
Optimal real-time transmission of
Markov sources under constraints
on the number of transmissions

Aditya Mahajan
Joint work with Jhelum Chakravorty

McGill University

Information Theory Seminar, University of Toronto

14 Nov, 2014



Real-time transmission of Markov sources– (Aditya Mahajan)
1

Motivation

Sequential transmission of data

Zero- (or inite-) delay reconstruction



Real-time transmission of Markov sources– (Aditya Mahajan)
1

Motivation

Sequential transmission of data

Zero- (or inite-) delay reconstruction

Sensor Networks



Real-time transmission of Markov sources– (Aditya Mahajan)
1

Motivation

Sequential transmission of data

Zero- (or inite-) delay reconstruction

Sensor Networks

Smart Grids



Real-time transmission of Markov sources– (Aditya Mahajan)
1

Motivation

Sequential transmission of data

Zero- (or inite-) delay reconstruction

Sensor Networks

Smart Grids

Internet of Things



Real-time transmission of Markov sources– (Aditya Mahajan)
1

Motivation

Sequential transmission of data

Zero- (or inite-) delay reconstruction

Sensor Networks

Smart Grids

Internet of Things

Salient features
Sensing is cheap

Transmission is expensive

Size of data-packet is not critical



Real-time transmission of Markov sources– (Aditya Mahajan)
1

Motivation

Sequential transmission of data

Zero- (or inite-) delay reconstruction

Sensor Networks

Smart Grids

Internet of Things

Salient features
Sensing is cheap

Transmission is expensive

Size of data-packet is not critical
Analyze a stylized model and evaluate fundamental tradeofs
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The communication system

Markov

Source
Transmitter Receiver

Xt Ut

Yt X̂t

Source Xt ∈ ℤ

First-order time-homogeneous symmetric Markov source.

Transmitter Ut = ft(Xк:t〈 Uк:t−к) and Yt = {
Xt if Ut = −ε if Ut = ∑

Receiver X̂t = gt(Yк:t)
Distortion: d(Xt Ĕ X̂t) where d(e) = d(Ĕe) Ņ d(e + −)

Communication
Strategies

Transmission strategy f = {ft}∞t=й.

Estimation strategy g = {gt}∞t=й.
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The constrained optimization problem

min
ٿѣ̟Ѥپ

DП(f〈 g) such that NП(f〈 g) Ņ α

Minimize expected distortion such that expected # of transmissions is less than α

Discounted
setup

DП(f〈 g) = (− Ĕ β)�
ٿѣ̟Ѥپ [

∞�
t=й

βtd(Xt Ĕ X̂t) | Xй = ∑]
NП(f〈 g) = (− Ĕ β)�

ٿѣ̟Ѥپ [
∞�
t=й

βtUt | Xй = ∑]

Average cost
setup

Dк(f〈 g) = limsup
T→∞

−T[
T−к�
t=й

d(Xt Ĕ X̂t) | Xй = ∑]
Nк(f〈 g) = limsup

T→∞

−T[
T−к�
t=й

Ut | Xй = ∑]
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Assumptions on the model

(A0) Xt ∈ ℤ, and Xй = ∑.
(A1) The transition matrix is Toeplitz with decaying of-diagonal terms.

P = ƆƇƇƇ
ƈ

⋱ pй ⋱⋅ ⋅ ⋅ pк pй pк ⋅ ⋅ ⋅⋱ pк pй pк ⋅ ⋅ ⋅⋱ ⋱ pй ⋱
ƉƊƊƊ
Ƌ

and
pй ņ pк ņ pл ņ ⋅ ⋅ ⋅pй > ∑

Nayyar et al, assumed that the transistion matrix was banded,

that is, ∃≤ such that pѨ = ∑, for all k ņ ≤.
(A2) The distortion function is even and increasing on ℤ≥й.

∀e ∈ ℤ≥й : d(e) = d(Ĕe) and d(e) Ņ d(e + −).
Furthermore,

d(∑) = ∑ and d(e) ≠ ∑〈 ∀e ≠ ∑.
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An example: Symmetric birth-death Markov Chain

PѦѧ = ƌƏƍƏƎ
p〈 if |i Ĕ j| = −;− Ĕ 2p〈 if i = j;∑〈 otherwise,

where p ∈ (∑〈 к
л
)〈 d(e) = |e|

∑ − 2 ⋅ ⋅ ⋅Ĕ−Ĕ2⋅ ⋅ ⋅ p
− Ĕ 2p

p
− Ĕ 2p

p
− Ĕ 2p

p
− Ĕ 2p

p
− Ĕ 2p

p
pppppp
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Main results: Distortion-transmission function

Distortion-
transmission
function

D∗
П(α) = min{DП(f〈 g) such that NП(f〈 g) < α}

Properties:D∗
П(α) is convex and decreasing.

limО→йD∗
П(α) = ∞ and limО→кD∗

П(α) = ∑



Real-time transmission of Markov sources– (Aditya Mahajan)
6

Main results: Distortion-transmission function

Distortion-
transmission
function

D∗
П(α) = min{DП(f〈 g) such that NП(f〈 g) < α}

Properties:D∗
П(α) is convex and decreasing.

