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Decision making by a single agent

Static optimization
minu∈� ≥(u)

Linear programming
Convex optimization
Non-convex optimization

Bayesian optimization
ming �[≥(ω, g(Y(ω)))]

Stochastic programming
Stochastic approximation
Markov Chain Monte Carlo

Dynamic optimization/
Stochastic control

min(g−,...,gT)� [ T�t=− ≥t(xt, ut)]
wherext = ft(xt, ut,Wt),

yt = ht(xt, Nt),
ut = gt(y−:t, u−:t)

Dynamic programming
Pontryagin maximum principle
Multi-stage stochastic programming
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Decision making by multiple agents

Game theory Each agent has an individual objective. Agents compete to minimize
individual costs.

Static games
Bayesian games
Dynamic games or multi-stage games with imperfect information

Team theory/
Decentralized
stochastic
control

All agents have a common objective. Agents cooperative to minimize
team costs.

Static (Bayesian) teams
Dynamic teams or decentralized stochastic control

Research in team theory started in Economics in mid 50’s in the context
of organizational behaviour. It has been studied in Systems and Control
since the late 60’s and in Arti cial Intelligence since late 90’s.

The motivation of decentralized control is not that it is more powerful than centralized
control; rather it is necessary in systems where centralized information is not available or is
not practical.



Common theme: multi-stage multi-agent
decision making under uncertainty
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Conceptual difficulties in decentralized control

Witsenhausen
Counterexample

A two step dynamical system with two controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
Non-linear controllers outperform linear control strategies . . .

. . . cannot use Kalman ltering + Riccati equations

Whittle
and Rudge
Example

In nite horizon dynamical system with two symmetric controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
A priori restrict attention to linear controllers
Best linear controllers not representable by recursions of nite order

Complexity
analysis

All random variables are nite valued
Finite horizon setup
The problem of nding the best control strategy is in NEXP

Witsenhausen, A counterexample in stochastic optimum control, SICON 1969.
Whittle and Rudge, The optimal linear solution of a symmetric team control problem, App. Prob. 1974.
Bernstein, et al, The complexity of decentralized control of Markov decision processes, MOR 2002.
Goldmand and Zilberstein, Decentralized control of cooperative systems: categorization and complexity, JAIR 2004.
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Overview of my research in decentralized stochastic control

Research theme Identify speci c information structures that capture key features of
applications but, at the same time, are amenable to analysis.
Develop analytic and computation approaches to optimally design
controllers for these information structures.

Two main
approaches

The person-by-person approach
Static teams with in nite players

The common-information approach
Delayed sharing information structure



The person-by-person approach
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Static teams with finite number of agents (Marschak 1955)

Observations (Y−, . . . , Yn) de ned on a common probability space

Control Action Ui = gi(Yi) is the control action of agent i
Objective min(g−,...,gn)�[any function of (Y,U)]
Example Neighbors have correlated observations

Σii = σ2 and Σij = ασ2 for j ∈ Ni
Objective: Choose Ui = gi(Yi) to minimize� [ i (Ui)2 + i j∈Ni ((Yi Ui) (Yj Uj))2]

Salient features Correlated observations and coupled costs.
Static optimization problem.
Seeking an optimal o -line design, not an iterated solution with
communication between neighbors.

Marschak, Elements for a theory of teams, Management Science, 1955
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Solution to static LQG teams (Radnar 1962)

Solution
approach

1. Identify sufficient conditions for optimality
(GO): Sufficient conditions for global optimality

∀(g̃−, . . . , g̃n) : J(g−, . . . , gn) J(g̃−, . . . , g̃n)
(PBPO): Sufficient conditions for person-by-person optimality

∀(g̃−, . . . , g̃n) and ∀i : J(g−, . . . , gn) J(g̃i, g i)
2. Show that when Y are jointly Gaussian and cost is quadratic in (Y,U)

( � )⟹ (� )
3. Assume all controllers are linear, i.e., Ui = HiYi

( � ) ≡ set of n linear equations : An×nhn×− = ≤n×−
where hn×− = vec[H− | ⋅ ⋅ ⋅ | Hn]

