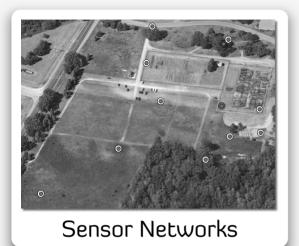
Fundamental limits of remote-estimation under communication constraints

Aditya Mahajan McGill University

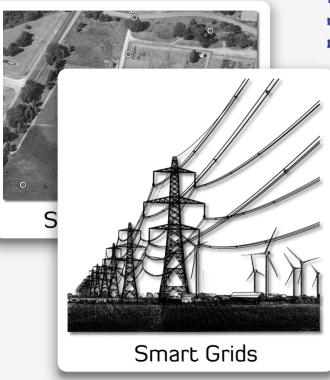
Joint work with Jhelum Chakravorty

Mathematical Cybernetics: Hybrid, Stochastic and Decentralized Systems Carleton University, Ottawa, 28–29 May 2015

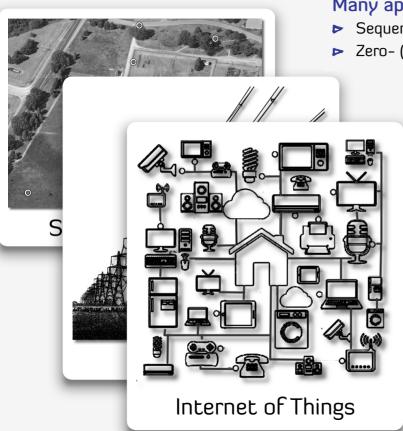
- ► Sequential transmission of data
- Zero- (or finite-) delay reconstruction



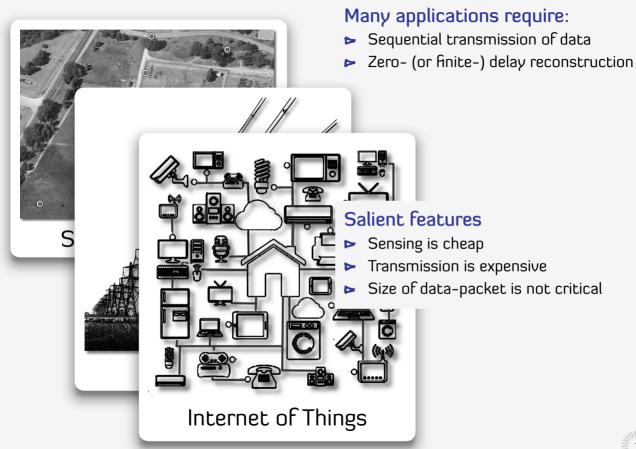
- ▶ Sequential transmission of data
- Zero- (or finite-) delay reconstruction

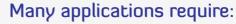


- ▶ Sequential transmission of data
- ➤ Zero- (or finite-) delay reconstruction



- ▶ Sequential transmission of data
- Zero- (or finite-) delay reconstruction





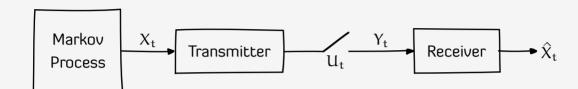
- Sequential transmission of data
- Zero- (or finite-) delay reconstruction

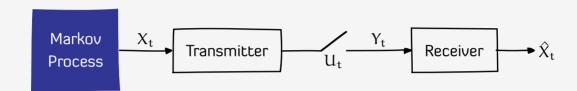
Salient features

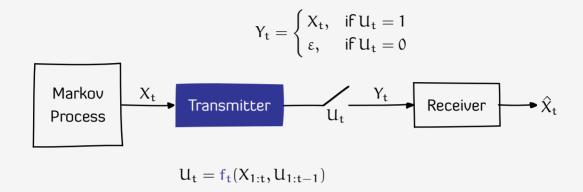
- Sensing is cheap
- Transmission is expensive
- Size of data-packet is not critical

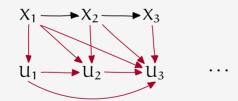
Analyze a stylized model and evaluate fundamental trade-offs