limО→йD∗
П(α) = ∞ and limО→кD∗

П(α) = ∑

∑ −αcα

D∗
П(α)

(NپѨٿ
П 〈 DپѨٿ

П )
(NپѨ̞кٿ

П 〈 DپѨ̞кٿ
П )
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Main results: Optimal communication strategies

Estimation
strategy

Let Zt be the most recently transmitted symbol up to time t. Then, the
optimal transmission strategy is

g∗(Yк:t) = Zt.
Transmission
strategy

Let Et = Xt Ĕ Zt and fپѨٿ be a threshold-based strategy given by

fپѨٿ(Xt〈 Yк:t−к) = {
∑〈 if |Et| Ņ k,−〈 if |Et| > k.

The optimal transmission strategy is a possibly randomized strategy

that, at each stage picksfپѨ∗ٿ with probability probability θ∗fپѨ∗̞кٿ with probability probability − Ĕ θ∗
Let NپѨٿ

П = NП(fپѨٿ〈 g∗) and DپѨٿ
П = DП(fپѨٿ〈 g∗). Then:k∗ is the largest k such that NپѨٿ

П ņ α)
θ∗ is such that

θ∗NپѨ∗ٿ
П + (− Ĕ θ∗)NپѨ∗̞кٿ

П = α
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Solution methodology

Standard
technique

Achievability: Identify a good strategy and evaluate its performance.

Converse: Determine a lower bound on distortion.

Hope: The two curves match

Converse bounds are hard! Especially for sequential models.

Our approach Model the optimization problem as a decentralized stochastic control

problem. [Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis 2006,

Mahajan-Teneketzis 2009, . . . ]

The system has two decision makers: the transmitter and the

estimator, that have access to diferent information.

Identify qualitative properties of optimal strategies

Identify a dynamic programming decomposition

Determine optimal strategies based on the dynamic program.
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Outline of the proof: Setting up a countable state DP

Step 1: Identify an information state and dynamic program for Lagrange relaxation
Use the common-information approach of Nayyar-Mahajan-Teneketzis 2013 to transform

the decentralized control problem to a centralized coordination problem

Step 2: Determine qualitative properties of optimal strategies from the DP
Use majorization theory to show that, under an optimal policy, the reachable set of the

information state is an almost symmetric and unimodal distribution.

The optimal transmission strategy is of a threshold-type and the optimal estimation

strategy does not depend on the value of the threshold.

Previously proved by [Lipsa-Marins 2011, Nayyar-Başar-Teneketzis-Veeravalli 2013]

Step 3: Fix the estimator. Investigate the best-response transmitter
Use standard results from DP to identify suicient conditions under which optimal

strategy is time-homogeneous and given by the unique ixed-point of a DP.
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Outline of the proof: Identifying a solution to the DP

Step 4: Evaluate cost of Lagrange relaxation for a particular transmission strategy
Both estimation and transmission strategies are ixed. Solve the DP to obtain renewal-

theory-like relationships.

Step 5: Identify Lagrange multipliers for which a particular strategy is optimal
Similar to the idea of calibration in multi-armed bandits.

Step 6: Evaluate optimal Lagrange performance. Infer the optimal strategy for
the constrained setup

The optimal Lagrange performance is continuous, piecewise linear, concave, and increasing

in the Lagrange multiplier.

Show that a Bernoulli randomized simple transmission strategy is optimal.

The performance of the optimal strategy gives the distortion-transmission function.
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Lagrange Relaxation

min
ٿѣ̟Ѥپ

DП(f〈 g) such that NП(f〈 g) Ņ α

Minimize expected distortion such that expected # of transmissions is less than α
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Minimize expected distortion such that expected # of transmissions is less than α

Lagrange
Relaxation

C∗
П(λ) ∶= inf

ٿѣ̟Ѥپ
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Lagrange Relaxation

min
ٿѣ̟Ѥپ

DП(f〈 g) such that NП(f〈 g) Ņ α

Minimize expected distortion such that expected # of transmissions is less than α

Lagrange
Relaxation

C∗
П(λ) ∶= inf

ٿѣ̟Ѥپ
CП(f〈 g; λ) where CП(f〈 g; λ) = DП(f〈 g)+λNП(f〈 g)

Search space of

strategies (f〈 g)

Restrict the search space of strategies (f〈 g) by identifying structure

of optimal tranmission and estimation strategies.

Diiculty: Non-classical information structure
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structure

It = {Xк:t〈 Uк:t−к〈 Yк:t−к} and Jt = {Yк:t}.



Real-time transmission of Markov sources– (Aditya Mahajan)
12

Step 1a: Removing irrelevant information

Information
structure
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Remove

irrelevant data
Aritarily ix estimation strategy.

Finding the best-response transmitter is a centralized stochastic

control problem.

Ĩt = {Xt〈 Yк:t−к} is a controlled Markov process.

