Role of information structures in decentralized decision making

Aditya Mahajan

February 8, 2010, UCLA

Acknowledgments

Collaborators

- Demos Teneketzis, Univ of Michigan,
- Sekhar Tatikonda, Yale Univ
- Ashutosh Nayyar, Univ of Michigan,
- Serdar Yüksel, Queen's Univ

- Funding Agencies
 - NSF
 - NASA

Decentralized systems are everywhere . . .

Communication Networks

Surveillance Networks

U.S. AIR FORCE

11396

Transportation Networks

4131 EKD

Control Systems

USA

Mary Loling

Monitoring and Diagnostic Systems

Robotics

Power Distribution

... and many others ...

Basic research premise

- The various applications where decentralized systems arise are independent areas of research with dedicated communities.
- However, most applications share common features and common design principles.

6

Develop a **systematic methodology** that addresses these commonalities.

Such a methodology will provide design guidelines for all applications.

Characteristics of decentralized systems

Multiple agents that have different information need to cooperate and coordinate

Required: a theory for decentralized decision making

IHT LHA ANT LIN LIN LIN LAN LAN LAN ANT LAN ANT LIN ANT LIN ANT LIN ANT LAN ANT LAN

Outline

- 1. Overview of decentralized systems
 - **Classification**: games vs. teams; single- vs. multi-stage; etc.
 - ► Objective: structural results and sequential decomposition
- 2. Why can't we directly use Markov decision theory
- 3. n-step delayed sharing structure
 - Information states
 - Summarizing the affect of past on future performance
- 4. Conclusion

Classification of decentralized systems

Classification of decentralized systems

Sequential dynamic teams with non-classical info strc

Salient Features

Sequential Team

Order in which the agents act can be fixed in advance: $A_1, A_2, ..., A_n$.

Non-classical information structures

Let \mathcal{J}_i represent the "information" known to A_i . $\exists i \text{ such that } \mathcal{J}_i \not\subseteq \mathcal{J}_{i+1}$

Literature Overview

Seconomics

- **R**. Radner, *Team decision problems*, Ann. Math. Statistics, 1962.
- J. Marschak and R. Radner, *Economic Theory of Teams*, Yale Univ Press, 1972.
- C.B. McGuire, *Comparison of Information Structures*, Cowles Foundation, 1959.
- Controls
 - H.S. Witsenhausen, On information structures, Feedback and Causality, SIAM J. Control, 1971
 - H.S. Witsenhausen, Separation of estimation and control for discrete time systems, Proc of IEEE, 1971.

Literature Review

- Difficulty of the problem
 - H.S. Witsenhausen, counterexample in stochastic control, SICON 1968

Linear policies are not optimal for linear quadratic Gaussian systems under non-classical information structure

D.S. Bernstein, S. Zilberstein, and N. Immerman, 2000

In general, the problem is NEXP-complete: **no polynomial time** solution can exist.

Literature Review

- Results for general setup
 - **Standard form**: Witsenhausen 1973
 - **Non-classical LQG problems**: Sandell and Athans, 1974
 - ▶ Multi-criteria problems: Basar, 1978
 - **Equivalence of static and dynamic teams**: Witsenhausen 1988
 - Non-sequential systems: Andersland and Teneketzis, 1992 and 1994.

Literature Review

- Results for specific information structures
 - Partially nested info structures, Ho and Chu, 1972, Ho, Kastner, and Wong, 1978, Ho, 1980
 - Delayed sharing info structures, Witsenhausen 1971, Varaiya and Walrand, 1978, Mahajan, Nayyar, and Teneketzis 2010.
 - **Common past**, Aicardi *et al* 1987
 - Partially observed and partially nested, Casalino et al 1984
 - Periodic sharing info structure, Ooi et al 1997
 - **Tower info structures**, Swigart and Lall 2008
 - Stochastic nested and belief sharing, Yüksel 2009

This talk

- A. Mahajan, A. Nayyar, and D. Teneketzis, Identifying tractable decentralized control problems on the basis of information structure, Allerton 2008.
- A. Mahajan and S. Tatikonda, Sequential team form and its simplification using graphical models, Allerton 2009.
- A. Nayyar, A. Mahajan, and D. Teneketzis, Optimal control strategies in delayed sharing information structures, ACC 2010.