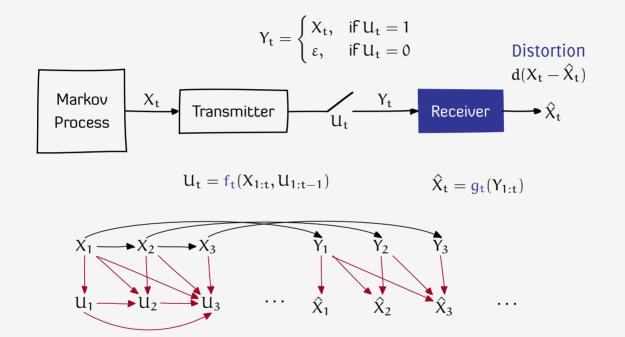
A completely solved example of a "simple" decentralized system with non-classical information structure

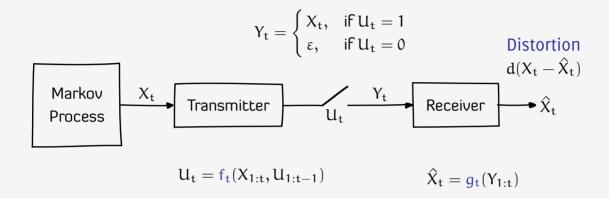












Communication Strategies

- ▶ Transmission strategy $f = \{f_t\}_{t=0}^{\infty}$.
- ► Estimation strategy $g = \{g_t\}_{t=0}^{\infty}$.

$$Y_t = \begin{cases} X_t, & \text{if } U_t = 1 \\ \varepsilon, & \text{if } U_t = 0 \end{cases}$$
 Distortion
$$d(X_t - \hat{X}_t)$$
 Markov Process
$$X_t = f_t(X_{1:t}, U_{1:t-1})$$

$$\hat{X}_t = g_t(Y_{1:t})$$

1. Discounted setup,
$$\beta \in (0,1)$$

$$D_{\beta}(f,g) = (1-\beta) \mathbb{E}_{0}^{(f,g)} \left[\sum_{t=0}^{\infty} \beta^{t} d(X_{t} - \hat{X}_{t}) \right]; \qquad N_{\beta}(f,g) = (1-\beta) \mathbb{E}_{0}^{(f,g)} \left[\sum_{t=0}^{\infty} \beta^{t} U_{t} \right]$$

2. Average cost setup, $\beta = 1$

$$D_1(f,g) = \limsup_{T \to \infty} \frac{1}{T} \operatorname{\mathbb{E}}_0^{(f,g)} \left[\sum_{t=0}^{T-1} d(X_t - \hat{X}_t) \right]; \qquad N_1(f,g) = \limsup_{T \to \infty} \frac{1}{T} \operatorname{\mathbb{E}}_0^{(f,g)} \left[\sum_{t=0}^{T-1} U_t \right]$$

Estimation under communication constraints-(Mahajan and Chakravorty)

Costly communication

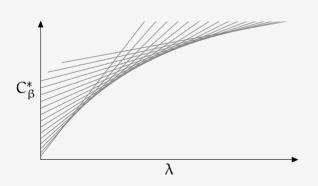
For
$$\lambda \in \mathbb{R}_{>0}$$
, $C^*_{\beta}(\lambda) = C_{\beta}(f^*, g^*; \lambda) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) + \lambda N_{\beta}(f,g) \right\}$

For
$$\alpha \in (0,1)$$
, $D_{\beta}^*(\alpha) \coloneqq \inf_{(f,g)} \{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \}$

Costly communication

For
$$\lambda \in \mathbb{R}_{>0}$$
, $C^*_{\beta}(\lambda) = C_{\beta}(f^*, g^*; \lambda) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) + \lambda N_{\beta}(f,g) \right\}$

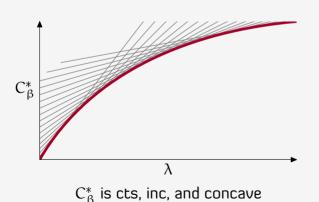
For
$$\alpha \in (0,1)$$
, $D^*_{\beta}(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$