ℙ(Ĩt̞к | It〈 Ut〈 Yt) = ℙ(Ĩt̞к | Ĩt〈 Yt);
�[d(Xt Ĕ X̂t) + λUt | It〈 Ut〈 Yt] = �[d(Xt Ĕ X̂t) + λUt | Ĩt〈 Yt]

Therefore, there is no loss of optimality in using control Ut = f̃t(Ĩt).
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Step 1a: Removing irrelevant information

Information
structure

It = {Xк:t〈 Uк:t−к〈 Yк:t−к} and Jt = {Yк:t}.
Remove

irrelevant data
Aritarily ix estimation strategy.

Finding the best-response transmitter is a centralized stochastic

control problem.

Ĩt = {Xt〈 Yк:t−к} is a controlled Markov process.

ℙ(Ĩt̞к | It〈 Ut〈 Yt) = ℙ(Ĩt̞к | Ĩt〈 Yt);
�[d(Xt Ĕ X̂t) + λUt | It〈 Ut〈 Yt] = �[d(Xt Ĕ X̂t) + λUt | Ĩt〈 Yt]

Therefore, there is no loss of optimality in using control Ut = f̃t(Ĩt).
Simplified
Info Struct

Ĩt = {Xt〈 Yк:t−к} and Jt = {Yк:t}.
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Step 1b: Equivalent centralized problem

Info Struct Ĩt = {Xt〈 Yк:t−к} and Jt = {Yк:t}.

Xt−к〈 Yк:t−л Yк:tXt〈 Yк:t−кYк:t−к



Real-time transmission of Markov sources– (Aditya Mahajan)
13

Step 1b: Equivalent centralized problem
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Coordinated
system

Consider a coordinator that

observes the common-information Jt−к ∩ Ĩt = {Yк:t−к}
chooses (X̂t−к〈 Γt), where Γt∶ Xt ↦ Ut.

Transmitter uses Γt to choose Ut = Γt(Xt).

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information

approach,Ć IEEE TAC 2013.
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Step 1b: Equivalent centralized problem

Info Struct Ĩt = {Xt〈 Yк:t−к} and Jt = {Yк:t}.

Xt−к〈 Yк:t−л Yк:tXt〈 Yк:t−кYк:t−к

Coordinated
system

Consider a coordinator that

observes the common-information Jt−к ∩ Ĩt = {Yк:t−к}
chooses (X̂t−к〈 Γt), where Γt∶ Xt ↦ Ut.

Transmitter uses Γt to choose Ut = Γt(Xt).
Coordinated system is equivalent to original system

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information

approach,Ć IEEE TAC 2013.
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Step 1c: Structural results and dynamic program

Information
states

Pre-transmission belief: Πt(x) = ℙ(Xt = x | Yк:t−к)
Post-transmission belief: Φt(x) = ℙ(Xt = x | Yк:t).
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Step 1c: Structural results and dynamic program

Information
states

Pre-transmission belief: Πt(x) = ℙ(Xt = x | Yк:t−к)
Post-transmission belief: Φt(x) = ℙ(Xt = x | Yк:t).

Structural
results

There is no loss of optimality in using

Ut = ft(Πt)〈 and X̂t = gt(Φt).
Dynamic
program

WT̞к(π) = ∑
and for t = T〈 . . . 〈 −
Vt(φ) = min

x̂∈�
�[d(Xt〈 x̂) +Wt̞к(Πt̞к) | Φt = φ]

Wt(π) = min
Γt

�[λUt + Vt(Φt) | Πt = π]



Can we use the DP to say something more about the optimal

strategy?
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Qualitative properties of optimal stategies

[Imer-Başar 2005 & 2010]

Fixed number of transmissions for inite horizon LQG setup.

[Lipsa-Martins 2009 & 2011, Molin-Hirche 2009]

Remote estimation with communication cost for inite horizon LQG setup.

[Nayyar-Başar-Teneketzis-Veeravalli 2013]

Remote estimation with communication cost for inite horizon Markov chain setup.

Also considered energy harvesting at the transmitter.
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Step 2a: a.s.u. distributions and majorization

a.s.u. distribution A probability distribution μ over ℤ is said to be almost summetric and

unimodal about a pont a if

μa̞ѫ ņ μa−ѫ ņ μa̞Ѩ̞к.
a.s.u.

rearrangement
The a.s.u. rearrangement of a probability distribution μ, denoted by μ̞
is a permutation of μ such that for every n

μ̞ѫ ņ μ−ѫ ņ μ̞ѫ̞к

Majorization A probability distribution μ majorizes a distribution ν, denoted by μ ⪰Ѫν if for all n
Ѩ�

Ѧ=−Ѩ

μ̞Ѧ ņ Ѩ�
Ѧ=−Ѩ

ν̞Ѧ
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Step 2b: Qualitative properties of optimal strategies

Monotonicity of value functions
If φ̃ is an a.s.u. distrution such that φ̃ ⪰Ѫ φ, then Vt(φ) ņ Vt(φ̃).
Structure of optimal estimator
If φt is a.s.u. about a, then the optimal estimate is a.
Structure of optimal transmitter
If πt is a.s.u. about a, then the optimal prescription γt is of the form

