Remote estimation of Markov processes under communication constraints

Aditya Mahajan McGill University

Joint work with Jhelum Chakravorty

Applied Probability Conference Rutgers University, 2–3 Oct 2015

Many applications require:

- Sequential transmission of data
- Zero- (or finite-) delay reconstruction

Sensor Networks

Many applications require:

- Sequential transmission of data
- Zero- (or finite-) delay reconstruction

Many applications require:

- Sequential transmission of data
- Zero- (or finite-) delay reconstruction

Many applications require:

- Sequential transmission of data
- Zero- (or finite-) delay reconstruction

Analyze a stylized model and evaluate fundamental trade-offs

A completely solved example of a "simple" decentralized system with non-classical information structure

Brief overview of decentralized stochastic control

Economics Literature

- Marschak, "Elements for a Theory of Teams," Management Science, 1955
- Radner, "Team decision problems," Ann Math Stat, 1962.
- Marschak and Radner, "Economics Theory of Teams," 1972.
- ▶ . . .

Systems and Control Literature

- > Witsenhausen, "Separation of estimation and control," Proc IEEE, 1971.
- > Witsenhausen, "On information structures, feedback and causality," SICON 1971.
- > Ho and Chu, "Team decision theory and information structures," IEEE TAC 1972.

▶ ...

Artificial Intelligence Literature

▶ ...

Brief overview of decentralized stochastic control

Economics Literature

- Marschak, "Elements for a Theory of Teams," Management Science, 1955
- Radner, "Team decision problems," Ann Math Stat, 1962.
- Marschak and Radner, "Economics Theory of Teams," 1972.
- ► ...

Systems and Control Literature

- > Witsenhausen, "Separation of estimation and control," Proc IEEE, 1971.
- > Witsenhausen, "On information structures, feedback and causality," SICON 1971.
- > Ho and Chu, "Team decision theory and information structures," IEEE TAC 1972.

▶ ...

Artificial Intelligence Literature

► ...

Simpler than non-cooperative game theory.

All "pre-game" agreements are enforceable.

Simpler than cooperative game theory.

The value of the game does not need to be split between the players.

Brief overview of decentralized stochastic control

Economics Literature

- Marschak, "Elements for a Theory of Teams," Management Science, 1955
- Radner, "Team decision problems," Ann Math Stat, 1962.

 Mar Syste Wit Wit Ho a Artific 	Main difficulty: Seeking global optimality
Artific	
▷	
Simpl	

All "pre-game" agreements are enforceable.

Simpler than cooperative game theory.

The value of the game does not need to be split between the players.

Conceptual difficulties in decentralized control

Witsenhausen Counterexample

- > A two step dynamical system with two controllers
- Linear dynamics, quadratic cost, and Gaussian disturbance
 Non-linear controllers outperform linear control strategies . . .
 . . . cannot use Kalman filtering + Riccati equations

Whittle and Rudge Example

- > Infinite horizon dynamical system with two symmetric controller
- Linear dynamics, quadratic cost, and Gaussian disturbance
- > A priori restrict attention to linear controllers
- Best linear controllers not representable by recursions of finite order

Complexity analysis

- > All random variables are finite valued
- ⊳ Finite horizon setup
- > The problem of finding the best control strategy is in NEXP

Witsenhausen, "A counterexample in stochastic optimum control," SICON 1969.

Whittle and Rudge, "The optimal linear solution of a symmetric team control problem," App. Prob. 1974.

Bernstein, et al, "The complexity of decentralized control of Markov decision processes," MOR 2002.

Goldmand and Zilberstein, "Decentralized control of cooperative systems: categorization and complexity," JAIR 2004// 3

Classical info. struct.

Classical info. struct.

