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* Salient features

» Sensing is cheap
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"The communication system

Markov
Source

Xt i

Y

Transmitter

Source

Transmitter

Receiver

Communication
Strategies

» Xy € Z

. A\
Receiver — X,

» First-order time-homogeneous symmetric Markov source.

Xt

Ue = (X, Ugie—1) and Yy = { .

> >/Zt = gt(Ym)

» Distortion: d(X; — )?t) where d(e) = d(—e) < d(e+ 1)

» Transmission strategy f = {f{}° .
» Estimation strategy g = {g¢}{2,-
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"The constrained optimization problem B

(nfwin) Dg(f,g) suchthat Ng(f,g) < «
Ne

Minimize expected distortion such that expected # of transmissions is less than «

(o)

Discounted Dg(f,g) = (1-B)EHY [Z Bd(X, — Xu) | Xo = O]
setup 0
Np(f,g) = (1=B)E™Y | Y BtUL [Xo=0]
t=0
Average cost D, (f,g) = llmsup— [Z d(Xe — Xi) | Xo = o}
setup Tmee T =0

N; (f,g) = limsup = [Zut XO_O}

T—ooo t=0

/2
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rAssumptions on the model

(Ao)

(A1)

(A2)
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Xt € Z,and Xp = 0.

The transition matrix is Toeplitz with decaying off-diagonal terms.

Po
> > > ...
P— P1 Po Pi1 and Po =2 P1 =Z2P2 =2
~ P1 Po P1 po >0
.o. ". ’po .-.

» Nayyar et al, assumed that the transistion matrix was banded,
that is, 3b such that px =0, forall k > b.

The distortion function is even and increasing on Z,.
Ve € Z>o: d(e)=d(—e) and d(e) < d(e+1).
Furthermore,
d(0)=0 and d(e)#0, Ve=#0.

,



"An example: Symmetric birth-death Markov Chain

P |F|1_J| =1, :
Pij =¢ 1—-2p, ifi=j; where p € (0, ;), d(e) = e
0, otherwise,

1—2p 1—-2p
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mlain results: Distortion-transmission function I

Distortion- D§ («) = min{Dg (f, g) such that Ng(f,g) < «}
transmission
function _
Properties:

> D}g(oc) is convex and decreasing.
» limy_0 D’[g(oc) = oo and limy_,1 D’E(oc) =0
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mlain results: Distortion-transmission function I

Distortion- D§ («) = min{Dg (f, g) such that Ng(f,g) < «}
transmission
function _
Properties:

> D’fg(oc) is convex and decreasing.
» limy_0 DT_),((X) = oo and limy_,1 D};(oc) =0
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"Main results: Optimal communication strategies B

Estimation Let Z, be the most recently transmitted symbol up to time t. Then, the
strategy optimal transmission strategy is

9*(Y1:t) — Zt-

Transmission Let E; = X; — Z; and f'*) be a threshold-based strategy given by
strategy 0, iFIE] <k

) (X, Vi) =
( ty I'1:t 1) {]’ |F|Et|>k

The optimal transmission strategy is a possibly randomized strategy
that, at each stage picks

» () with probability probability 0*

» f(K+1) with probability probability 1 — 0*

s (f1*)) g*). Then:

o)

Let NG = Ng (f(¥), g*) and D
» k* is the largest k such that
» 0% is such that

O*NG + (1 - 0N =«

NG >

"
%
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"Main results: Optimal communication strategies B

Estimation Let Z, be the most recently transmitted symbol up to time t. Then, the
strategy optimal transmission strategy is

Trany given by

K+ 1 K+ 1
D}l (NG, D)
Dy _
nized strategy
0 X oo 1

Let Ng‘) = Np (), g*) and Dg‘) = Dgp(f*), g*). Then:
» k* is the largest k such that Ng‘) > )
» 0% is such that

0N+ (1— 09N =«

"
%
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"Solution methodology I

Standard » Achievability: Identify a good strategy and evaluate its performance.
technique » Converse: Determine a lower bound on distortion.
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"Solution methodology B

Standard » Achievability: Identify a good strategy and evaluate its performance.
technique » Converse: Determine a lower bound on distortion.
» Hope: The two curves match
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"Solution methodology B

Standard » Achievability: Identify a good strategy and evaluate its performance.
technique » Converse: Determine a lower bound on distortion.
» Hope: The two curves match

Converse bounds are hard! Especially for sequential models.
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"Solution methodology B

Standard » Achievability: Identify a good strategy and evaluate its performance.
technique » Converse: Determine a lower bound on distortion.
» Hope: The two curves match

Converse bounds are hard! Especially for sequential models.

