Decentralized stochastic control
The person-by-person and the common information approaches

Aditya Mahajan
McGill University

REPARTI Annual Workshop, May 23, 2014
Decision making by a single agent

Static optimization

\[
\min_{u \in \mathcal{U}} c(u)
\]

- Linear programming
- Convex optimization
- Non-convex optimization

Bayesian optimization

\[
\min_g \mathbb{E}[c(\omega, g(Y(\omega)))]
\]

- Stochastic programming
- Stochastic approximation
- Markov Chain Monte Carlo

Dynamic optimization/Stochastic control

\[
\min_{(g_1, \ldots, g_T)} \mathbb{E} \left[\sum_{t=1}^{T} c_t(x_t, u_t) \right]
\]

where

\[
\begin{align*}
 x_t &= f_t(x_t, u_t, W_t), \\
 y_t &= h_t(x_t, N_t), \\
 u_t &= g_t(y_{1:t}, u_{1:t})
\end{align*}
\]

- Dynamic programming
- Pontryagin maximum principle
- Multi-stage stochastic programming

Decentralized stochastic control—(Aditya Mahajan)
Decision making by multiple agents

Game theory
Each agent has an individual objective. Agents compete to minimize individual costs.
- Static games
- Bayesian games
- Dynamic games or multi-stage games with imperfect information

Team theory/
Decentralized stochastic control
All agents have a common objective. Agents cooperative to minimize team costs.
- Static (Bayesian) teams
- Dynamic teams or decentralized stochastic control

Research in team theory started in Economics in mid 50’s in the context of organizational behaviour. It has been studied in Systems and Control since the late 60’s and in Artificial Intelligence since late 90’s.

The motivation of decentralized control is not that it is more powerful than centralized control; rather it is necessary in systems where centralized information is not available or is not practical.
Common theme: multi-stage multi-agent decision making under uncertainty
Conceptual difficulties in decentralized control

Witsenhausen Counterexample
- A two step dynamical system with two controllers
- Linear dynamics, quadratic cost, and Gaussian disturbance
- Non-linear controllers outperform linear control strategies . . .
 . . . cannot use Kalman filtering + Riccati equations

Whittle and Rudge Example
- Infinite horizon dynamical system with two symmetric controllers
- Linear dynamics, quadratic cost, and Gaussian disturbance
- A priori restrict attention to linear controllers
- Best linear controllers not representable by recursions of finite order

Complexity analysis
- All random variables are finite valued
- Finite horizon setup
- The problem of finding the best control strategy is in NEXP

References:
Overview of my research in decentralized stochastic control

Research theme
- Identify specific information structures that capture key features of applications but, at the same time, are amenable to analysis.
- Develop analytic and computation approaches to optimally design controllers for these information structures.

Two main approaches
- The person-by-person approach
 - Static teams with infinite players
- The common-information approach
 - Delayed sharing information structure
The person-by-person approach
Static teams with finite number of agents (Marschak 1955)

Observations \((Y^1, \ldots, Y^n)\) defined on a common probability space

Control Action \(U^i = g^i(Y^i)\) is the control action of agent \(i\)

Objective \(\min_{(g^1, \ldots, g^n)} \mathbb{E}[\text{any function of } (Y, U)]\)

Example
- Neighbors have correlated observations
 \[\Sigma_{ii} = \sigma^2 \quad \text{and} \quad \Sigma_{ij} = \alpha \sigma^2 \quad \text{for } j \in N_i\]
- Objective: Choose \(U^i = g^i(Y^i)\) to minimize
 \[\mathbb{E} \left[\sum_i (U^i)^2 + \sum_i \sum_{j \in N_i} ((Y^i - U^i) - (Y^j - U^j))^2 \right]\]

Salient features
- Correlated observations and coupled costs.
- Static optimization problem.
- Seeking an optimal off-line design, not an iterated solution with communication between neighbors.

Solution to static LQG teams (Radnar 1962)

Solution approach

1. **Identify** sufficient conditions for optimality
 - **(GO)**: Sufficient conditions for global optimality
 \[
 \forall (\tilde{g}^1, \ldots, \tilde{g}^n): \quad J(g^1, \ldots, g^n) \leq J(\tilde{g}^1, \ldots, \tilde{g}^n)
 \]
 - **(PBPO)**: Sufficient conditions for person-by-person optimality
 \[
 \forall (\tilde{g}^1, \ldots, \tilde{g}^n) \text{ and } \forall i: \quad J(g^1, \ldots, g^n) \leq J(\tilde{g}^i, g^{-i})
 \]

2. **Show that** when \(Y\) are jointly Gaussian and cost is quadratic in \((Y, U)\)

 \[\text{(PBPO)} \implies \text{(GO)}\]

3. **Assume** all controllers are linear, i.e., \(U^i = H^i Y^i\)

 \[\text{(PBPO)} \equiv \text{set of } n \text{ linear equations}: A_{n\times n} h_{n\times 1} = b_{n\times 1}\]

 where \(h_{n\times 1} = \text{vec}[H_1 | \cdots | H_n]\)

Therefore, **globally optimal solution obtained by solving** \(n\) **linear equations**

Static LQG teams with infinite agents (MMY 2013)

Objective
\[\min_{(g^1, g^2, \ldots)} \limsup_{n \to \infty} \frac{1}{n} \mathbb{E}[U^T QU + Y^T PU] \]

Motivation
- Intermediate step for extending some results in dynamic teams to infinite horizon.
- Proxy for large scale systems.