Solution Concept

- Structural results
 - Discard irrelevant information
 - Compress relevant information to a compact statistic
 - Restrict attention to a sub-class of decision rules
- Sequential decomposition
 - Divide and conquer: Exploit sequential and multi-stage nature of the problem
 - Convert a one-shot optimal design problem into a sequence of nested optimization problems.

DYNAMIC PROGRAMMING

1.5.

RICHARD BELLMAN

PROBABILITY AND MATHEMATICAL STATISTICS

A Series of Monographs and Teirbooks

INTRODUCTION TO STOCHASTIC DYNAMIC PROGRAMMING

SHELDON M BOSS

O. Hernández-Lerma

Applied Mathematical Adaptive Markov Control Sciences Processes

DYNAMIC PROGRAMMING

Models and Applications

Same solution concepts as centralized systems

CONSTRAINED MARKOV DECISION PROCESSES

Eitan Altman

CHAPMAN & HALL/CRC

Markov Decision Processes Discrete Stochastic

Dynamic Programming

VIOLUME

WILEY

WILEY SERIES IN PROBABILITY AND STATISTICS

Dynamic Programming and Optimal Control

THIRD SDITION

DIMITRI P. BERTSEKAS

Dynamic Programming and Optimal Control

NOTUME

ric V. Denardo

DIMITRI P. BERTSEKAS

Markov decision process (MDP)

$$X_{t+1} = f_t(X_t, U_t, W_t)$$
$$U_t = g_t(X_{1:t}, U_{1:t-1})$$
$$\min E\left\{\sum_{t=1}^T c_t(X_t, U_t)\right\}$$

Markov decision process (MDP)

Structural Results: Discard past observations and actions

Choose current action based on current state X_t

Sequential decomposition: **Dynamic programming**

Recursively compute the next action U_t for each realization of the current state X_t

Partially observable MDP (POMDP)

$$\begin{split} X_{t+1} &= f_t(X_t, U_t, W_t) \\ Y_t &= h_t(X_t, Q_t) \\ U_t &= g_t(Y_{1:t}, U_{1:t-1}) \\ \min E\left\{\sum_{t=1}^T c_t(X_t, U_t)\right\} \end{split}$$

Partially observable MDP (POMDP)

Structural Results: Compress past observations and actions

Choose current action based on current info state $\pi = \Pr(\text{state of system} | \text{ all data at agent})$

Sequential decomposition: Dynamic programming

Recursively compute the next action U_t for each realization of the current information state π_t

Objective

Find a systematic methodology to determine structural results and sequential decomposition for sequential teams

h Athena Scienti

Athena Scientif

Eitan Altman

CHAPMAN & HALL/CRC

WILEY SERIES IN PROBABILITY AND STATISTICS

Markov decision theory makes an implicit assumption: **information is centralized**

MDP revisited

Information State

current state X_t of the system

Implicit Assumption

one agent with perfect recall

POMDP revisited

Information State

 $\pi_{t} = Pr(state of system | all data at agent)$

Implicit Assumption

data at time $t \subseteq data$ at time t + 1one agent with perfect recall
What happens if this assumption is not satisfied?

An example with two agents

From the p.o.v. of agent 1

$$\pi_{t}^{1} = \Pr(X_{t}, Y_{1:t}^{2}, U_{1:t-1}^{2} \mid Y_{1:t}^{1}, U_{1:t-1}^{1})$$

From the p.o.v. of agent 2

 $\pi_{t}^{2} = \Pr(X_{t}, \mathbf{Y}_{1:t}^{1}, \mathbf{U}_{1:t-1}^{1} \mid \mathbf{Y}_{1:t}^{2}, \mathbf{U}_{1:t-1}^{2})$

What happens when we try to combine the two p.o.v.