Costly communication

For
$$\lambda \in \mathbb{R}_{>0}$$
, $C^*_{\beta}(\lambda) = C_{\beta}(\mathbf{f}^*, \mathbf{g}^*; \lambda) \coloneqq \inf_{(\mathbf{f}, \mathbf{g})} \left\{ D_{\beta}(\mathbf{f}, \mathbf{g}) + \lambda N_{\beta}(\mathbf{f}, \mathbf{g}) \right\}$

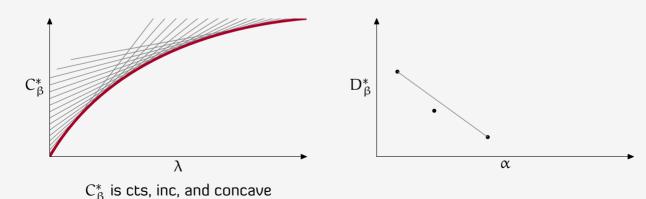
For
$$\alpha \in (0,1)$$
, $D^*_{\beta}(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$



Costly communication

For
$$\lambda \in \mathbb{R}_{>0}$$
, $C^*_{\beta}(\lambda) = C_{\beta}(f^*, g^*; \lambda) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) + \lambda N_{\beta}(f,g) \right\}$

For
$$\alpha \in (0,1)$$
, $D^*_{\beta}(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$

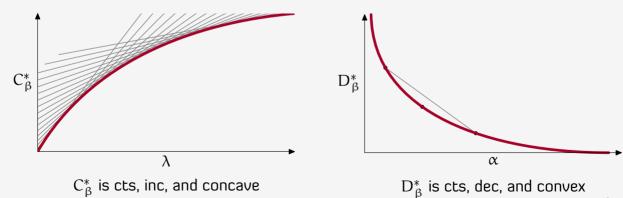


Costly communication

For
$$\lambda \in \mathbb{R}_{>0}$$
, $C^*_{\beta}(\lambda) = C_{\beta}(f^*, g^*; \lambda) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) + \lambda N_{\beta}(f,g) \right\}$

Constrained communication

For
$$\alpha \in (0,1)$$
, $D^*_{\beta}(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$



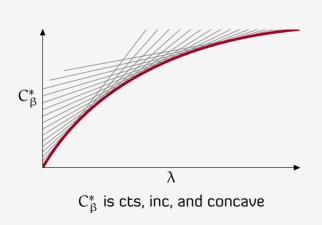
Estimation under communication constraints-(Mahajan and Chakravorty)

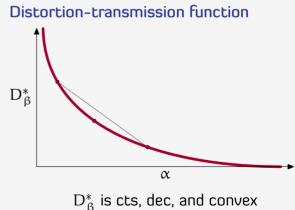
Costly communication

$$\text{For }\lambda\in\mathbb{R}_{>0}\text{, }\quad C^*_{\beta}(\lambda)=C_{\beta}(f^*\!,g^*\!;\lambda)\coloneqq\inf_{(f,g)}\left\{D_{\beta}(f,g)+\lambda N_{\beta}(f,g)\right\}$$

Constrained communication

For
$$\alpha \in (0,1)$$
, $D_{\beta}^*(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$



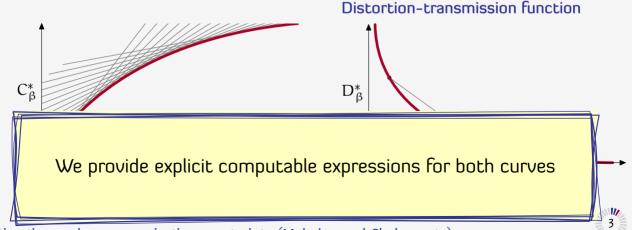


Estimation under communication constraints-(Mahajan and Chakravorty)