Therefore, globally optimal solution obtained by solving � linear equations

Radner, Team decision problems, Ann. Math. Statist., 1962
Marshak and Radner, Economic Theory of Teams, Yale University Press, 1972.
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Static LQG teams with infinite agents (MMY 2013)

Objective min(g−,g2,...) lim supn→∞
−n �[U⊺QU+ Y⊺PU]

Motivation Intermediate step for extending some results in dynamic teams to
in nite horizon.
Proxy for large scale systems.

Key difficulty Radnar’s approach breaks down because ( � ) ⇏ (� ).
Our approach Use spectral properties of in nite dimensional Toeplitz matrices to

identify sufficient conditions under which ( � )⟹ (� ).
Main Theorem Under appropriate symmetry and regularity conditions, the optimal

strategy for in nite agents is periodic and obtained by solving a nite
dimensional system of linear equations.

Mahajan, Martins, Yüksel, Static LQG Teams with Countably In nite Players , CDC 2013.



The common-information approach
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Delayed sharing information structure

Dynamics Xt+− = ft(Xt, (U−t , . . . , Unt ),W∑t)
Observations Yit = hit(Xt,Wit)

Delayed sharing Agent i observes k-step delayed
observations and control of all other agents.

Objective min(g−−:T,...,gn−:T)� [ T
t=− ≥t(Xt, (U−t , . . . , Unt ))]

Literature
overview

Witsenhausen 1971
Proposed as a bridge between centralized and decentralized systems.
Asserted structure of optimal control strategies.
Varaiya and Walrand, 1978

Proved Witsenhausen’s assertion for k = − (one-step delay).
Counterexample to disprove Witsenhausen’s assertion for k 2.

Witsenhausen, Separation of estimation and control, Proc IEEE, 1971.
Varaiya and Walrand, On delayed sharing patterns, IEEE TAC 1978.
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Common-info approach for delayed sharing (NMT 2011)

Solution
approach

1. Split available information into two parts
Common information: Ct = ⋂s t ⋂ni=− Iis = {Y−:t k, U−:t k}
Local information: Lit = Ct ∖ Lit = {Yit k+−:t, Uit k+−:t −}

2. Construct an equivalent centralized coordinated system where
Observation history: Ct
Control action: (γ−t , . . . , γnt ) where γit∶ Lit ↦ Uit.
Coordination law: ψt(Ct) = (γ−t , . . . , γnt )

3. Solve the centralized coordinated system
Information state: πt = ℙ(state for I/O mapping | data at controller)= ℙ(Xt, L−:nt | Ct).
Structure of optimal controller: (γ−t , . . . , γnt ) = ψt(πt)
Equivalently, Uit = git(πt, Lit).
Appropriate dynamic program to nd (γ−t , . . . , γnt ).

Nayyar, Mahajan, Teneketzis, Optimal control strategies in delayed sharing information structures, IEEE TAC 2011.



An easy solution to a
long-standing open problem!
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Generalization and refinements

Partial history
sharing

Most general system solvable by common-information approach.
Many existing results in decentralized control are special cases
In the worst case, solution scales double exponentially with n.

Nayyar, Mahajan, Teneketzis, Decentralized stochastic control with partial history sharing: A common information
approach, IEEE TAC 2013.

Control sharing Motivated by communication networks where control actions are
observed by all agents.
Show that under an appropriate conditional independence assumption,
the solution scales exponentially with n.

Mahajan, Optimal decentralized control of coupled subsystems with control sharing, IEEE TAC 2013.

Mean-field
sharing

Motivated by smart grids where agents are weakly coupled through
the mean- eld.
Show that under an appropriate symmetry assumption, the solution
scales polynomially with n.

Arabneydi and Mahajan, Team optimal control of coupled subsystems with mean eld sharing, CDC 2014 (submitted).

Applications Real-time communication, sensor networks, smart grids.
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