γt(x) = {
−〈 |x Ĕ a| ņ k(πt)∑〈 |x Ĕ a| < k(πt)

Nayyar, Başar, Teneketzis, Veeravalli, TAC 2013
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Step 2b: Qualitative properties of optimal strategies

Monotonicity of value functions
If φ̃ is an a.s.u. distrution such that φ̃ ⪰Ѫ φ, then Vt(φ) ņ Vt(φ̃).
Structure of optimal estimator
If φt is a.s.u. about a, then the optimal estimate is a.
Structure of optimal transmitter
If πt is a.s.u. about a, then the optimal prescription γt is of the form

γt(x) = {
−〈 |x Ĕ a| ņ k(πt)∑〈 |x Ĕ a| < k(πt)

Using these properties, one can show that under an optimal strategy πt
and φt are a.s.u.

Nayyar, Başar, Teneketzis, Veeravalli, TAC 2013
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Step 2c: Structure of optimal estimator (Nayyar et al, 2013)

Transmitted
Process

Let Zt denote the most recently transmitted value of the Markov

source.

Zй = ∑ and Zt = {
Xt if Ut = −;Zt−к if Ut = ∑.

The estimator can keep track of Zt as follows:

Zй = ∑ and Zt = {
Yt if Yt ≠ ε;Zt−к if Yt = ε.
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Step 2c: Structure of optimal estimator (Nayyar et al, 2013)

Transmitted
Process

Let Zt denote the most recently transmitted value of the Markov

source.

Zй = ∑ and Zt = {
Xt if Ut = −;Zt−к if Ut = ∑.

The estimator can keep track of Zt as follows:

Zй = ∑ and Zt = {
Yt if Yt ≠ ε;Zt−к if Yt = ε.

Theorem 1 The process {Zt}∞t=й is a suicient statistic at the estimator and an

optimal estimation strategy is given by

X̂t = g∗t(Zt) = Zt (⋆)

Remark The optimal estimation strategy is time-homogeneous and can be

speciied in closed form.
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Step 2d: Structure of optimal transmitter (Nayyar et al)

Error process Let Et = Xt Ĕ Zt−к denote the error process. {Et}∞t=й is a controlled

Markov process where

Eй = ∑ and ℙ(Et̞к = n | Et = e〈Ut = u) = {
Pйѫ〈 if u = −;PѢѫ〈 if u = ∑.
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Markov process where
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Step 2d: Structure of optimal transmitter (Nayyar et al)

Error process Let Et = Xt Ĕ Zt−к denote the error process. {Et}∞t=й is a controlled

Markov process where

Eй = ∑ and ℙ(Et̞к = n | Et = e〈Ut = u) = {
Pйѫ〈 if u = −;PѢѫ〈 if u = ∑.

Theorem 2 When the estimation strategy is of the form (⋆), then {Et}∞t=й is a

suicient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a

time-varying threshold {kt}∞t=й, i.e.,

Ut = ft(Et) = {
− if |Et| ņ kt;∑ if |Et| < kt.

Proof idea The proof of [Nayyar et al, 2013] was based on some majorization

inequalities of [Hajek et al, 2009] for distributions with inite support.

We extend these inequalities to distributions over integers using

results of [Wang-Woo-Madiman, 2014].



We have identiied the structure of optimal transmission

and estimation strategies for the inite-horizon Lagrange

relaxation of the original problem.

How do these results extend to ininite horizon setup?
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Step 3: Infinite horizon setup (for Lagrange relaxation)

Main idea Based on Thm 1, restrict attention to time-homogeneous estimation

strategy

X̂t = g∗t(Zt) = Zt

Consider the problem of inding the ąbest responseĆ estimation

strategy.
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Step 3: Infinite horizon setup (for Lagrange relaxation)

Main idea Based on Thm 1, restrict attention to time-homogeneous estimation

strategy

X̂t = g∗t(Zt) = Zt

Consider the problem of inding the ąbest responseĆ estimation

strategy.

Centralized stochastic control problem with countable state space

and unbounded cost.

Standard MDP results apply under mild technical assumptions.

Assum (A3) For every λ ņ ∑, there exists a function w : ℤ → ℝ and postive and

inite constants μк and μл such that for all e ∈ ℤ, we have that

max{λ〈 d(e)} Ņ μкw(e)
max{

∞�
ѫ=−∞

PѢѫw(n)〈 ∞�
ѫ=−∞

Pйѫw(n)} Ņ μлw(e).
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Step 3: Structure of optimal transmitter for infinite horizon

Structure Under assumption (A3), optimal transmission strategy is characterized

by time-homogeneous threshold k, i.e.,
Ut = f(Et) = {

− if |Et| ņ k;∑ if |Et| < k.
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Transmit

Don’t

Transmit

Step 3: Structure of optimal transmitter for infinite horizon

Structure Under assumption (A3), optimal transmission strategy is characterized

by time-homogeneous threshold k, i.e.,
Ut = f(Et) = {

− if |Et| ņ k;∑ if |Et| < k.
Dynamic
program

For β ∈ (∑〈 −), the optimal strategy is determined by the unique ixed

point of the following DP:

VП(e; λ) = min{(− Ĕ β)λ + β
∞�

ѫ=−∞

PйѫVП(n; λ)〈
(− Ĕ β)d(e) + β ∞�

ѫ=−∞

PѢѫVП(n; λ)}
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Transmit

Don’t

Transmit

Step 3: Structure of optimal transmitter for infinite horizon

Structure Under assumption (A3), optimal transmission strategy is characterized

by time-homogeneous threshold k, i.e.,
Ut = f(Et) = {

− if |Et| ņ k;∑ if |Et| < k.
Dynamic
program

For β ∈ (∑〈 −), the optimal strategy is determined by the unique ixed

point of the following DP:

VП(e; λ) = min{(− Ĕ β)λ + β
∞�

ѫ=−∞

PйѫVП(n; λ)〈
(− Ĕ β)d(e) + β ∞�

ѫ=−∞

PѢѫVП(n; λ)}
Lagrange
relaxation

Let f∗П(⋅; λ) be the time-homogeneous optimal transmission strategy.

C∗
П(λ) ∶= inf

ٿѣ̟Ѥپ
CП(f〈 g; λ) = CП(f∗П〈 g∗; λ) = VП(∑; λ)
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Step 3: The SEN Cond. and the long-term average setup

SEN Conditions For any λ ņ ∑, the value function VП(⋅; λ) satisfy the SEN condition:

(S1) There exists a reference state eй ∈ ℤ such that VП(eй; λ) < ∞
for all β ∈ (∑〈 −).

(S2) Deine hП(e; λ) = (− Ĕ β)−к[VП(e; λ) Ĕ VП(eй; λ)]. There exists a

function Kλ : ℤ → ℝ such that hП(e; λ) Ņ Kλ(e) for all e ∈ ℤ

and β ∈ (∑〈 −).
(S3) There exists a non-negative (inite) constant Lλ such that ĔLλ ŅhП(e; λ) for all e ∈ ℤ and β ∈ (∑〈 −).
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Step 3: The SEN Cond. and the long-term average setup

SEN Conditions For any λ ņ ∑, the value function VП(⋅; λ) satisfy the SEN condition:

(S1) There exists a reference state eй ∈ ℤ such that VП(eй; λ) < ∞
for all β ∈ (∑〈 −).

(S2) Deine hП(e; λ) = (− Ĕ β)−к[VП(e; λ) Ĕ VП(eй; λ)]. There exists a

function Kλ : ℤ → ℝ such that hП(e; λ) Ņ Kλ(e) for all e ∈ ℤ

and β ∈ (∑〈 −).
(S3) There exists a non-negative (inite) constant Lλ such that ĔLλ ŅhП(e; λ) for all e ∈ ℤ and β ∈ (∑〈 −).

Proof ideas The Markov chain induced by fپйٿ is ∑-standard, i.e., for every state e,
the expected time and expected cost for irst passage to ∑ is inite.
Hence, (S1) and (S2) hold.

For any e ∈ ℤ≥й, [P]Ѣ̞к ≻r [P]Ѣ, where ≻r denotes relected

stochastic dominance.

Using induction show that for every λ, VП(e; λ) is even and increasing

in e.
Hence (S3) holds.
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Step 3: The SEN Cond. and the long-term average setup

SEN Conditions For any λ ņ ∑, the value function VП(⋅; λ) satisfy the SEN condition:

(S1) There exists a reference state eй ∈ ℤ such that VП(eй; λ) < ∞
for all β ∈ (∑〈 −).

(S2) Deine hП(e; λ) = (− Ĕ β)−к[VП(e; λ) Ĕ VП(eй; λ)]. There exists a

function Kλ : ℤ → ℝ such that hП(e; λ) Ņ Kλ(e) for all e ∈ ℤ

and β ∈ (∑〈 −).
(S3) There exists a non-negative (inite) constant Lλ such that ĔLλ ŅhП(e; λ) for all e ∈ ℤ and β ∈ (∑〈 −).

Vanishing
discount
approach

Let f∗к(⋅; λ) be any limit point of f∗П(⋅; λ) as β ↑ −.
Then the time-homogeneous transmission strategy f∗к(⋅; λ) is optimal

for β = − (the long-term average setup).

Furthermore, the performance of this optimal strategy is

C∗
к(λ) ∶= inf

ٿѣ̟Ѥپ
Cк(f〈 g; λ) = Cк(f∗к〈 g∗; λ) = lim

П↑к
VП(∑; λ) = lim

П↑к
C∗

П(λ).



Time-homogeneous threshold-based transmission strategies

are optimal.

The optimal threshold can be determined by solving a DP.

The DP is well-behaved. The long-term average setup may

be analyzed using the vanishing discount approach.

So what? Does the DP give any insights beyond numerical

computations?
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Step 4: Performance of a threshold based strategy

Threshold-
based strategy

We analyze the performace of (fپѨٿ〈 g∗), where
fپѨٿ(e) ∶= {

−〈 if |e| ņ k;∑〈 if |e| < k.