- Structure of optimal strategies
 Instead of f(history of obs) use f(info state).
- Compute optimal strategy using DP $V(\text{info state}) = \min_{\text{action}} [\mathcal{B}_{\text{action}}V](\text{info state})$

No general solution methodology

- Structure of optimal strategies
 Instead of f(history of obs) use f(info state).
- Compute optimal strategy using DP $V(\text{info state}) = \min_{\text{action}} [\mathcal{B}_{\text{action}}V](\text{info state})$

No general solution methodology

Person-by-person approach

- Structure of optimal strategies
 Instead of f(history of obs) use f(info state).
- Compute optimal strategy using DP $V(\text{info state}) = \min_{\text{action}} [\mathcal{B}_{\text{action}}V](\text{info state})$

No general solution methodology

Person-by-person approach

- Structure of optimal strategies
 Instead of f(history of obs) use f(info state).
- ► Compute optimal strategy using DP $V(\text{info state}) = \min_{\text{action}} [\mathcal{B}_{\text{action}}V](\text{info state})$

No general solution methodology

Person-by-person approach

- Structure of optimal strategies
 Instead of f(history of obs) use f(info state).
- Compute optimal strategy using DP $V(\text{info state}) = \min_{\text{action}} [\mathcal{B}_{\text{action}}V](\text{info state})$

Common-information approach

- Structure of optimal strategies
 Instead of f(history of obs)
 use f(local info, common info based state).

Nayyar, Mahajan, Teneketzis, "Decentralized stochastic control with partial history sharing", TAC 2013.

Non-C

Allows us to use tools from MDP literature to decentralized stochastic control

No general solution methodology

Person-by-person approach

Common-information approach

tate).

ite)

- Structure of optimal strategies
 Instead of f(history of obs)
 use f(local info, common info based state).

Nayyar, Mahajan, Teneketzis, "Decentralized stochastic control with partial history sharing", TAC 2013.

 $\boldsymbol{U}_t = \boldsymbol{f}_t(\boldsymbol{X}_{1:t},\boldsymbol{U}_{1:t-1})$

Communication Strategies

- ▶ Transmission strategy $f = {f_t}_{t=0}^{\infty}$.
- Estimation strategy $g = \{g_t\}_{t=0}^{\infty}$.

1. Discounted setup, $\beta \in (0, 1)$

$$D_{\beta}(f,g) = (1-\beta) \mathbb{E}_{0}^{(f,g)} \left[\sum_{t=0}^{\infty} \beta^{t} d(X_{t} - \hat{X}_{t}) \right]; \qquad N_{\beta}(f,g) = (1-\beta) \mathbb{E}_{0}^{(f,g)} \left[\sum_{t=0}^{\infty} \beta^{t} U_{t} \right]$$

2. Average cost setup, $\beta = 1$

$$D_1(f,g) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}_0^{(f,g)} \left[\sum_{t=0}^{T-1} d(X_t - \hat{X}_t) \right]; \qquad N_1(f,g) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E}_0^{(f,g)} \left[\sum_{t=0}^{T-1} U_t \right]$$

Costly communication

$$\mathsf{For}\; \lambda \in \mathbb{R}_{>0}, \quad \mathsf{C}^*_\beta(\lambda) = \mathsf{C}_\beta(\mathsf{f}^*, \mathsf{g}^*; \lambda) \coloneqq \inf_{(\mathsf{f}, \mathsf{g})} \left\{ \mathsf{D}_\beta(\mathsf{f}, \mathsf{g}) + \lambda \mathsf{N}_\beta(\mathsf{f}, \mathsf{g}) \right\}$$

Constrained communication

$$\text{For } \alpha \in (0,1), \quad D^*_\beta(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_\beta(f,g) : N_\beta(f,g) \leqslant \alpha \right\}$$

Costly communication

$$\mathsf{For}\; \lambda \in \mathbb{R}_{>0}, \quad C^*_\beta(\lambda) = C_\beta(\mathsf{f}^*, \mathsf{g}^*; \lambda) \coloneqq \inf_{(\mathsf{f}, \mathsf{g})} \left\{ \mathsf{D}_\beta(\mathsf{f}, \mathsf{g}) + \lambda \mathsf{N}_\beta(\mathsf{f}, \mathsf{g}) \right\}$$

Constrained communication

$$\text{For } \alpha \in (0,1), \quad \mathsf{D}^*_\beta(\alpha) \coloneqq \inf_{(\mathsf{f},\mathsf{g})} \left\{ \mathsf{D}_\beta(\mathsf{f},\mathsf{g}) : \mathsf{N}_\beta(\mathsf{f},\mathsf{g}) \leqslant \alpha \right\}$$