Our approach » Model the optimization problem as a decentralized stochastic control

problem. [Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis 2006,
Mahajan-Teneketzis 20089, .. .]

» The system has two decision makers: the transmitter and the
estimator, that have access to different information.

[/
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"Solution methodology B

Standard » Achievability: Identify a good strategy and evaluate its performance.
technique » Converse: Determine a lower bound on distortion.
» Hope: The two curves match

Converse bounds are hard! Especially for sequential models.

Our approach » Model the optimization problem as a decentralized stochastic control

problem. [Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis 2006,
Mahajan-Teneketzis 20089, .. .]

» The system has two decision makers: the transmitter and the
estimator, that have access to different information.

» Identify qualitative properties of optimal strategies
» Identify a dynamic programming decomposition
» Determine optimal strategies based on the dynamic program.

[/
",
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"Outline of the proof: Setting up a countable state DP I

Step 1: Identify an information state and dynamic program for Lagrange relaxation
Use the common-information approach of Nayyar-Mahajan-Teneketzis 2013 to transform
the decentralized control problem to a centralized coordination problem

Step 2: Determine qualitative properties of optimal strategies from the DP
Use majorization theory to show that, under an optimal policy, the reachable set of the
information state is an almost symmetric and unimodal distribution.

The optimal transmission strategy is of a threshold-type and the optimal estimation
strategy does not depend on the value of the threshold.

Previously proved by [Lipsa-Marins 2011, Nayyar-Bagar-Teneketzis-Veeravalli 2013]

Step 3: Fix the estimator. Investigate the best-response transmitter
Use standard results from DP to identify sufficient conditions under which optimal
strategy is time-homogeneous and given by the unique fixed-point of a DP.

9%
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"Outline of the proof: Identifying a solution to the DP B

Step 4: Evaluate cost of Lagrange relaxation for a particular transmission strategy
Both estimation and transmission strategies are fixed. Solve the DP to obtain renewal-
theory-like relationships.

Step 5: Identify Lagrange multipliers for which a particular strategy is optimal
Similar to the idea of calibration in multi-armed bandits.

Step 6: Evaluate optimal Lagrange performance. Infer the optimal strategy for
the constrained setup

The optimal Lagrange performance is continuous, piecewise linear, concave, and increasing

in the Lagrange multiplier.

Show that a Bernoulli randomized simple transmission strategy is optimal.

The performance of the optimal strategy gives the distortion-transmission function.

1,
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Wagrange Relaxation

(nfwin) Dg(f,g) suchthat Ng(f,g) < «
Ne

Minimize expected distortion such that expected # of transmissions is less than «
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ﬁagrange Relaxation I

(nfwin) Dg(f,g) suchthat Ng(f,g) < «
Ne

Minimize expected distortion such that expected # of transmissions is less than «

Lagrange Ch(A) = inf Cp(f,g;A) where Cg(f, g;A) = Dg(f,g) +ANg(f, g)
Relaxation e

1,

1%
Real-time transmission of Markov sources— (Aditya Mahajan) > ‘



ﬁagrange Relaxation I

(nfwin) Dg(f,g) suchthat Ng(f,g) < «
Ne

Minimize expected distortion such that expected # of transmissions is less than «

Lagrange Ch(A) =

l ifﬂgF) Cp(f,g;A) where Cg(f,g;A) = Dg(f,g) +ANg(f, g)
Relaxation ’

(

» Restrict the search space of strategies (f, g) by identifying structure
@ of optimal tranmission and estimation strategies.
» Difficulty: Non-classical information structure

Search space of
strategies (f, g)

lll,’
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rStep 1a: Removing irrelevant information

Information I ={Xy.¢,Us.t—1, Yie—1}and Jo = {Y1.¢).
structure
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rStep 1a: Removing irrelevant information

Information
structure

Remove
irrelevant data
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It ={Xq:4, Urie—1, Yie—1t and Je = {Y7.4).

» Aritarily Ax estimation strategy.
» Finding the best-response transmitter is a centralized stochastic
control problem.

» Iy = {Xy,Y1.t_1} is a controlled Markov process.
P(Ttﬂ | It)ut)Yt) = P(itﬂ ’ itaYt);
E[d(X¢ — X¢) + AUy | T, Uy, Vi = E[A(Xe — X¢) + AU | T, Y

» Therefore, there is no loss of optimality in using control U, = f(I).

lll,’
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rStep 1a: Removing irrelevant information

Information
structure

Remove
irrelevant data

Simplified
Info Struct
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It ={Xq:4, Urie—1, Yie—1t and Je = {Y7.4).

» Aritarily Ax estimation strategy.
» Finding the best-response transmitter is a centralized stochastic
control problem.