Real-time transmission of Markov sources– (Aditya Mahajan)
23

Step 4: Performance of a threshold based strategy

Threshold-
based strategy

We analyze the performace of (fپѨٿ〈 g∗), where
fپѨٿ(e) ∶= {

−〈 if |e| ņ k;∑〈 if |e| < k.
Performance of
a given strategy

Distortion DپѨٿ
П (e) under strategy (fپѨٿ〈 g∗):

DپѨٿ
П (e) = ƌƏƍƏƎ

β ∞ē
ѫ=−∞

PйѫDپѨٿ
П (n)〈 |e| ņ k

(− Ĕ β)d(e) + β ∞ē
ѫ=−∞

PѢѫDپѨٿ
П (n)〈 |e| < k

Transmissions NپѨٿ
П (e) under strategy (fپѨٿ〈 g∗):

NپѨٿ
П (e) = ƌƏƍƏƎ

(− Ĕ β) + β ∞ē
ѫ=−∞

PйѫNپѨٿ
П (n)〈 |e| ņ k

β ∞ē
ѫ=−∞

PѢѫNپѨٿ
П (n)〈 |e| < k
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Step 4: Performance of a threshold based strategy (cont.)

Cost until first
transmission

Let SپѨٿ = {e ∈ ℤ : |e| Ņ k Ĕ −} and τپѨٿ be escape time of set SپѨٿ.
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Step 4: Performance of a threshold based strategy (cont.)

Cost until first
transmission

Let SپѨٿ = {e ∈ ℤ : |e| Ņ k Ĕ −} and τپѨٿ be escape time of set SپѨٿ.
Deine LپѨٿП ∶= � [

τډkڊ−к�
t=й

βtd(Et)|Eй = ∑]
MپѨٿ

П ∶= − Ĕ �[βτډkڊ | Eй = ∑]− Ĕ β
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Step 4: Performance of a threshold based strategy (cont.)

Cost until first
transmission

Let SپѨٿ = {e ∈ ℤ : |e| Ņ k Ĕ −} and τپѨٿ be escape time of set SپѨٿ.
Deine LپѨٿП ∶= � [

τډkڊ−к�
t=й

βtd(Et)|Eй = ∑]
MپѨٿ

П ∶= − Ĕ �[βτډkڊ | Eй = ∑]− Ĕ β
Renewal

relationships DپѨٿ
П = LپѨٿПMپѨٿ

П

and NپѨٿ
П = −

MپѨٿ
П

Ĕ (− Ĕ β)
We show that these expressions satisfy the recursive relationships

shown on the previous slide.
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Step 4: Performance of a threshold based strategy (cont.)

Cost until first
transmission

Let SپѨٿ = {e ∈ ℤ : |e| Ņ k Ĕ −} and τپѨٿ be escape time of set SپѨٿ.
Deine LپѨٿП ∶= � [

τډkڊ−к�
t=й

βtd(Et)|Eй = ∑]
MپѨٿ

П ∶= − Ĕ �[βτډkڊ | Eй = ∑]− Ĕ β
Renewal

relationships DپѨٿ
П = LپѨٿПMپѨٿ

П

and NپѨٿ
П = −

MپѨٿ
П

Ĕ (− Ĕ β)

Vanishing
discount

relationships

LپѨٿк = lim
П↑к

LپѨٿП 〈 MپѨٿ
к = lim

П↑к
MپѨٿ

П .
and

DپѨٿ
к = lim

П↑к
DپѨٿ

П = LپѨٿкMپѨٿ
к

NپѨٿ
к = lim

П↑к
NپѨٿ

П = −
MپѨٿ

к
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Step 4: Computing performance

Analytic
expressions

for performace

Let PپѨٿ andQپѨٿ
П be squarematrices and dپѨٿ is a column vector indexed

by SپѨٿ deined as follows:

PپѨٿѦѧ ∶= PѦѧ〈 ∀i〈 j ∈ SپѨٿ〈
QپѨٿ

П ∶= [IлѨ−к Ĕ βPپѨٿ]−к〈
dپѨٿ ∶= [d(Ĕk + −)〈 . . . 〈 d(k Ĕ −)]⊺

Then,

LپѨٿП = ٿѨپQ]
П ]й〈 dپѨܐٿ and MپѨٿ

П = ٿѨپQ]
П ]й〈 �лѨ−кܐ.
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Step 4: Computing performance

Analytic
expressions

for performace

Let PپѨٿ andQپѨٿ
П be squarematrices and dپѨٿ is a column vector indexed

by SپѨٿ deined as follows:

PپѨٿѦѧ ∶= PѦѧ〈 ∀i〈 j ∈ SپѨٿ〈
QپѨٿ

П ∶= [IлѨ−к Ĕ βPپѨٿ]−к〈
dپѨٿ ∶= [d(Ĕk + −)〈 . . . 〈 d(k Ĕ −)]⊺

Then,

LپѨٿП = ٿѨپQ]
П ]й〈 dپѨܐٿ and MپѨٿ

П = ٿѨپQ]
П ]й〈 �лѨ−кܐ.