Each agent's belief on the other agent's obs

$$\pi_{t}^{1} = \Pr(X_{t}, \mathbf{Y}_{1:t}^{2}, \mathbf{U}_{1:t-1}^{2} \mid \mathbf{Y}_{1:t}^{1}, \mathbf{U}_{1:t-1}^{1})$$

$$\pi_{t}^{2} = \Pr(X_{t}, \mathbf{Y}_{1:t}^{1}, \mathbf{U}_{1:t-1}^{1} \mid \mathbf{Y}_{1:t}^{2}, \mathbf{U}_{1:t-1}^{2})$$

Each agent's belief on the other agent's belief on the first agent's obs

$$\hat{\pi}_t^1 = \Pr(X_t, \pi_t^2 \mid \pi_t^1)$$
$$\hat{\pi}_t^2 = \Pr(X_t, \pi_t^1 \mid \pi_t^2)$$

Each agent is second-guessing the other

An example with one agent without perfect recall

$$X_{t+1} = f_t(X_t, U_t, W_t)$$
$$Y_t = h_t(X_t, Q_t)$$
$$U_t = g_t(Y_t, M_t)$$
$$M_{t+1} = l_t(Y_t, M_t)$$

What happens if we use the same approach as POMDPs

 $\pi_t = \Pr(X_t \mid Y_t, M_t)$

 $\sigma(Y_t, Mt) \not \subseteq \sigma(Y_{t+1}, M_{t+1})$

 π_t cannot be updated recursively

What is the correct notion of state

Difficulties in decentralized control

The notion of state

How do we choose information states

The second guessing argument

How does an agent know what other agent think about what it knows

Triple-aspect of control – estimation, control, and **communication/signaling**

Our approach

- The notion of state
 - Start from first principles
 - State for what purpose? State for whom?
- The second guessing argument
 - Exploit common knowledge
- Triple-aspect of control
 - Each step of the dynamic program is a functional optimization problem

An Example Delayed sharing information structure

Delayed sharing info structure (DSIS)

Delayed sharing info structure (DSIS)

- K controllers that share information with a delay of n time steps
- $n = 0 \Rightarrow \text{ classical info structure}
 (centralized system)$

Image: Image

Delayed sharing info structure (DSIS)

Oynamics

$$\begin{aligned} X_t &= f_t(X_{t-1}, U_t^1, U_t^2, W_t) \\ Y_t^k &= h_t^k(X_t, N_t^k) \\ U_t^k &= g_t^k(\Lambda_t^k, \Delta_t) \end{aligned}$$

$$\min \mathsf{E}\left\{\sum_{t=1}^{\mathsf{T}} c_t(X_t, U_t^1, U_t^2)\right\}$$

History of the problem

Witsenhausen, 1971 proposed the n-DSIS and asserted a structural result

 $U_t^k = g_t^k(\Lambda_t^k, \Theta_t)$

where $\Theta_t = \Pr(X_{t-n} \mid \Delta_t)$.

The domain of Δ_t increases with time, the domain of Θ_t does not.

Solution Varaiya and Walrand, 1979 proved that Witsenhausen's assertion is true for n = 1 but false of n > 1

What is the structure of optimal controllers for DSIS?

(Open problem for 39 years)

Our Results

Derive two structural results

$$r_t^k = \left\{ \ g_{m+n}^k(\cdot, Y_{m+1:t-n}^k, U_{m+1:t-1}^k, \Delta_{m+n}), \ m = t - 2n + 1, ..., t - n - 1 \right\}$$

Both Π_t and (Θ_t, r_t^1, r_t^2) have time-invariant domains

First Solution Approach

- Solution Consider a coordinator that observes common information Δ_t (but does not observe the private information $(\Lambda_t^1, \Lambda_t^2)$).
- Formulate a centralized optimization problem from the point of view of the coordinator
- Show that the coordinator's problem is equivalent to the original problem
- Find states sufficient for input-output mapping for the coordinator
- Find information states (state sufficient for dynamic programming) for the coordinator