» Iy = {Xy,Y1.t_1} is a controlled Markov process.
P(Ttﬂ | It)ut)Yt) = P(itﬂ ’ itaYt);
E[d(X¢ — X¢) + AUy | T, Uy, Vi = E[A(Xe — X¢) + AU | T, Y

» Therefore, there is no loss of optimality in using control U, = f(I).

it — {Xt>Y1:tf1} and It — {Y1:t}-

lll,’
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rStep 1b: Equivalent centralized problem

Info Struct T ={X¢, Yii—1}and J¢ = {Y14}.

X1, Y1:t—2

Y1.4—1

Xt)Y1:t—1

Y1 it
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rStep 1b: Equivalent centralized problem

Info Struct I ={Xy,Yi4—1}and J¢ = {Y7.¢).

Xe—1, Y142 Y11 Xy Y101 Y7t

Coordinated Consider a coordinator that
system » observes the common-information J;_; N Ty = {Y7.¢_1}

» chooses ()?t_1 ,Tt), where T: X — Uy.
Transmitter uses Iy to choose U; = I (X ).

» Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information

lll,’

approach,” IEEE TAC 2013.
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rStep 1b: Equivalent centralized problem

Info Struct T ={X¢, Yii—1}and J¢ = {Y14}.

Xe—1, Y142 Y11 Xy Y101 Y7t

Coordinated Consider a coordinator that
system » observes the common-information J;_; N Ty = {Y7.¢_1}

» chooses ()?t_1 ,Tt), where T: X — Uy.
Transmitter uses Iy to choose U; = I (X ).

Coordinated system is equivalent to original system

» Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information

lll,’

approach,” IEEE TAC 2013.
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rStep 1¢: Structural results and dynamic program

Information » Pre-transmission belief: TT¢(x) = P(X¢ =% | Y1:¢—1)
states » Post-transmission belief: ®(x) = P(X¢ = x| Y7.¢).

\ Real-time transmission of Markov sources— (Aditya Mahajan)

lll,’
2
142

\\“



rStep 1¢: Structural results and dynamic program

Information » Pre-transmission belief: TT¢(x) = P(X¢ =% | Y1:¢—1)
states » Post-transmission belief: ®(x) = P(X¢ = x| Y7.¢).

Structural There is no loss of optimality in using
results U = f¢(TT¢), and >A(t = gi(Py).
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rStep 1¢: Structural results and dynamic program

Information » Pre-transmission belief: TT¢(x) = P(X¢ =% | Y1:¢—1)
states » Post-transmission belief: ®(x) = P(X¢ = x| Y7.¢).

Structural There is no loss of optimality in using

results Uy =f(TTy), and X = ge(Dy).
Dynamic Wriq(m) =0
program

andfort=T,...,1
Vi(@) = [neiQ]E[d(Xtﬂ/z) + Wi 1 (TTepr) | @ = @]

Wi (m) = ”;in EAU; + Vi (D) [Ty = ]
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Can we use the DP to say something more about the optimal
strategy?



rQualitative properties of optimal stategies I

[Imer-Basar 2005 & 2010]
Fixed number of transmissions for Anite horizon LQG setup.

[Lipsa-Martins 2009 & 2011, Molin-Hirche 2009]
Remote estimation with communication cost for fnite horizon LQG setup.

[Nayyar-Basar-Teneketzis-Veeravalli 2013]
Remote estimation with communication cost for finite horizon Markov chain setup.
Also considered energy harvesting at the transmitter.

[/
",
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rStep 2a: a.s.u. distributions and majorization I

a.s.u. distribution A probability distribution pu over Z is said to be almost summetric and
unimodal about a pont a if

Hatn = Ha—n = Hatk+l-

a.S.U. The a.s.u. rearrangement of a probability distribution p, denoted by p*
rearrangement is a permutation of u such that for every n

> >

Majorization A probability distribution pu majorizes a distribution v, denoted by p >,

vifforalln
K Kk
>y
i——k i——k

[/
",
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rStep 2b: Qualitative properties of optimal strategies I

Monotonicity of value functions
IF @ is an a.s.u. distrution such that @ >, ¢, then V(@) = V().

Structure of optimal estimator
IF @¢ is a.s.u. about q, then the optimal estimate is a.

Structure of optimal transmitter
IF 7, is a.s.u. about a, then the optimal prescription vy is of the form

1, Ix—al = k(m)
Yt(X)_{O, Ix — al < k(7¢)

» Nayyar, Basar, Teneketzis, Veeravalli, TAC 2013

17§
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rStep 2b: Qualitative properties of optimal strategies I

Monotonicity of value functions
IF @ is an a.s.u. distrution such that @ >, ¢, then V(@) = V().