Proof Standard Markov chain analysis.
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Step 4: Computing performance

Analytic
expressions

for performace

Let PپѨٿ andQپѨٿ
П be squarematrices and dپѨٿ is a column vector indexed

by SپѨٿ deined as follows:

PپѨٿѦѧ ∶= PѦѧ〈 ∀i〈 j ∈ SپѨٿ〈
QپѨٿ

П ∶= [IлѨ−к Ĕ βPپѨٿ]−к〈
dپѨٿ ∶= [d(Ĕk + −)〈 . . . 〈 d(k Ĕ −)]⊺

Then,

LپѨٿП = ٿѨپQ]
П ]й〈 dپѨܐٿ and MپѨٿ

П = ٿѨپQ]
П ]й〈 �лѨ−кܐ.

DپѨٿ
П and NپѨٿ

П can be computed using these expressions.



We found performance of a generic (threshold-based) strategy.

How does this lead to identifying an optimal strategy?

Use the idea of calibration from multi-armed bandits.

Instead of inding the best strategy for a particular λ, we
identify the set of λ that are optimal for a particular strategy.
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Step 5: Optimal stategy for the Lagrange relaxation

Some inequalities LپѨٿП < LپѨ̞кٿ
П 〈 MپѨٿ

П < MپѨ̞кٿ
П 〈 DپѨٿ

П < DپѨ̞кٿ
П .
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Step 5: Optimal stategy for the Lagrange relaxation

Some inequalities LپѨٿП < LپѨ̞кٿ
П 〈 MپѨٿ

П < MپѨ̞кٿ
П 〈 DپѨٿ

П < DپѨ̞кٿ
П .

Proof idea For the irst two inequalities, express PپѨ̞кٿ in terms in PپѨٿ.
For the third inequality, deine operator TپѨ̞кٿ as

[TپѨ̞кٿD](e) = ƌƏƍƏƎ
β ∞ē

ѫ=−∞

PйѫD(n)〈 |e| ņ k + −
(− Ĕ β)d(e) + β ∞ē

ѫ=−∞

PѢѫD(n)〈 |e| < k + −
Deine DپѨ̟йٿ = DپѨٿ and DپѨ̟Ѫ̞кٿ = TپѨ̞кٿDپѨ̟Ѫٿ.

Show that DپѨ̟Ѫٿ(e) > DپѨٿ(e) for all e ∈ AپѪٿ, where AپѪٿ ↑ ℤ.
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Step 5: Optimal stategy for the Lagrange relaxation

Some inequalities LپѨٿП < LپѨ̞кٿ
П 〈 MپѨٿ

П < MپѨ̞кٿ
П 〈 DپѨٿ

П < DپѨ̞кٿ
П .

Lagrangian cost CپѨٿ
П (λ) ∶= C(fپѨٿ〈 g∗; λ) = DپѨٿ

П + λNپѨٿ
П

λ
DپѨٿ

П

DپѨ̞кٿ
П

DپѨ̞лٿ
П
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λپѨٿП = DپѨ̞кٿ
П ĔDپѨٿ

ПNپѨٿ
П ĔNپѨ̞кٿ

П

Step 5: Optimal stategy for the Lagrange relaxation

Some inequalities LپѨٿП < LپѨ̞кٿ
П 〈 MپѨٿ

П < MپѨ̞кٿ
П 〈 DپѨٿ

П < DپѨ̞кٿ
П .

Lagrangian cost CپѨٿ
П (λ) ∶= C(fپѨٿ〈 g∗; λ) = DپѨٿ

П + λNپѨٿ
П

λپѨٿП

λ
DپѨٿ

П

DپѨ̞кٿ
П

DپѨ̞лٿ
П
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λپѨٿП = DپѨ̞кٿ
П ĔDپѨٿ
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Step 5: Optimal stategy for the Lagrange relaxation

Some inequalities LپѨٿП < LپѨ̞кٿ
П 〈 MپѨٿ

П < MپѨ̞кٿ
П 〈 DپѨٿ

П < DپѨ̞кٿ
П .

Lagrangian cost CپѨٿ
П (λ) ∶= C(fپѨٿ〈 g∗; λ) = DپѨٿ

П + λNپѨٿ
П

λپѨٿП λپѨ̞кٿ
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λپѨٿП = DپѨ̞кٿ
П ĔDپѨٿ

ПNپѨٿ
П ĔNپѨ̞кٿ

П

Step 5: Optimal stategy for the Lagrange relaxation

Some inequalities LپѨٿП < LپѨ̞кٿ
П 〈 MپѨٿ

П < MپѨ̞кٿ
П 〈 DپѨٿ

П < DپѨ̞кٿ
П .

Lagrangian cost CپѨٿ
П (λ) ∶= C(fپѨٿ〈 g∗; λ) = DپѨٿ

П + λNپѨٿ
П

λپѨٿП λپѨ̞кٿ
П

λ
DپѨٿ

П

DپѨ̞кٿ
П

DپѨ̞лٿ
П

Optimal
performance

For all λ ∈ (λپѨٿП 〈 λپѨ̞кٿ
П ] the threshold strategy fپѨ̞кٿ is optimal.

