharing information structure

Some Notation

Ul — A1 Y%:t' U%:t—l U2 — 1 Y%:t—n’ U%:t—n
t = 9\ y2 U2 t =9\ y2 U2
1:t—n’ 1:t—n 1:t’ 1:t—-1
Thus,
vk =gt (.. 1)
where

e Common info C, = (Y12 ,U¥2 )

: k _ (yk k
= Localinfo Ly = (Yi_pig.0 Ut_niae—n)
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r Delayed-sharing information structure

-

Some Notation

Ul — g1< Y%:t' U%:t—l ) U2 — gl< Y%:t—n’ U%:t—n)
t t 2 2 t t 2 2
Y u Y Ul:t—l

1:t—n’ 1:t—n 13
Thus,
Uy =gf(Ct, Llf)
where
= Common info C, = (Y2 UY2 )
= Localinfo L¥ =(vk . U8 ... )

Same design difficulties as single-agent case

e

—

Ml
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Literature overview

© (witsenhausen, 1971): Proposed delayed-sharing information structure.
Asserted a structure of optimal control law (without proof).
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Literature overview

(Witsenhausen, 1971): Proposed delayed-sharing information structure.
Asserted a structure of optimal control law (without proof).

(varaiya and Walrand, 1978): Proved Witsenhausen’s assertion for n =
1. Showed via a counter-example that the assertion is false for delay
n> 2.

(Nayyar, Mahajan, and Teneketzis, 2011): Prove two alternative
structures of optimal control law.

NMT 2011 also obtain a recursive algorithm to find optimal control laws.
At each step, we need to solve a functional optimization problem.

M
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Original setup NMT11 First result
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r Structure of optimal control law

Original setup NMT11 First result
Uf = g¢ (Ce L) Uf = gf (P (Xe, L | Co), LY)
W71 Assertion NMT11 Second result
Uzc = gilfc(]P(Xt—Tl+1 | Ct)’ thf) Uz(, = gf(]P)(Xt—Tl-l-l | Ct), thc,

1:2
At n+1:t-1

—)

Contrast dependence on policy for the different results. k‘
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r Importance of the problem

@ Applications (of one step delay sharing)

Power systems: Altman et. al, 2009

Queueing theory: Kuri and Kumar, 1995

Communication networks: Grizzle et. al, 1982

Stochastic games: Papavassilopoulos, 1982; Chang and Cruz, 1983
Economics: Li and Wu, 1991
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© Conceptual significance
= Understanding the design of networked control systems
= Bridge between centralized and decentralized systems

= Insights for the design of general decentralized systems
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Orthogonal search does
not work due to presence
of signaling. How does
controller 1 figure out how
agent 2 will interpret
his (agent 1’s) actions?
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Proof outline

Construct a coordinated system

Show that any policy of the coordinated system is implementable in the
original system and vice-versa. Hence, the two systems are equivalent.

Optimal design of the coordinated system is a single-agent multi-stage
decision problem. Find a solution for the coordinated system.

Translate this solution back to the original system.

M IHT I}
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Step 1: The coordinated system

C, Ll | Ul
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Cy, L%
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Step 1: The coordinated system

Cy, L%

Define partially evaluated control law: y/(-) = gL(Cy, )
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r Step 1: The coordinated system

th L%

(0

L

v

Define partially evaluated control law: y/(-) = gL(Cy, )
Coordinator prescribes (¥}, ) to the controllers as

(thr Vtz) = Y (Cy, V%;t_y V%;t_1)
L T IMT IHT



r Step 2: Equivalence

@© For any policy (g4,...,gr) of the original system, we can construct a
policy (Y4, ...,¥) of the coordinated system such that the system
variables {(X;, Y,;"*,U}?), t = 1,..., T} have the same realization along
all sample paths in both cases.
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r Step 2: Equivalence j

@ For any policy (g4,...,gr) of the original system, we can construct a
policy (¥4, ...,¥7) of the coordinated system such that the system
variables {(X;, Y,;**,U}?), t = 1,..., T} have the same realization along
all sample paths in both cases.

e(Co) = (v vd) = (93 (Cr, ), g2 (Cr )
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r Step 2: Equivalence