Costly communication

$$\text{For } \lambda \in \mathbb{R}_{>0}, \quad C^*_\beta(\lambda) = C_\beta(f^*,g^*;\lambda) \coloneqq \inf_{(\mathfrak{f},g)} \left\{ \mathsf{D}_\beta(\mathfrak{f},g) + \lambda \mathsf{N}_\beta(\mathfrak{f},g) \right\}$$

Constrained communication

$$\text{For } \alpha \in (0,1), \quad \mathsf{D}^*_\beta(\alpha) \coloneqq \inf_{(\mathsf{f},\mathsf{g})} \left\{ \mathsf{D}_\beta(\mathsf{f},\mathsf{g}) : \mathsf{N}_\beta(\mathsf{f},\mathsf{g}) \leqslant \alpha \right\}$$

Costly communication

$$\text{For } \lambda \in \mathbb{R}_{>0}, \quad C^*_\beta(\lambda) = C_\beta(f^*, g^*; \lambda) \coloneqq \inf_{(f,g)} \left\{ \mathsf{D}_\beta(f,g) + \lambda \mathsf{N}_\beta(f,g) \right\}$$

Constrained communication

$$\text{For } \alpha \in (0,1), \quad \mathsf{D}^*_\beta(\alpha) \coloneqq \inf_{(\mathsf{f},\mathsf{g})} \left\{ \mathsf{D}_\beta(\mathsf{f},\mathsf{g}) : \mathsf{N}_\beta(\mathsf{f},\mathsf{g}) \leqslant \alpha \right\}$$

Costly communication

$$\text{For } \lambda \in \mathbb{R}_{>0}, \quad C^*_\beta(\lambda) = C_\beta(f^*,g^*;\lambda) \coloneqq \inf_{(f,g)} \left\{ \mathsf{D}_\beta(f,g) + \lambda \mathsf{N}_\beta(f,g) \right\}$$

Constrained communication

$$\text{For } \alpha \in (0,1), \quad \mathsf{D}^*_\beta(\alpha) \coloneqq \inf_{(\mathsf{f},\mathsf{g})} \left\{ \mathsf{D}_\beta(\mathsf{f},\mathsf{g}) : \mathsf{N}_\beta(\mathsf{f},\mathsf{g}) \leqslant \alpha \right\}$$

Costly communication

Our result: Provide computable expressions for these curves and identify strategies that achieve them.

 $\lambda N_{\beta}(f,g)$

$X_{t+1} = X_t + W_t$, $W_t \sim \mathcal{N}(0, 1)$

Periodic transmission strategy

Periodic transmission strategy

Periodic transmission strategy

D = 0.69 $N \approx 1/3$

An alternative strategy

An alternative strategy

An alternative strategy

D = 0.24 $N \approx 1/3$

Distortion-transmission function

Identify strategies that achieve the optimal trade-off

Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function

Based on simple matrix calculations for discrete Markov processes Based on solving Fredholm integral equations for Gaussian processes

Identify strategies that achieve the optimal trade-off

Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function

Based on simple matrix calculations for discrete Markov processes Based on solving Fredholm integral equations for Gaussian processes

Beautiful example of stochastics and optimization

Decentralized stochastic control and POMDPs

Stochastic orders and majorization

Markov chain analysis, stopping times, and renewal theory

Constrained MDPs and Lagrangian relaxations

So how do we start? Decentralized stochastic control

The common information approach

$$f_t = X_t, Y_{1:t-1} = U_t$$

$$g_{t-1}$$
 $Y_{1:t-1}$ \hat{X}_t

Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

The common information approach

Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

The common information approach

The coordinated system is equivalent to the original system.

 $f_t(x, y_{1:t-1}) = h_t^1(y_{1:t-1})(x).$

▶ The coordinated system is centralized. Belief state $\mathbb{P}(X_t | Y_{1:t-1})$.

Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

Information states

 $\begin{array}{l} \mbox{Pre-transmission belief} & : \ \Pi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t-1}). \\ \mbox{Post-transmission belief} & : \ \Xi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t}). \end{array}$

 $\begin{array}{l} \mbox{Pre-transmission belief} & : \ \Pi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t-1}). \\ \mbox{Post-transmission belief} & : \ \Xi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t}). \end{array}$

Structural results

Information states

There is no loss of optimality in using $U_t = f_t(X_t, \Pi_t) \quad \text{and} \quad \hat{X}_t = g_t(\Xi_t).$

Information states Pre-transmission belief : $\Pi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t-1}).$ Post-transmission belief : $\Xi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t})$. X_1 Ξ_1 $\Pi_2 \quad \Xi_2$ $\Pi_3 = \Xi_3$ Ξ_4 Π_{4} Structural results There is no loss of optimality in using $U_t = f_t(X_t, \Pi_t)$ and $\hat{X}_t = q_t(\Xi_t)$. Dynamic Program $W_{T+1}(\pi) = 0$ and for $t = T, \ldots, 0$ $V_{t}(\xi) = \min_{\hat{\chi} \in \mathcal{X}} \mathbb{E}[d(X_{t} - \hat{\chi}) + W_{t+1}(\Pi_{t+1}) \mid \Xi_{t} = \xi],$ $W_{t}(\pi) = \min_{\varphi: \mathcal{X} \to \{0,1\}} \mathbb{E}[\lambda \varphi(X_{t}) + V_{t}(\Xi_{t}) \mid \Pi_{t} = \pi, \varphi_{t} = \varphi].$

Can we use the DP to say something more about the optimal strategy?

Simplifying modeling assumptions

Markov process $X_{t+1} = aX_t + W_t$

Simplifying modeling assumptions

Markov process $X_{t+1} = aX_t + W_t$

Markov chain setup

State spaces

Noise distribution

 X_t , a, $W_t \in \mathbb{Z}$

Unimodal and symmetric $p_e = p_{-e} \ge p_{e+1}$

 X_t , α, $W_t ∈ ℝ$ Zero-mean Gaussian

Guass-Markov setup

Distortion

Even and increasing $d(e) = d(-e) \leqslant d(e+1)$

 $\begin{array}{l} \text{Mean-squared} \\ \text{d}(e) = |e|^2 \end{array}$

 $\varphi_{\sigma}(\cdot)$

Simplifying modeling assumptions

Markov process

$$X_{t+1} = aX_t + W_t$$

State spaces Noise distribution

Distortion

Markov chain setup

 X_t , a, $W_t \in \mathbb{Z}$

Unimodal and symmetric $p_e = p_{-e} \ge p_{e+1}$

Even and increasing $d(e) = d(-e) \leq d(e+1)$

Guass-Markov setup

 X_t , a, $W_t \in \mathbb{R}$

Zero-mean Gaussian $\phi_{\sigma}(\boldsymbol{\cdot})$

Mean-squared $d(e) = |e|^2$

Step 2 Performance of arbitrary threshold strategies f^(k)

Step 1 Structure of optimal strategies (finite horizon)

Oblivious estimation process

$$Z_{t} = \begin{cases} X_{t} & \text{if } U_{t} = 1 \text{ (or } Y_{t} \neq \epsilon) \\ a Z_{t-1} & \text{if } U_{t} = 0 \text{ (or } Y_{t} = \epsilon) \end{cases}$$

 $\label{eq:Error process} E_t = X_t - \alpha Z_{t-1}$

Step 1 Structure of optimal strategies (finite horizon)

$$\begin{array}{ll} \text{Oblivious estimation} \\ \text{process} \end{array} \qquad \qquad Z_t = \begin{cases} X_t & \text{if } U_t = 1 \text{ (or } Y_t \neq \epsilon) \\ a Z_{t-1} & \text{if } U_t = 0 \text{ (or } Y_t = \epsilon) \end{cases}$$

$$\mbox{Error process} \qquad E_t = X_t - \alpha Z_{t-1} \label{eq:Error}$$

$$\label{eq:constraint} \text{Optimal estimator} \qquad \qquad \hat{X}_t = g_t^*(Z_t) = Z_t$$

Optimal transmitter

There exists thresholds $\{k_t\}_{t=0}^{\infty}$ such that $\begin{pmatrix} 1 & \text{if } |F_t| \ge k_t \end{cases}$

$$\mathbf{U}_{t} = \mathbf{f}_{t}^{*}(\mathbf{E}_{t}) = \begin{cases} \mathbf{I} & \text{if } |\mathbf{E}_{t}| \geqslant k_{t} \\ \mathbf{0} & \text{if } |\mathbf{E}_{t}| < k_{t} \end{cases}$$

Some comments

The result is non-intuitive

- > The transmitter does not try to send information through timing information.
- > The estimation strategy is the same to the one for intermittent observations.