C∗
П(λ) = minѨ∈ℤ CپѨٿ

П is piecewise linear, continuous, concave, and

increasing function of λ.
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Step 6: Back to the constrained optimization problem

Bernoulli
randomized
strategy

Let θ ∈ [∑〈 −] and fк and fл be two stationary strategies.

The Bernoulli randomized strategy (fк〈 fл〈 θ) randomizes between fк andfл at each stage, choosing fк with probability θ and fл with probability(− Ĕ θ).
Simple rand.
strategy

A Bernoulli randomized strategy (fк〈 fл〈 θ) is simple if the actions

prescribed by fк and fл difer only at one state.

Main result Deine k∗П = sup{k ∈ ℤ≥й : NپѨٿ
П ņ α} and let θ be such that

θNپѨ∗
βٿ

П + (− Ĕ θ)NپѨ∗
β̞кٿ

П = α
Then, the Bernoulli simple randomized strategy (fپѨ∗

βٿ〈 fپѨ∗
β̞кٿ〈 θ) is

optimal for the constrained optimization problem for β ∈ (∑〈 −].
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Step 6: Proof of the result

Sufficient
condition for
optimality

A (possibly randomized) strategy (f∘〈 g∘) is optimal for a constrained

optimization problem with β ∈ (∑〈 −] is the following conditions hold:
(C1) NП(f∘〈 g∘) = α.
(C2) There exists a Lagrange multiplier λ∘ ņ ∑ such that (f∘〈 g∘) is

optimal for CП(f∘〈 g∘; λ∘),
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П 〈 DپѨٿ

П )
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Completely characterize the distortion-

transmission function and the optimal strategy

that achieves any point on that function.
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An example: Symmetric birth-death Markov Chain

PѦѧ = ƌƏƍƏƎ
p〈 if |i Ĕ j| = −;− Ĕ 2p〈 if i = j;∑〈 otherwise,

where p ∈ (∑〈 к
л
)〈 d(e) = |e|

∑ − 2 ⋅ ⋅ ⋅Ĕ−Ĕ2⋅ ⋅ ⋅ p
− Ĕ 2p

p
− Ĕ 2p

p
− Ĕ 2p

p
− Ĕ 2p

p
− Ĕ 2p

p
pppppp
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Discounted cost Let KП = Ĕ2 Ĕ (− Ĕ β)/βp and mП = cosh−к(ĔKП/2).
DپѨٿ

П = sinh(kmП) Ĕ k sinh(mП)2 sinhл(kmП/2) sinh(mП)
NپѨٿ

П = 2βp sinhл(mП/2) cosh(kmП)
sinhл(kmП/2) Ĕ (− Ĕ β)

Average cost DپѨٿ
к = kл Ĕ −3k and NپѨٿ

к = 2pkл

An example: Symmetric birth-death Markov Chain

PѦѧ = ƌƏƍƏƎ
p〈 if |i Ĕ j| = −;− Ĕ 2p〈 if i = j;∑〈 otherwise,

where p ∈ (∑〈 к
л
)〈 d(e) = |e|



Real-time transmission of Markov sources– (Aditya Mahajan)
29

Discounted cost Let KП = Ĕ2 Ĕ (− Ĕ β)/βp and mП = cosh−к(ĔKП/2).
DپѨٿ

П = sinh(kmП) Ĕ k sinh(mП)2 sinhл(kmП/2) sinh(mП)
NپѨٿ

П = 2βp sinhл(mП/2) cosh(kmП)
sinhл(kmП/2) Ĕ (− Ĕ β)

λپѨٿП can be computed in terms of DپѨٿ
П and NپѨٿ

П .

Average cost DپѨٿ
к = kл Ĕ −3k and NپѨٿ

к = 2pkл
λپѨٿк = k(k + −)(kл + k + −)6p(2k + −)

An example: Symmetric birth-death Markov Chain

PѦѧ = ƌƏƍƏƎ
p〈 if |i Ĕ j| = −;− Ĕ 2p〈 if i = j;∑〈 otherwise,

where p ∈ (∑〈 к
л
)〈 d(e) = |e|
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Summary and Conclusion

Problem
formulation

Real-time transmission of a Markov source under constraints on the

number of transmissions.

Investigated both discounted and average cost ininite horizon setups.

Modeled as a decentralized stochastic control problem with two

decision maker.

As long as the transmitter uses a symmetric threshold based strategy,

the estimation strategy does not depend on the transmission strategy.

The problem of ind the ąbest responseĆ transmitter is a centralized

stochastic control problem.

Main results Simple Bernoulli randomized strategies (fپѨ∗ٿ〈 fپѨ∗̞кٿ〈 θ) are optimal.k∗ and θ can be computed easily.

Characterize the distortion-transmission function

References Chakravorty and Mahajan, Allerton 2014.

Chakravorty and Mahajan, CDC 2014

Full paper to be posted to arxiv soon.