IHT LAT ANT LAT LAT LAT LAT LAT ANT ANT ANT ANT ANT LAT LAT ANT ANT ANT ANT ANT ANT ANT ANT

A coordinator for system

$$\begin{split} (\gamma_t^1,\gamma_t^2) &= \psi_t(\Delta_t) \\ U_t^1 &= \gamma_t^1(\Lambda_t^1) \quad U_t^2 = \gamma_t^2(\Lambda_t^2) \end{split}$$

State sufficient for input-output mapping

Define:
$$S_t = (X_{t-1}, \Lambda_t^1, \Lambda_t^2)$$

Recursive update:

$$S_{t+1} = \hat{f}_t(S_t, \gamma_t^1, \gamma_t^2, W_t, N_t^1, N_t^2)$$

Observation function:

$$(Y_{t-n}^1, Y_{t-n}^2, U_{t-n}^1, U_{t-n}^2) = \hat{h}_t(S_t)$$

Cost can be written in terms of state

$$c_t(X_t, U_t^1, U_t^2) = \hat{c}_t(S_t, S_{t+1}, \gamma_t^1, \gamma_t^2)$$

Information State

 $\Pi_{t} = \Pr(\text{state} \mid \text{past data})$ $= \Pr(S_{t} \mid \Delta_{t}, \gamma_{1:t}^{1}, \gamma_{1:t}^{2})$

Recursive update:

$$\pi_{t+1} = \tilde{f}_t(\pi_t, \gamma_t^1, \gamma_t^2, (Y_{t-n}^1, Y_{t-n}^2, U_{t-n}^1, U_{t-n}^2))$$

Controlled Markov process:

 $\Pr(\Pi_{t+1} \mid \Delta_t, \Pi_{1:t}, \gamma_{1:t}^1, \gamma_{1:t}^2) = \Pr(\Pi_{t+1} \mid \Pi_t, \gamma_t^1, \gamma_t^2)$

Expected cost:

 $\mathbf{E}\{\hat{c}_{t}(S_{t}, S_{t+1}, \gamma_{t}^{1}, \gamma_{t}^{2}) \mid \Delta_{t}, \Pi_{1:t}, \gamma_{1:t}^{1}, \gamma_{1:t}^{2}\} = \tilde{c}_{t}(\Pi_{t}, \gamma_{t}^{1}, \gamma_{t}^{2})$

First structural result

For the coordinator's problem

 $(\gamma_t^1,\gamma_t^2)=\psi_t(\Pi_t)$

For the original problem

 $U^k_t = g^k_t(\Lambda^k_t,\Pi_t) = \gamma^k_t(\Pi_t)(\Lambda^k_t)$

ø dynamic programming decomposition

$$V_{\mathrm{T}}(\pi) = \min_{(\gamma^{1},\gamma^{2})} \tilde{c}_{\mathrm{T}}(\pi,\gamma^{1},\gamma^{2})$$
$$V_{\mathrm{t}}(\pi) = \min_{(\gamma^{1},\gamma^{2})} \left[\tilde{c}_{\mathrm{T}}(\pi,\gamma^{1},\gamma^{2}) + \mathrm{E}\left\{ V_{\mathrm{t+1}}(\Pi_{\mathrm{t+1}}) \mid \pi,\gamma^{1},\gamma^{2} \right\} \right]$$

Features of the solution

 $\Pi_t = Pr(X_{t-1}, \Lambda^1_t, \Lambda^2_t \mid \Delta_t \gamma^1_{1:t}, \gamma^2_{1:t})$

- \blacksquare Π_t has time invariant domain
- Int is not independent of the agent's policies (it is independent of the coordinator's policies)
- In each step of the dynamic program, we are choosing partial functions (γ_t^1, γ_t^2) .