Some comments

The result is non-intuitive

- > The transmitter does not try to send information through timing information.
- > The estimation strategy is the same to the one for intermittent observations.

Proof outline

▶ . . .

[LM11, NBTV13]

Almost uniform and unimodal (ASU) distribution about c

 $\pi_{\mathbf{c}} \geqslant \pi_{\mathbf{c}+1} \geqslant \pi_{\mathbf{c}-1} \geqslant \pi_{\mathbf{c}+2} \geqslant \cdots$

[LM11, NBTV13]

Almost uniform and unimodal (ASU) distribution about c

 $\pi_c \geqslant \pi_{c+1} \geqslant \pi_{c-1} \geqslant \pi_{c+2} \geqslant \cdots$

ASU Rearrangement

[LM11, NBTV13]

Almost uniform and unimodal (ASU) distribution about c

 $\pi_{\mathbf{c}} \geqslant \pi_{\mathbf{c}+1} \geqslant \pi_{\mathbf{c}-1} \geqslant \pi_{\mathbf{c}+2} \geqslant \cdots$

ASU Rearrangement

Majorization

 $\pi \succ \xi$ iff

Invariant to permutations.

Proof outline

[LM11, NBTV13]

Use backward induction to show that value function is "almost" Schur-concave \blacktriangleright If $\xi' \geq \xi$ and ξ is ASU, then $V_t(\xi') \ge V_t(\xi)$

 \blacktriangleright If $\pi' \succeq \pi$ and π is ASU, then $W_t(\pi') \geqslant W_t(\pi)$

Use backward induction to show that If ξ is ASU about c, then c is the arg min of

$$V_{t}(\xi) = \min_{\hat{\mathbf{x}} \in \mathcal{X}} \mathbb{E}[d(X_{t} - \hat{\mathbf{x}}) + W_{t+1}(\Pi_{t+1}) \mid \Xi_{t} = \xi],$$

 \blacktriangleright If π is ASU about c, then the arg min of

$$W_{t}(\pi) = \min_{\phi: \mathcal{X} \to \{0,1\}} \mathbb{E}[\lambda \phi(X_{t}) + V_{t}(\Xi_{t}) \mid \Pi_{t} = \pi, \phi_{t} = \phi]$$

is of the threshold form in |x - ac|.

Use forward induction to show that under the optimal strategy $\blacktriangleright \Pi_t$ is ASU around Z_{t-1} $\blacktriangleright \Xi_t$ is ASU around Z_t

The results extend to infinite horizon setup under appropriate regularity conditions.

> Time-homogeneous thresholdbased strategies are optimal.

How do we find the optimal threshold-based strategy?

Step 2 Performance of threshold strategies

Consider a threshold-based strategy

$$f^{(k)}(e) = \begin{cases} 1 & \text{if } |e| \ge k \\ 0 & \text{otherwise} \end{cases}$$

Consider a threshold-based strategy

$$f^{(k)}(e) = \begin{cases} 1 & \text{if } |e| \ge k \\ 0 & \text{otherwise} \end{cases}$$

Let $\tau^{(k)}$ denote the stopping time of first transmission (starting at $E_0 = 0$).

Consider a threshold-based strategy

Define

Let $\tau^{(k)}$ denote the stopping time of first transmission (starting at $E_0 = 0$).

$$\mathbb{L}_{\beta}^{(\mathbf{k})}(\mathbf{e}) = (1-\beta) \mathbb{E} \left[\sum_{t=0}^{\tau^{(\mathbf{k})}-1} \beta^{t} d(\mathsf{E}_{t}) \middle| \mathsf{E}_{0} = \mathbf{e} \right]$$
$$\mathbb{M}_{\beta}^{(\mathbf{k})}(\mathbf{e}) = (1-\beta) \mathbb{E} \left[\sum_{t=0}^{\tau^{(\mathbf{k})}-1} \beta^{t} \middle| \mathsf{E}_{0} = \mathbf{e} \right].$$