Structure of optimal estimator
IF @¢ is a.s.u. about q, then the optimal estimate is a.

Structure of optimal transmitter
IF 7, is a.s.u. about a, then the optimal prescription vy is of the form

1, Ix—al = k(m)
Yt(X)_{O, Ix — al < k(7¢)

Using these properties, one can show that under an optimal strategy 7,
and ¢, are a.s.u.

» Nayyar, Basar, Teneketzis, Veeravalli, TAC 2013
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rStep 2¢: Structure of optimal estimator (Nayyar et al, 2013)j

Transmitted Let Z; denote the most recently transmitted value of the Markov
Process source.

Zo=0 and Z,= X !Fut:];

th] IFUt = O

The estimator can keep track of Z; as follows:

Yt |FYt 7£ €

Zo=0 and Z,=
0 ¢ {Zt_] iFYtZE.

[/
",
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rStep 2¢: Structure of optimal estimator (Nayyar et al, 2013)j

Transmitted Let Z; denote the most recently transmitted value of the Markov
Process source.

Zo=0 and Z,= X !Fut:];

th] IFUt = O

The estimator can keep track of Z; as follows:

Yt |FYt 7£ €

Zo=0 and Z,=
0 ¢ {Zt_] iFYtZE.

Theorem 1 |[The process {Z{}°, is a sufficient statistic at the estimator and an
optimal estimation strategy is given by

>A<t = gi(Zy) = Z4 (*)

Remark » The optimal estimation strategy is time-homogeneous and can be
specified in closed form.

[/
",
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rStep 2d: Structure of optimal transmitter (Nayyar et al) o

Error process Let Ey = X¢ —Z_; denote the error process. {E¢}{°, is a controlled
Markov process where

POn» IFLL = ];

Eo =0 and IP(E =n|Ei=e U =u) =
0 (Bt | By = e, Uy ) {Pem Fu—o.

1,
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rStep 2d: Structure of optimal transmitter (Nayyar et al) B

Error process Let Ey = X¢ —Z_; denote the error process. {E¢}{°, is a controlled
Markov process where

Pon, IFu=T;
PeTL) |Fu:0

Theorem 2 When the estimation strategy is of the form (x), then {E¢}>, is a
sufficient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a
time-varying threshold {k¢}% ,, i.e.,

T iF[Ed = ke

U, = f(Ey) =
¢ = fe(Ed) {o iF [Eo| < ke

1,

"
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rStep 2d: Structure of optimal transmitter (Nayyar et al) B

Error process Let Ey = X¢ —Z_; denote the error process. {E¢}{°, is a controlled
Markov process where

P iFu=T;
Eo=0 and P(Eqg=n|E=e U =u)=< om "u=5h
Pen, iIfu=0.
Theorem 2 When the estimation strategy is of the form (x), then {E¢}>, is a
sufficient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a
time-varying threshold {k¢}% ,, i.e.,

T iF[E > ki
U = f(BEy) =
o =ellE) {o iF[Ee| < ke
Proof idea » The proof of [Nayyar et al, 2013] was based on some majorization
inequalities of [Hajek et al, 2009] for distributions with fnite support.
» We extend these inequalities to distributions over integers using
results of [Wang-Woo-Madiman, 2014].

[/
",
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We have identified the structure of optimal transmission

and estimation strategies for the Anite-horizon Lagrange
relaxation of the original problem.

How do these results extend to infnite horizon setup?



rStep 3: Infinite horizon setup (for Lagrange relaxation) B

Main idea » Based on Thm 1, restrict attention to time-homogeneous estimation
strategy

ﬁt = gi(Zt) = Z¢
» Consider the problem of fnding the “best response” estimation
strategy.

1,
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rStep 3: Infinite horizon setup (for Lagrange relaxation) B

Main idea » Based on Thm 1, restrict attention to time-homogeneous estimation
strategy

ﬁt =9gi(Zt) = Z¢
» Consider the problem of fnding the “best response” estimation
strategy.

» Centralized stochastic control problem with countable state space
and unbounded cost.
» Standard MDP results apply under mild technical assumptions.

lll,’
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rStep 3: Infinite horizon setup (for Lagrange relaxation) B

Main idea » Based on Thm 1, restrict attention to time-homogeneous estimation
strategy
Xt = gi(Zt) = Z4

» Consider the problem of fnding the “best response” estimation
strategy.

» Centralized stochastic control problem with countable state space
and unbounded cost.
» Standard MDP results apply under mild technical assumptions.