Costly communication

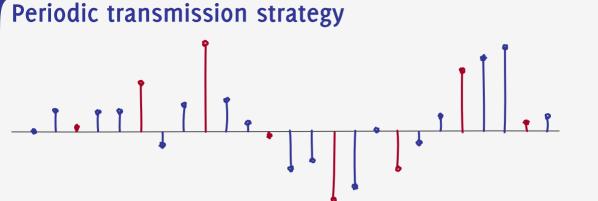
For
$$\lambda \in \mathbb{R}_{>0}$$
, $C^*_{\beta}(\lambda) = C_{\beta}(\mathbf{f}^*, \mathbf{g}^*; \lambda) \coloneqq \inf_{(\mathbf{f}, \mathbf{g})} \left\{ D_{\beta}(\mathbf{f}, \mathbf{g}) + \lambda N_{\beta}(\mathbf{f}, \mathbf{g}) \right\}$

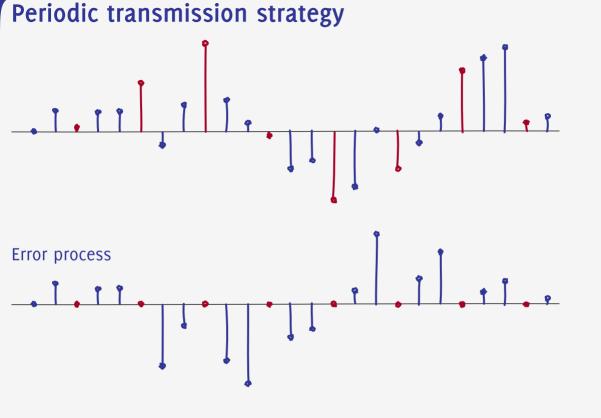
For
$$\alpha \in (0,1)$$
, $D^*_{\beta}(\alpha) \coloneqq \inf_{(f,g)} \left\{ D_{\beta}(f,g) : N_{\beta}(f,g) \leqslant \alpha \right\}$



 $X_{t+1} = X_t + W_t$, $W_t \sim \mathcal{N}(0, 1)$

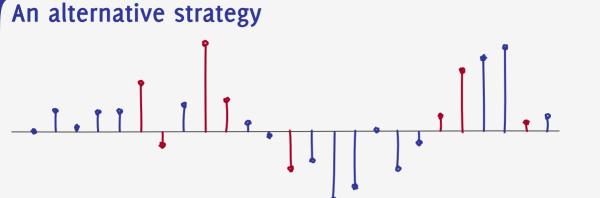
$$X_{t+1} = X_t + W_t, W_t \sim \mathcal{N}(0,1)$$

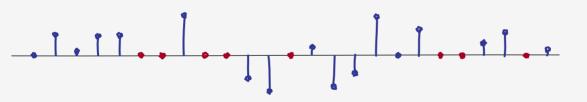




Periodic transmission strategy **Error process**

$$D = 0.69 \quad N \approx 1/3$$

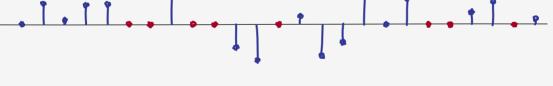




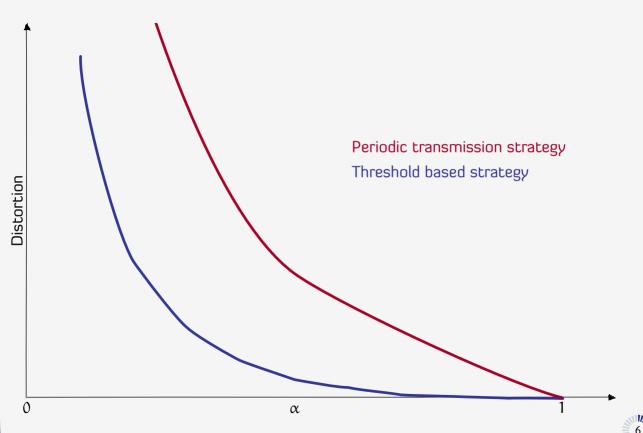
Error process

An alternative strategy

Error process



Distortion-transmission function



Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function

Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for Gaussian processes

Identify strategies that achieve the optimal trade-off Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function

Based on simple matrix calculations for discrete Markov processes Based on solving Fredholm integral equations for Gaussian processes

Beautiful example of stochastics and optimization

Decentralized stochastic control and POMDPs

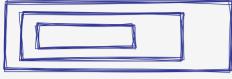
Stochastic orders and majorization

Markov chain analysis, stopping times, and renewal theory

Constrained MDPs and Lagrangian relaxations

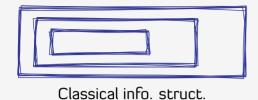
So how do we start? Decentralized stochastic control

Dealing with non-classical information structure



Classical info. struct.