 $\begin{array}{l} \mbox{Proposition} & \{E_t\}_{t=0}^\infty \mbox{ is a regenerative process. By renewal theory,} \\ D_\beta^{(k)} \coloneqq D_\beta(f^{(k)},g^*) = \frac{L_\beta^{(k)}(0)}{M_\beta^{(k)}(0)} & \mbox{and} \quad N_\beta^{(k)} \coloneqq N_\beta(f^{(k)},g^*) = \frac{1}{M_\beta^{(k)}(0)} - (1-\beta). \end{array}$

Computing $L_{\beta}^{(k)}$ and $M_{\beta}^{(k)}$ is sufficient to compute the performance of $f^{(k)}$ (i.e., to compute $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}$).

Define

Conside

f^{(k}

$$\begin{split} L_{\beta}^{(\mathbf{k})}(\mathbf{e}) &= (1-\beta) \mathbb{E} \left[\sum_{t=0}^{\tau^{(\mathbf{k})}-1} \beta^{t} d(\mathsf{E}_{t}) \middle| \mathsf{E}_{0} = \mathbf{e} \right] \\ \mathbf{M}_{\beta}^{(\mathbf{k})}(\mathbf{e}) &= (1-\beta) \mathbb{E} \left[\sum_{t=0}^{\tau^{(\mathbf{k})}-1} \beta^{t} \middle| \mathsf{E}_{0} = \mathbf{e} \right]. \end{split}$$

 $\begin{array}{l} \text{Proposition} & \{E_t\}_{t=0}^{\infty} \text{ is a regenerative process. By renewal theory,} \\ D_{\beta}^{(k)} \coloneqq D_{\beta}(f^{(k)},g^*) = \frac{L_{\beta}^{(k)}(0)}{M_{\beta}^{(k)}(0)} & \text{and} \quad N_{\beta}^{(k)} \coloneqq N_{\beta}(f^{(k)},g^*) = \frac{1}{M_{\beta}^{(k)}(0)} - (1-\beta). \end{array}$

Estimation under communication constraints-(Mahajan and Chakravorty)

bF

Step 2 Computing $L_{\beta}^{(k)}$ and $M_{\beta}^{(k)}$

Markov chain setup

$$L_{\beta}^{(k)}(e) = d(e) + \beta \sum_{n=-k}^{k} p_{n-e} L_{\beta}^{(k)}(n)$$
$$M_{\beta}^{(k)}(e) = 1 + \beta \sum_{n=-k}^{k} p_{n-e} M_{\beta}^{(k)}(n)$$

Step 2 Computing $L_{\beta}^{(k)}$ and $M_{\beta}^{(k)}$

Markov chain setup

$$\begin{split} L^{(k)}_{\beta}(e) &= d(e) + \beta \sum_{n=-k}^{k} p_{n-e} L^{(k)}_{\beta}(n) \\ \mathcal{M}^{(k)}_{\beta}(e) &= 1 + \beta \sum_{n=-k}^{k} p_{n-e} \mathcal{M}^{(k)}_{\beta}(n) \end{split}$$

Proposition

$$\begin{split} L^{(k)}_{\beta} &= \begin{bmatrix} [I - \beta P^{(k)}]^{-1} d^{(k)} \end{bmatrix}. \qquad P^{(k)} \text{ is substochastic.} \\ \mathcal{M}^{(k)}_{\beta} &= \begin{bmatrix} [I - \beta P^{(k)}]^{-1} \mathbf{1}^{(k)} \end{bmatrix}. \end{split}$$

Step 2 Computing $L_{\beta}^{(k)}$ and $M_{\beta}^{(k)}$

Markov chain setup

$$\begin{split} L_{\beta}^{(k)}(e) &= d(e) + \beta \sum_{n=-k}^{k} p_{n-e} L_{\beta}^{(k)}(n) \\ M_{\beta}^{(k)}(e) &= 1 + \beta \sum_{n=-k}^{k} p_{n-e} M_{\beta}^{(k)}(n) \end{split}$$

Proposition

$$\begin{split} L_{\beta}^{(k)} &= \begin{bmatrix} [I - \beta P^{(k)}]^{-1} d^{(k)} \end{bmatrix}. \qquad P^{(k)} \text{ is substochastic.} \\ M_{\beta}^{(k)} &= \begin{bmatrix} [I - \beta P^{(k)}]^{-1} \mathbf{1}^{(k)} \end{bmatrix}. \end{split}$$

 $\mathsf{D}_\beta^{(k)}$ and $\mathsf{N}_\beta^{(k)}$ can be computed using these expressions.