Assum (A3) For every A > 0, there exists a function w : Z — R and postive and
Anite constants w; and w; such that for all e € Z, we have that

max{A, d(e)} < piw(e)

lll,’
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rStep 3: Structure of optimal transmitter for infinite horizon"

Structure Under assumption (A3), optimal transmission strategy is characterized
by time-homogeneous threshold k, i.e.,

1 iF[E = k;

U, = f(E,) =
¢ = fEe) {o iF [E.| < k.

lll,’
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rStep 3: Structure of optimal transmitter for infinite horizon"

Structure Under assumption (A3), optimal transmission strategy is characterized
by time-homogeneous threshold k, i.e.,

1 ifF|E > K;
Uy =f(Ey) =
£ = fEe) {o if[E,| < k.
Dynamic For B € (0,1), the optimal strategy is determined by the unique fixed
program point of the following DP:

Vg (e;A) = min {(1 —BA+PB Z PonVa(MA)y  Transmit

n=—oo

(1-pde)+p 3 Penvﬁ(n;x)} Don't

o Transmit

lll,’
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rStep 3: Structure of optimal transmitter for infinite horizon"

Structure Under assumption (A3), optimal transmission strategy is characterized
by time-homogeneous threshold k, i.e.,
1 iF[E = k;
Uy =f(E¢) =
o =) {o if[E,| < k.
Dynamic For B € (0,1), the optimal strategy is determined by the unique fixed
program point of the following DP:
Vg (e;A) = min {(1 —BA+B Y PonVe(mA), Transmit

n=—oo

— Don’t
(1= BAle)+B Y PenValmid)}
n:Z_oo g Transmit
Lagrange Let f}(;;A) be the time-homogeneous optimal transmission strategy.

relaxation ¢y () = Inf Calf, giA) = ColFh, 9%A) = Va (02
»9

lll,’
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rStep 3: The SEN Cond. and the long-term average setup B

SEN Conditions For any A > 0, the value function Vg (+;A) satisfy the SEN condition:

(S1) There exists a reference state ey € Z such that Vg(eg;A) < oo
forall p € (0,1).

(S2) Define hg(e;A) = (1 —B)'[Vpa(e;A) — Vg (eo;A)l. There exists a
function K, : Z — R such that hg(e;A) < Ky(e) foralle € Z
and g € (0,1).

(S3) There exists a non-negative (finite) constant L such that —L, <
hg(e;A) foralle € Z and B € (0,1).

"
"
2225
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rStep 3: The SEN Cond. and the long-term average setup B

SEN Conditions For any A > 0, the value function Vg (+;A) satisfy the SEN condition:

(S1) There exists a reference state ey € Z such that Vg(eg;A) < oo
forall p € (0,1).

(S2) Define hg(e;A) = (1 —B)'[Vpa(e;A) — Vg (eo;A)l. There exists a
function K, : Z — R such that hg(e;A) < Ky(e) foralle € Z
and g € (0,1).

(S3) There exists a non-negative (finite) constant L such that —L, <
hg(e;A) foralle € Z and B € (0,1).

Proof ideas » The Markov chain induced by f'©) is 0-standard, i.e., for every state e,
the expected time and expected cost for frst passage to 0 is fnite.
» Hence, (S1) and (S2) hold.

» For any e € Z-o, [Plex1 >+ [Ple, where >, denotes reflected
stochastic dominance.

» Using induction show that for every A, Vi (e;A) is even and increasing
ine.

» Hence (S3) holds.

lll,’
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rStep 3: The SEN Cond. and the long-term average setup B

SEN Conditions For any A > 0, the value function Vg (+;A) satisfy the SEN condition:

(S1) There exists a reference state ey € Z such that Vg(eg;A) < oo
forall p € (0,1).

(S2) Define hg(e;A) = (1 —B)'[Vpa(e;A) — Vg (eo;A)l. There exists a
function K, : Z — R such that hg(e;A) < Ky(e) foralle € Z
and g € (0,1).

(S3) There exists a non-negative (finite) constant L such that —L, <
hg(e;A) foralle € Z and B € (0,1).

Vanishing Let f}(-A) be any limit point of f§(;A) as 3 T 1.
discount Then the time-homogeneous transmission strategy f*(-;A) is optimal
approach for g =1 (the long-term average setup).

Furthermore, the performance of this optimal strategy is
CI(A) = (lff’lg) Ci(f,g;A) = Ci(f7, g% A) = gm Vg (0;A) = gg} Ch(A).

"
"
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)

Time-homogeneous threshold-based transmission strategies
are optimal.

The optimal threshold can be determined by solving a DP.

The DP is well-behaved. The long-term average setup may
be analyzed using the vanishing discount approach.

So what? Does the DP give any insights beyond numerical
computations?