Features of the solution

 $\Pi_t = Pr(X_{t-1}, \Lambda_t^1, \Lambda_t^2 \mid \Delta_t \gamma_{1:t}^1, \gamma_{1:t}^2)$

- $\label{eq:phi}$ Π_t has time invariant domain
- Int is not independent of the agent's policies (it is independent of the coordinator's policies)
- In each step of the dynamic program, we are choosing partial functions (γ_t^1, γ_t^2) .

Can we **exploit** the "partial function is control action" nature of the problem at the coordinator

Affect of functions on future can be compressed by partially evaluating the function

Partially evaluating a function

Consider

 $X_{t+1} = f_t(X_t,Y_t)$

How do we compress the affect (f_t, X_t) affect X_{t+1} ?

Partially evaluating a function

Consider

 $X_{t+1} = f_t(X_t,Y_t)$

How do we compress the affect (f_t, X_t) affect X_{t+1} ?

 $f_t(X_t, \boldsymbol{\cdot})$

Second Solution Approach

- Solution Δ_t (but does not observe the private information $(\Lambda_t^1, \Lambda_t^2)$).
- Formulate a centralized optimization problem from the point of view of the coordinator
- Show that the coordinator's problem is equivalent to the original problem
- Compress the information at the coordinator into control law independent part and partially evaluating past control laws.

A coordinator for system

$$\begin{split} (\gamma_t^1,\gamma_t^2) &= \psi_t(\Delta_t) \\ U_t^1 &= \gamma_t^1(\Lambda_t^1) \quad U_t^2 &= \gamma_t^2(\Lambda_t^2) \end{split}$$

Information state for optimization

Define: $\Theta_t = \Pr(X_{t-n} \mid \Delta_t)$ $r_t^k = \left\{ g_{m+n}^k(\cdot, Y_{m+1:t-n}^k, U_{m+1:t-1}^k, \Delta_{m+n}), \ m = t - 2n + 1, ..., t - n - 1 \right\}$

Recursive update:

$$\Theta_{t} = Q_{t}(\Theta_{t}, Y_{t-n+1}^{1}, Y_{t-n+1}^{2}, U_{t-n+1}^{1}, U_{t-n+1}^{2})$$

$$r_{t+1}^{k} = Q_{t}^{k}(r_{t}^{k}, Y_{t-n+1}^{1}, Y_{t-n+1}^{2}, U_{t-n+1}^{1}, U_{t-n+1}^{2}, \gamma_{t}^{k})$$

Sontrolled Markov process:

 $\Pr(\Theta_{t+1} \mid \Delta_t, \Pi_{1:t}, r_{1:t}^1, r_{1:t}^2, \gamma_{1:t}^1, \gamma_{1:t}^2) = \Pr(\Theta_{t+1} \mid \Delta_t, r_t^1, r_t^2, \gamma_t^1, \gamma_t^2)$

Expected cost

 $\mathsf{E}\{c_t(X_t, U_t^1, U_t^2) | \Delta_t r_{1:t}^1, r_{1:t}^2, \gamma_{1:t}^1, \gamma_{1:t}^2\} = \widehat{c}_t(\Theta_t, r_t^1, r_t^2, \gamma_t^1, \gamma_t^2)$

Second structural result

For the coordinator's problem

 $(\gamma_t^1,\gamma_t^2)=\psi_t(\Theta_t,r_t^1,r_t^2)$

For the original problem

 $U^k_t = g^k_t(\Lambda^k_t, \Theta_t, r^1_t, r^2_t) = \gamma^k_t(\Theta_t, r^1_t, r^2_t)(\Lambda^k_t)$