We found the performance of a generic threshold-based strategy

How does this lead to identifying an optimal strategy?

$$\label{eq:monotonicity} \begin{split} \text{Monotonicity} \qquad \quad L_{\beta}^{(k+1)} > L_{\beta}^{(k)} \quad \text{and} \quad M_{\beta}^{(k+1)} > M_{\beta}^{(k)} \end{split}$$

Depends on unimodularity of noise

Monotonicity

$$\mathsf{L}^{(k+1)}_{eta} > \mathsf{L}^{(k)}_{eta}$$
 and $\mathsf{M}^{(k+1)}_{eta} > \mathsf{M}^{(k)}_{eta}$

Use DP and monotonicity of Bellman operator Implication:

$$D_{\beta}^{(k+1)} \geqslant D_{\beta}^{(k)} \quad \text{and} \quad N_{\beta}^{(k+1)} < N_{\beta}^{(k)}$$

$$\label{eq:monotonicity} \begin{split} \text{Monotonicity} \qquad \quad L_{\beta}^{(k+1)} > L_{\beta}^{(k)} \quad \text{and} \quad M_{\beta}^{(k+1)} > M_{\beta}^{(k)} \end{split}$$

Implication:

$$D_{\beta}^{(k+1)} \geqslant D_{\beta}^{(k)} \quad \text{and} \quad N_{\beta}^{(k+1)} < N_{\beta}^{(k)}$$

Submodularity

$$C_{\beta}^{(k)}(\lambda) \coloneqq D_{\beta}^{(k)} + \lambda N_{\beta}^{(k)}$$
 is submodular in (k, λ) .

onotonicity
$$L_{eta}^{(k+1)} > L_{eta}^{(k)}$$
 and $M_{eta}^{(k+1)} > M_{eta}^{(k)}$

Implication:

$$D_{\beta}^{(k+1)} \geqslant D_{\beta}^{(k)} \quad \text{and} \quad N_{\beta}^{(k+1)} < N_{\beta}^{(k)}$$

Submodularity

Μ

$$C_{\beta}^{(k)}(\lambda) \coloneqq D_{\beta}^{(k)} + \lambda N_{\beta}^{(k)}$$
 is submodular in (k, λ) .

Proposition

$$k^*_{\beta}(\lambda) \coloneqq \arg\min_{k \in \mathbb{Z}_{\geq 0}} C^{(k)}_{\beta}(\lambda)$$
 is increasing in λ .

20

Monotonicity
$$L_{\beta}^{(k+1)} > L_{\beta}^{(k)}$$
 and $M_{\beta}^{(k+1)} > M_{\beta}^{(k)}$

Implication:

$$D_{\beta}^{(k+1)} \geqslant D_{\beta}^{(k)} \quad \text{and} \quad N_{\beta}^{(k+1)} < N_{\beta}^{(k)}$$

$$\label{eq:submodularity} \begin{split} \text{Submodularity} \qquad \quad C_\beta^{(k)}(\lambda)\coloneqq D_\beta^{(k)}+\lambda N_\beta^{(k)} \text{ is submodular in } (k,\lambda). \end{split}$$

Proposition
$$\mathbf{k}^*_{\beta}(\lambda) \coloneqq \arg\min_{\mathbf{k}\in\mathbb{Z}_{\geq 0}} C^{(\mathbf{k})}_{\beta}(\lambda)$$
 is increasing in λ .

Thus, optimal threshold increases with increase in λ .