4



Step 4: Performance of a threshold based strategy B

Threshold- We analyze the performace of (f*), g*), where

based strategy - :
f(k)(e) — 1) |F|€| 2 kn
0, iflel <k.

"
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Step 4: Performance of a threshold based strategy B

Threshold- We analyze the performace of (f*), g*), where

based strategy : .
£(K) () = 1, !F|e| = K;
0, iflel <k.

Performance of » Distortion Dg{)(e) under strategy (f(*), g*):

a given strategy o
{ B Y PonDY(n), el > k

n=—oo

(1-B)dE)+B Y. PeDF (M), lel<k

n=—oo
» Transmissions N g‘) (e) under strategy (f(*), g*):

1-B)+B % PouNF(m), lel>k

n=—oo

NG (e) = o 5
B > PenNgi(n), el < k

n=—oo

1y,
22
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rStep 4: Performance of a threshold based strategy (cont.)j

Cost until first Let S™®) ={e € Z:|e|] < k— 1} and T(¥) be escape time of set S*).
transmission

"
i 224§
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rStep 4: Performance of a threshold based strategy (cont.)j

Cost until first Let S™®) ={e € Z:|e|] < k— 1} and T(¥) be escape time of set S*).
transmission

(k)1

Define Lék) = ]E[ Z Btd(Ey)
t=0

e =0]

_1—EB™ |Eo =0]
- s

(k) .
l\/[[3 :

"
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rStep 4: Performance of a threshold based strategy (cont.)j

Cost until first Let S™®) ={e € Z:|e|] < k— 1} and T(¥) be escape time of set S*).
transmission

(k)1

Define qu ::]E[ Z Btd(Ey)
t=0

e =0]

1—E[R™™ | Eo =0

M) =
B 1—B
Renewal L) 1
onchi DM =P _ and NJ& = ———(1-p)
relationships B Mgc) B Mgc)

We show that these expressions satisfy the recursive relationships
shown on the previous slide.

lll,’
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rStep 4: Performance of a threshold based strategy (cont.)j

Cost until first Let S(®)

transmission

={ec Z:

lel <k—1}and T

be escape time of set S(¥).

(k)1

Define Lék) = E [ Z Btd(E¢)[Eo :0]
t=0
mk) _ 1= EB™" | Ep =0
B 1—-PB
Renewal ) Lfgk) 1
relationships Dg’ =Ty and N w — (=B
B B
Vanishing LY =limLg, M® =lmMmg.
discount gk P!
relationships 2and
L
1 = }3”;? D Mgk)
1
1 = g'ﬁ N Mgk)

\ Real-time transmission of Markov sources— (Aditya Mahajan)
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rStep 4: Computing performance I

Analytic Let P(*) and Qg{) be square matrices and d'*) is a column vector indexed
expressions by S(*) defined as follows:
for performace pi(]k) =Py, Vi,je Sk,
Q) = [ly—y — P,
d™ =[d(—k+1),...,d(k—1)]T
Then,

Ly = ([Qg10,d™) and MG = ([QE"lo, T2x—1)-

"
225§
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rStep 4: Computing performance I

Analytic Let P(*) and Qg{) be square matrices and d'*) is a column vector indexed
expressions by S(*) defined as follows:
for performace pi(]k) =Py, Vi,je Sk,
Q) = [ly—y — P,
d™ =[d(—k+1),...,d(k—1)]T
Then,

Ly = ([Qg10,d™) and MG = ([QE"lo, T2x—1)-

Proof Standard Markov chain analysis.

"
225§
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rStep 4: Computing performance

)

Analytic Let P(*) and Qg{) be square matrices and d'*) is a column vector indexed

expressions by S(*) defined as follows:
for performace pi(]k) =Py, Vi,je Sk,
Q) = [ly—y — P,
d® =[d(—k+1),...,dk—1)]7
Then,

Ly = ([Qg10,d™) and MG = ([QE"lo, T2x—1)-

Dg() and Nfgk) can be computed using these expressions.

\ Real-time transmission of Markov sources— (Aditya Mahajan)
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We found performance of a generic (threshold-based) strategy
How does this lead to identifying an optimal strategy?

Use the idea of calibration from multi-armed bandits.
Instead of Anding the best strategy for a particular A, we
identify the set of A that are optimal for a particular strategy.



rStep 5: Optimal stategy for the Lagrange relaxation B

Some inequalities Lék) < Lgﬁ”, ng < Mgﬁ”, Dék) < Dgﬁ”,

> 2
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rStep 5: Optimal stategy for the Lagrange relaxation B

Some inequalities Ly <LEHY, M <M DY

(k+1)
6 < Dl?) .