ø dynamic programming decomposition

$$\begin{split} V_{T}(\theta, r^{1}, r^{2}) &= \min_{(\gamma^{1}, \gamma^{2})} \widehat{c}_{T}(\theta, r^{1}, r^{2}, \gamma^{1}, \gamma^{2}) \\ V_{t}(\theta, r^{1}, r^{2}) &= \min_{(\gamma^{1}, \gamma^{2})} \left[\ \widehat{c}_{T}(\theta, r^{1}, r^{2}, \gamma^{1}, \gamma^{2}) \\ &+ E\left\{ \ V_{t+1}(\Theta_{t+1}, r^{1}_{t+1}, r^{2}_{t+1}) \mid \theta, r^{1}, r^{2}, \gamma^{1}, \gamma^{2} \right\} \right] \end{split}$$

Features of the solution

 $\Theta_{t} = \Pr(X_{t-n} \mid \Delta_{t})$ $r_{t}^{k} = \left\{ g_{m+n}^{k}(\cdot, Y_{m+1:t-n}^{k}, U_{m+1:t-1}^{k}, \Delta_{m+n}), \ m = t - 2n + 1, ..., t - n - 1 \right\}$

(Θ_t, r_t^1, r_t^2) has time invariant domain

 Θ Θ t is independent of the agent's policies

- In each step of the dynamic program, we are choosing partial functions (γ_t^1, γ_t^2) .

Summary of approach

Solution Methodology

Find **common information** at each time

- Look at the problem for the point of view of a coordinator that observes this common information and choose partial functions
- Find an information state for the problem at the coordinator
 - Pr(state for input-output mapping | common information)
 - ▶ (Pr(past state | common information),

past partial control laws)
Salient Features

Information state has time invariant domain

The methodology is also applicable to infinite horizon problems

Each step of DP is a functional optimization problem

▶ Form of the DP is similar to that of POMDP

Methodology applicable to general problems

- **General two-agent teams** (M, Sequential decomposition of sequential teams, 2008)
- Sufficient conditions for sequential decomposition of dynamic teams (M, Nayyar, and Teneketzis, *Identifying tractable decentralized problems on the basis of information structures*, 2008) (1st set of general conditions in the last 35 years)
- Automated tools to derive structural results for sequential teams (M and Tatikonda, Sequential team form and its simplification using graphical models, 2009)

Applications:

- Real-time communication (M and Teneketzis, 2008, 2009)
- **Control over noisy channels** (M and Teneketzis 2009)
- **Decentralized sequential detection** (Nayyar and Teneketzis 2009)
- ► Multi-terminal communication (M 2009, Nayyar and Teneketzis 2009

Real-time communication

- Communication with zero-delay or fixed finite delay.
- noisy communication channels

- Structure of optimal encoding and decoding strategies
- Sequential decomposition to find optimal strategies

M and Teneketzis, Optimal design of real-time communication, IT-2009.

Block Markov superposition codes for multiple access channel

Use block Markov coding scheme that decode with a finite delay

Structure of optimal sequential transmission systems

M, Block Markov superposition coding schemes for MAC with feedback, ITA-2010.

Optimal control over noisy channels

- Sensor and controller are connected over noisy communication channel
- Optimize performance (minimize total cost)
- Structure of optimal sensor and controller strategies
- Sequential decomposition to find optimal strategies

M and Teneketzis, Optimal performance of networked control systems with non-classical information structures, SICON, 2009

Decentralized diagnosis with communication

- Interpretation diagnosers that can communicate information.
- Modeled as discrete event systems: non-sequential and non-probabilistic

Conclusion

Conclusion

- Important concepts
 - coordinator
 - information state
 - partial functions
- Axiomatic approach
 - Insights can be generalized
 - Solution can be automated
 - Developing a software to algorithmically identify structural results

http://pantheon.yale.edu/~am894/code/teams/

Reflections

- Son-sequential information structures
 - Conceptual difficulties
 - Computational difficulties
- Provides high-level design guidelines
 - The optimal solution needs to computed numerically
 - Provides some design insights: structural properties, which modeling assumption makes the problem easier, etc.
- Actual solution requires "domain knowledge"

Domain knowledge tells us how to approximate a model.

Stochastic control tells us which simplification of the model makes the overall design easier Thank you