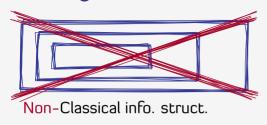
Dealing with non-classical information structure



$$f_t$$
 $X_t, Y_{1:t-1}$ U_t

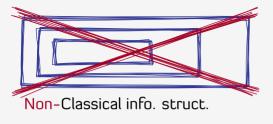
$$g_t$$
 $Y_{1:t-1}, Y_t$ \hat{X}_t

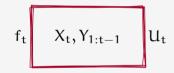
Dealing with non-classical information structure



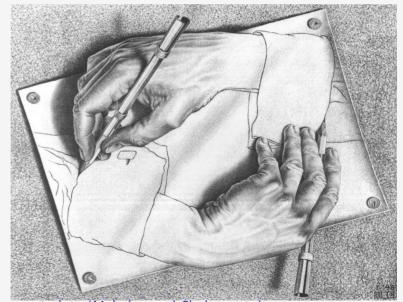
$$f_t$$
 $X_t, Y_{1:t-1}$ U

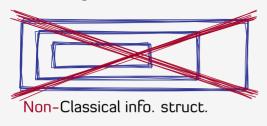
$$g_t$$
 $Y_{1:t-1}, Y_t$ \hat{X}_t





 g_t $Y_{1:t-1}, Y_t$ \hat{X}_t





Common info
$$C_t \coloneqq \bigcap_{s \geqslant t} \bigcap_{i=1}^n I_s^i$$

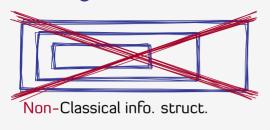
Local info $L_t^i \coloneqq I_t^i \setminus C_t$
 $q(C, L) = \psi(C)(L)$

Belongs to the class of tractable non-classical information structures (called partial-history sharing) identified in [Mahajan-Nayyar-Teneketzis 2013]

$$f_t$$
 $X_t, Y_{1:t-1}$ U_t

$$g_t$$
 $Y_{1:t-1}, Y_t$ \hat{X}_t

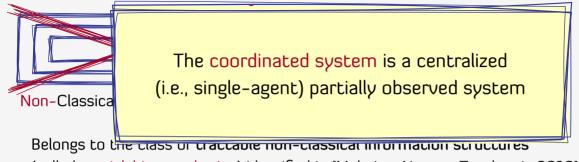
Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.



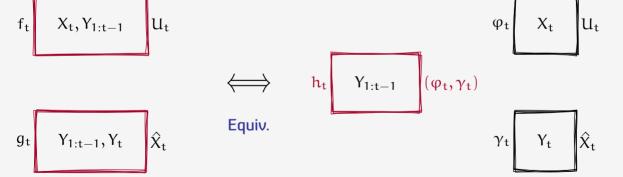
Common info $C_t \coloneqq \bigcap_{s \geqslant t} \bigcap_{i=1}^n I_s^i$ Local info $L_t^i \coloneqq I_t^i \setminus C_t$ $q(C, L) = \psi(C)(L)$

Belongs to the class of tractable non-classical information structures (called partial-history sharing) identified in [Mahajan-Nayyar-Teneketzis 2013]

Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.



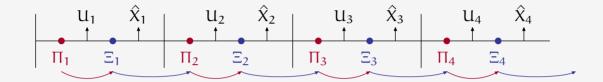
(called partial-history sharing) identified in [Mahajan-Nayyar-Teneketzis 2013]



Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common information approach," IEEE TAC 2013.