Proof idea » For the first two inequalities, express P(**1) in terms in P(¥)
» For the third inequality, define operator T(k+1) as

§ Z PonD(n), le| > k+1
[T(k+1)D](e) — n=—oo ~
(1 —B)d(€)+f5 Z PenD(n)a le| <k+1
n=—oo
» Define D(%0) = D) and Dxm+1) — T(k+1)pk,m)

» Show that D(®™)(e) > D(¥)(e) forall e € A(™), where A(™) T Z.

s Wy,
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rStep 5: Optimal stategy for the Lagrange relaxation

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g%A) = DY + ANG
Dng)
Dékﬂ)
Dy
> A\

\ Real-time transmission of Markov sources— (Aditya Mahajan)

)

sy,

22

Z
“an

2
6§
T\



rStep 5: Optimal stategy for the Lagrange relaxation

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g%A) = DY + ANG
Dng)
Dékﬂ)
D
> A\
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rStep 5: Optimal stategy for the Lagrange relaxation B

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g%A) = DY + ANG

8y,

: erf : . 2263
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rStep 5: Optimal stategy for the Lagrange relaxation B

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g%A) = DY + ANG

8y,

: erf : . 2263
\ Real-time transmission of Markov sources— (Aditya Mahajan) S ‘



rStep 5: Optimal stategy for the Lagrange relaxation

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g%A) = DY + ANG

Optimal |» Forall A € (AU, A1) the threshold strategy £+ is optimal.

B )

performance

increasing function of A.

» C3(A) = minkez Cék) is piecewise linear, continuous, concave,

and

\ Real-time transmission of Markov sources— (Aditya Mahajan)
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rStep 6: Back to the constrained optimization problem B

Bernoulli Let 6 € [0,1] and f; and f, be two stationary strategies.
randomized The Bernoulli randomized strategy (f1, f2,0) randomizes between f; and
strategy f, at each stage, choosing f; with probability 6 and f, with probability
(1—0).

Simple rand. A Bernoulli randomized strategy (fi,f2,0) is simple if the actions
strategy prescribed by f; and f; differ only at one state.

Main result |Define ki =sup{k € Zxo : N}Bk) > «} and let 0 be such that

ONG P+ (10N, —

Then, the Bernoulli simple randomized strategy (f(*&), f(*s*+1) ) is
optimal for the constrained optimization problem for B € (0, 1].

I/,‘
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rStep 6: Proof of the result I

Sufficient A (possibly randomized) strategy (°,g°) is optimal for a constrained
condition for optimization problem with 8 € (0, 1] is the following conditions hold:
optimality (C1l) Ng(f°,g°) =a.
(C2) There exists a Lagrange multiplier A°> > 0 such that (f°, g°) is
optimal for Cg(f°, g°;A°),

& lll,"
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rStep 6: Proof of the result I

Sufficient A (possibly randomized) strategy (°,g°) is optimal for a constrained
condition for optimization problem with 8 € (0, 1] is the following conditions hold:
optimality (C1l) Ng(f°,g°) =a.
(C2) There exists a Lagrange multiplier A°> > 0 such that (f°, g°) is
optimal for Cg(f°, g°;A°),

22
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rStep 6: Proof of the result I

Sufficient A (possibly randomized) strategy (°,g°) is optimal for a constrained
condition for optimization problem with 8 € (0, 1] is the following conditions hold:
optimality (C1l) Ng(f°,g°) =a.
(C2) There exists a Lagrange multiplier A°> > 0 such that (f°, g°) is
optimal for Cg(f°, g°;A°),

-

}
I
I
|
£0) optimal
I
I
I
I

0 A
}\fi
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rStep 6: Proof of the result I

Sufficient A (possibly randomized) strategy (°,g°) is optimal for a constrained
condition for optimization problem with 8 € (0, 1] is the following conditions hold:
optimality (C1l) Ng(f°,g°) =a.
(C2) There exists a Lagrange multiplier A°> > 0 such that (f°, g°) is
optimal for Cg(f°, g°;A°),

/f(kﬂ) optimal

-

}
I
I
|
£0) optimal
I
I
I
I

0 A
}\fi

& lll,"
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rStep 6: Proof of the result

B

Sufficient A (possibly randomized) strategy (f°, g°) is optimal for a constrained

con itinn for ankimizakrion nreohlom agirh 2 ~ (0 11 ic Fho Follovging caon
0j
k+1 k+1
D} («] (NG, D)
k k
(N7, D)
0 x X 1

d / (<) optimal
I
D |
I
ALK

B

\ Real-time transmission of Markov sources— (Aditya Mahajan)
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rStep 6: Proof of the result B

Sufficient A (possibly randomized) strategy (f°, g°) is optimal for a constrained
con itinn for  ankimizarion neablomagirh 2 ~ (0 11 ic tho Fallavuing caon |t|0ns hold

Of
hat (f°,g°) is
DE((X) (NESK—F]),DESK—O—]))
;D)
0 N 1
> / (<) optimal
I3} i

(k)
7\6

[/
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Completely characterize the distortion-
transmission function and the optimal strategy
that achieves any point on that function.