20

Characterizing the optimal threshold for a given communication cost **is tricky.**

Instead, we will characterize the optimal communication cost for a given threshold.

$$\begin{array}{l} \text{Define } \Lambda_{\beta}^{(k)} \coloneqq \{\lambda \in \mathbb{R}_{\geq 0} : k_{\beta}^{*}(\lambda) = k\} \\ &= [\lambda_{\beta}^{(k-1)}, \lambda_{\beta}^{(k)}]. \end{array} \\ C_{\beta}^{(k)}(\lambda_{\beta}^{(k)}) = C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)}) \end{array}$$

$$\begin{array}{l} \text{Define } \Lambda_{\beta}^{(k)} \coloneqq \{\lambda \in \mathbb{R}_{\geq 0} : k_{\beta}^{*}(\lambda) = k\} \\ &= [\lambda_{\beta}^{(k-1)}, \lambda_{\beta}^{(k)}]. \end{array} \\ C_{\beta}^{(k)}(\lambda_{\beta}^{(k)}) = C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)}) \end{array}$$

Define
$$\Lambda_{\beta}^{(k)} \coloneqq \{\lambda \in \mathbb{R}_{\geq 0} : k_{\beta}^{*}(\lambda) = k\}$$

= $[\lambda_{\beta}^{(k-1)}, \lambda_{\beta}^{(k)}].$
 $C_{\beta}^{(k)}(\lambda_{\beta}^{(k)}) = C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)})$

Define
$$\Lambda_{\beta}^{(k)} \coloneqq \{\lambda \in \mathbb{R}_{\geq 0} : k_{\beta}^{*}(\lambda) = k\}$$

= $[\lambda_{\beta}^{(k-1)}, \lambda_{\beta}^{(k)}].$
 $C_{\beta}^{(k)}(\lambda_{\beta}^{(k)}) = C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)})$

Theorem

Strategy
$$f^{(k+1)}$$
 is optimal for $\lambda \in (\lambda_{\beta}^{(k)}, \lambda_{\beta}^{(k+1)}]$.

$$\begin{split} C^*_\beta(\lambda) &= \min_{k \in \mathbb{Z}_{\geq 0}} C^{(k)}_\beta \text{ is piecewise linear, continuous,} \\ \text{concave, and increasing function of } \lambda. \end{split}$$

Theorem

Strategy $f^{(k+1)}$ is optimal for $\lambda\in(\lambda_{\beta}^{(k)},\lambda_{\beta}^{(k+1)}]$.

$$\begin{split} C^*_\beta(\lambda) &= \text{min}_{k\in\mathbb{Z}_{\geq 0}} \, C^{(k)}_\beta \text{ is piecewise linear, continuous,} \\ \text{concave, and increasing function of } \lambda. \end{split}$$

Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

(C1) $N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$

(C2) There exists $\lambda^{\circ} \ge 0$ such that (f°, g°) is optimal for $C_{\beta}(f, g; \lambda^{\circ})$.

Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

(C1) $N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$

(C2) There exists $\lambda^{\circ} \ge 0$ such that (f°, g°) is optimal for $C_{\beta}(f, g; \lambda^{\circ})$.

Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

(C1) $N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$

(C2) There exists $\lambda^{\circ} \ge 0$ such that (f°, g°) is optimal for $C_{\beta}(f, g; \lambda^{\circ})$.

Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

(C1) $N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$

(C2) There exists $\lambda^{\circ} \ge 0$ such that (f°, g°) is optimal for $C_{\beta}(f, g; \lambda^{\circ})$.

Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

(C1) $N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$

(C2) There exists $\lambda^{\circ} \ge 0$ such that (f°, g°) is optimal for $C_{\beta}(f, g; \lambda^{\circ})$.

22

Analyze fundamental limits of estimation under communication constraints

Analyze fundamental limits of estimation under communication constraints

Possible generalizations to more realistic models

- Packet drops
- Rate constraints (effect of quantization)
- Network delays

Analyze fundamental limits of estimation under communication constraints

Possible generalizations to more realistic models

- Packet drops
- Rate constraints (effect of quantization)
- Network delays

A simple non-trivial "toy-problem" for decentralized control

- Decentralized control is full of difficult problems and negative results.
- It is important to identify "easy" problems and positive results.

Analyze fundamental limits of estimation under communication constraints

Possible generalizations to more realistic models

- Packet drops
- Rate constraints (effect of quantization)
- Network delays
- A simple non-trivial "toy-problem" for decentralized control
- Decentralized control is full of difficult problems and negative results.
- It is important to identify "easy" problems and positive results.

Full version available at arXiv:1505.04829.

A bandit variation