@ For any policy (g4,...,9gr) of the original system, we can construct a
policy (14, ...,¥7) of the coordinated system such that the system
variables {(X;, Y,;'*,U}*), t = 1,..., T} have the same realization along
all sample paths in both cases.

l/)t (Ct) = (ytli ytZ) = (gél (Ct' ')' th (Ct' ))

@ For any policy (¥4,...,Pr) of the coordinated system, we can construct
a policy (g4,..., gr) of the original system such that the system
variables {(X;, Y,;**,U}?), t = 1,..., T} have the same realization along
all sample paths in both cases.

e At time 1, both controllers know C;. Choose
gr(Cy, 1Y) = p(CHULY).
> At time 2, both controllers knows C,, y{, and y;. Choose

95 (C2, L5) = 93 (Co, 71, v (L)
L T IHT IHT
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Step 3: Solve the coordinated system

@ By construction, the coordinated system has a single decision maker
with perfect recall.

@ uUse result for single-agent decision making:
Define:

m, = P(“Current state” | past history)

Then, there is no loss of optimality in restricting attention to control
laws of the form:
control action = Fn(m;)
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Step 3: Solve the coordinated system

@ By construction, the coordinated system has a single decision maker
with perfect recall.

@ uUse result for single-agent decision making:
Define:

m, = P(“Current state” | past history)

Then, there is no loss of optimality in restricting attention to control
laws of the form:
control action = Fn(m;)

What is the state (for I/0 mapping) for the system.

— — — 1\
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State for the coordinated system
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r Structure of optimal control law

© Define
e = P(Xe, L, L | Coo Vi1 Viee1)

Then, there is no loss of optimality in restricting attention to
coordination laws of the form

(th» \Vtz) = P (¢)
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r Structure of optimal control law

© Define
e = P(Xe, L, L | Coo Vi1 Viee1)

Then, there is no loss of optimality in restricting attention to
coordination laws of the form

(th, \Vtz) = P (¢)

@ The following recursive equations provide an optimal coordination policy

Ve(mry) = min Efc(Xe, Up) + Vg1 (Te41) | ”t»th'Vtz]
Vevd)
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r Step 4: Translate the solution j

For a system with delayed-sharing information structure, there is no loss of
optimality in restricting attention to control laws of the form

Ut = g¢ (me, L)

Optimal control laws can be obtained by the solution of the following
recursive equations

Ve(me) = (gl(ng-r)qunz(nt,-)) [E[C(Xt» Up) + Vi1 (o) | 6 gz (10, 0), 97 (704, ')]

- JHTHT I I y



r Features of the solution j

© The space of realizations of 1, = P(X,, L1, L% | Coyl, 1,72, 1)
is time-invariant. Thus, the domain of the control laws gf(m,, L¥) is
time-invariant.

© m, is not policy independent! Estimation is not separated from control.
This is always the case when signaling is present.

@ In each step of the dynamic program, we choose the partially evaluated
control laws g} (1, ), g7 (7, -). Choosing partially evaluated functions
(instead of values) allows us to write a dynamic program even in the
presence of signaling.
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r Outline of this talk

What is the conceptual difficulty with
multi-agent decision making? How to resolve it?

© Modeling decision making under uncertainty
@ overview of single-agent decision making

© Delayed sharing information structure:
A “simple” model for multi-agent decision making

= History of the problem
= Our approach
e Main results

qg @ Conclusion za
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r Summary

@ Simple methodology to resolve a 40 year old open question:
= Find common information at each time

> Look at the problem for the point of view of a coordinator that
observes this common information and chooses partiallly evaluated
functions

= Find an information state for the problem at the coordinator
x  [P(state for input-output mapping | common information)
*x  ( P(past state | common information), past partial control laws )

@© This methodology is also applicable to systems with more general
information structures (Mahajan, Nayyar, Teneketzis, 2008).
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r Salient Features

© The size of the information state is time-invariant

The methodology is also applicable to infinite horizon problems

©® Each step of DP is a functional optimization problem
= Form of the DP is similar to that of POMDP

= Can borrow from the POMDP literature for numerical approaches
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