"An example: Symmetric birth-death Markov Chain

P |F|1_J| =1, :
Pij =¢ 1—-2p, ifi=j; where p € (O’Z)’ d(e) = e
0, otherwise,

1—2p 1—-2p

\ Real-time transmission of Markov sources— (Aditya Mahajan)
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"An example: Symmetric birth-death Markov Chain

P |F|1_J’ =1, :
Py =< 1-2p, ifi=j; where p € (O’Z)’ d(e) = e
0, otherwise,

Discounted cost LetKg =—2— (1—pB)/Bp and mg = cosh™' (—Kg/2).

D _ sinh(kmg) — ksinh(mg)
P 2sinh?(kmg/2) sinh(mg)
N(k)__Zﬁpsnﬁf(nlﬁ/Z)cosh(knlﬁ)__

1—
? sinh? (kmg /2) (1=F)

2
Average cost D{® =K==l and  N{¥ = Zp
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"An example: Symmetric birth-death Markov Chain

P, |F|1'_J| — 1; ]
Py =< 1—-2p, ifi=j; where p € (0, ;), d(e) = le|
0, otherwise,

Discounted cost LetKg =—2— (1—pB)/Bp and mg = cosh™' (—Kg/2).
Dk _ sinh(kmg) — ksinh(mg)
? 2 sinhz(kmB/ZJ sinh(mg)

N _ 2Bp sinhz(mB/Z) cosh(kmg) _
P sinh? (kmg /2)

(1-8)

A can be computed in terms of D) and N/,

2
Average cost D{® =K==l and  N{¥ = Zp

A _ k(e + 12+ k+1)
T 6p(2k+1)
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"An example: Symmetric birth-death Markov Chain

P, 'Fh_]l — 1; ]
Pij =¢ 1—-2p, ifi=j; where p € (0, E)’ d(e) = e
0, otherwise,
Discou p =03
2 B=1
1.5 B =09
Ch(A)
1 B=0.8
0.5
Ave % 5 10 15 2 A
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"An example: Symmetric birth-death Markov Chain

P, |F|1'_J| — 1; ]
Pij =¢ 1—-2p, ifi=j; where p € (O’Z)’ d(e) = e
0, otherwise,

Discounted cost LetKg =—2— (1—pB)/Bp and mg = cosh™' (—Kg/2).

D _ sinh(kmg) — ksinh(mg)
P 2sinh?(kmg/2) sinh(mg)
N _ 2Bp sinhz(mB/Z) cosh(kmg) _

1 —
? sinh? (kmg /2) (1=F)

_sinh?(mg/2) cosh(kmg) _ 1+ a—B

k% =su ke Z : =
B P { >0 sinhz(kmB/Z) 2pp

}

2
Average cost D{® =K==l and  N{¥ = Zp
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"An example: Symmetric birth-death Markov Chain B

P 'Fh'_]l =1; :
Py =< 1—-2p, ifi=j; where p € (0, E)’ d(e) = le|
0, otherwise,
Discouf p=03
7
B=10——0
6 p=09——
5 B=0.8——
k’é 4 lﬂ
3
2
1
Ave 05 0.05 0.1 0.15 02

£2
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"An example: Symmetric birth-death Markov Chain B

P, iffi—jl = 1; 1
Py =< 1—-2p, ifi=j; where p € (0, E)’ d(e) = le|
Discour 1
Df (o) B =0.9
0 X 1
Ave

N2
£29%
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rSummary and Conclusion I

Problem » Real-time transmission of a Markov source under constraints on the
formulation  number of transmissions.
» Investigated both discounted and average cost infinite horizon setups.
» Modeled as a decentralized stochastic control problem with two
decision maker.
» As long as the transmitter uses a symmetric threshold based strategy,
the estimation strategy does not depend on the transmission strategy.
» The problem of Aind the “best response” transmitter is a centralized
stochastic control problem.

Main results » Simple Bernoulli randomized strategies ("), f(<'+1)/9) are optimal.
» k* and 6 can be computed easily.
» Characterize the distortion-transmission function

References » Chakravorty and Mahajan, Allerton 2014.
» Chakravorty and Mahajan, CDC 2014
» Full paper to be posted to arxiv soon.

s\\“ll/,e

230§
k Real-time transmission of Markov sources— (Aditya Mahajan) Zn> ‘