Key difficulty
Radnar's approach breaks down because (PBPO) \(\not\implies\) (GO).

Our approach
Use spectral properties of infinite dimensional Toeplitz matrices to identify sufficient conditions under which (PBPO) \(\implies\) (GO).

Main Theorem
Under appropriate symmetry and regularity conditions, the optimal strategy for infinite agents is periodic and obtained by solving a finite dimensional system of linear equations.

Decentralized stochastic control— (Aditya Mahajan)
The common-information approach
Delayed sharing information structure

Dynamics
\[X_{t+1} = f_t(X_t, (U^1_t, \ldots, U^n_t), W^0_t) \]

Observations
\[Y^i_t = h^i_t(X_t, W^i_t) \]

Delayed sharing
Agent \(i \) observes \(k \)-step delayed observations and control of all other agents.

Objective
\[\min_{(g^1_t, \ldots, g^n_t)} \mathbb{E} \left[\sum_{t=1}^T c_t(X_t, (U^1_t, \ldots, U^n_t)) \right] \]

Literature overview

- **Witsenhausen 1971**
 - Proposed as a bridge between centralized and decentralized systems.
 - **Asserted** structure of optimal control strategies.
- **Varaiya and Walrand, 1978**
 - Proved Witsenhausen’s assertion for \(k = 1 \) (one-step delay).
 - **Counterexample** to **disprove** Witsenhausen’s assertion for \(k \geq 2 \).

1. Split available information into two parts
 - **Common information**: $C_t = \bigcap_{s \geq t} \bigcap_{i=1}^{n} I_s^i = \{Y_{1:t-k}, U_{1:t-k}\}$
 - **Local information**: $L_t^i = C_t \setminus L_t^i = \{Y_{t-k+1:t}, U_{t-k+1:t-1}\}$

2. Construct an **equivalent** centralized coordinated system where
 - **Observation history**: C_t
 - **Control action**: $(\gamma_t^1, \ldots, \gamma_t^n)$ where $\gamma_t^i : L_t^i \mapsto U_t^i$.
 - **Coordination law**: $\psi_t(C_t) = (\gamma_t^1, \ldots, \gamma_t^n)$

3. Solve the centralized coordinated system
 - **Information state**: $\pi_t = \mathbb{P}(\text{state for I/O mapping } | \text{data at controller})$
 $\quad = \mathbb{P}(X_t, L_t^{1:n} | C_t)$.
 - **Structure of optimal controller**: $(\gamma_t^1, \ldots, \gamma_t^n) = \psi_t(\pi_t)$
 Equivalently, $U_t^i = g_t^i(\pi_t, L_t^i)$.
 - **Appropriate dynamic program** to find $(\gamma_t^1, \ldots, \gamma_t^n)$.

Decentralized stochastic control— (Aditya Mahajan)
An easy solution to a long-standing open problem!
Generalization and refinements

Partial history sharing
- Most general system solvable by common-information approach.
- Many existing results in decentralized control are special cases.
- In the worst case, solution scales double exponentially with n.

Control sharing
- Motivated by communication networks where control actions are observed by all agents.
- Show that under an appropriate conditional independence assumption, the solution scales exponentially with n.

Mean-field sharing
- Motivated by smart grids where agents are weakly coupled through the mean-field.
- Show that under an appropriate symmetry assumption, the solution scales polynomially with n.

Arabneydi and Mahajan, “Team optimal control of coupled subsystems with mean field sharing,” CDC 2014 (submitted).

Applications
- Real-time communication, sensor networks, smart grids.
Thank you

Contact details
► **email**: aditya.mahajan@mcgill.ca
► **homepage**: http://www.ece.mcgill.ca/~amahaj1/index.html

Collaborators
► Nuno Martins, Univ of Maryland
► Ashutosh Nayyar, Univ of Southern California
► Sekhar Tatikonda, Yale University
► Demosthenis Teneketzis, Univ of Michigan
► Serdar Yüksel, Queen’s University

PhD students
► Jalal Arabneydi
► Jhelum Chakravorty

Master’s students
► Mehnaz Mannan
► Prokopis Prokopiou
► Can Cui