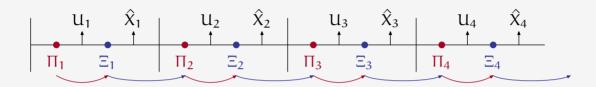
Information states

Pre-transmission belief : $\Pi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t-1})$. Post-transmission belief : $\Xi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t})$.



Information states

Pre-transmission belief : $\Pi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t-1})$. Post-transmission belief : $\Xi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t})$.

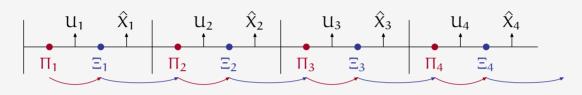


Structural results

There is no loss of optimality in using $U_t = f_t(X_t, \Pi_t) \quad \text{and} \quad \hat{X}_t = g_t(\Xi_t).$

Information states

Pre-transmission belief : $\Pi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t-1})$. Post-transmission belief : $\Xi_t(x) = \mathbb{P}(X_t = x \mid Y_{1:t})$.



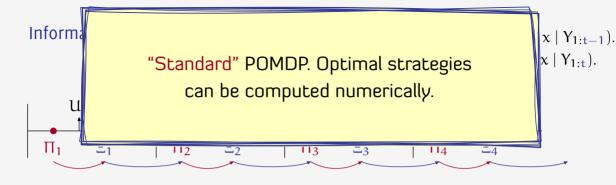
Structural results

There is no loss of optimality in using
$$U_t = f_t(X_t, \Pi_t)$$
 and $\hat{X}_t = g_t(\Xi_t)$.

Dynamic Program
$$W_{T+1}(\pi) = 0$$

and for
$$t = T, \dots, 0$$

$$\begin{split} V_t(\xi) &= \min_{\hat{\mathbf{x}} \in \mathcal{X}} \mathbb{E}[\mathbf{d}(\mathbf{X}_t - \hat{\mathbf{x}}) + W_{t+1}(\Pi_{t+1}) \mid \Xi_t = \xi], \\ W_t(\pi) &= \min_{\phi: \mathcal{X} \rightarrow \{0,1\}} \mathbb{E}[\lambda \phi(\mathbf{X}_t) + V_t(\Xi_t) \mid \Pi_t = \pi, \phi_t = \phi]. \end{split}$$



Structural results There is no loss of optimality in using

$$U_t = f_t(X_t, \Pi_t) \quad \text{and} \quad \hat{X}_t = g_t(\Xi_t).$$

Dynamic Program $W_{T+1}(\pi) = 0$

and for
$$t = T, \dots, 0$$

$$\begin{split} V_t(\xi) &= \min_{\hat{x} \in \mathcal{X}} \mathbb{E}[d(X_t - \hat{x}) + W_{t+1}(\Pi_{t+1}) \mid \Xi_t = \xi], \\ W_t(\pi) &= \min_{\phi: \mathcal{X} \to \{0,1\}} \mathbb{E}[\lambda \phi(X_t) + V_t(\Xi_t) \mid \Pi_t = \pi, \phi_t = \phi]. \end{split}$$

Can we use the DP to say something

more about the optimal strategy?

Markov process $X_{t+1} = X_t + W_t$

Markov process $X_{t+1} = X_t + W_t$

	Markov chain setup	Guass-Mark
State spaces	X_{t} , $W_{t} \in \mathbb{Z}$	X_{t} , $W_{t} \in \mathbb{R}$

Guass-Markov setup

Markov process

$$X_{t+1} = X_t + W_t$$

Markov chain setup

Guass-Markov setup

State spaces

Noise distribution

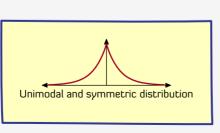
 X_t , $W_t \in \mathbb{Z}$

t ∈ Z

Unimodal and symmetric $p_e = p_{-e} \geqslant p_{e+1}$

 X_t , $W_t \in \mathbb{R}$

Zero-mean Gaussian $\phi_{\sigma}(\cdot)$



Markov process

$$X_{t+1} = X_t + W_t$$

State spaces

 $X_t, W_t \in \mathbb{Z}$

Guass-Markov setup

Zero-mean Gaussian

Noise distribution

 $X_t, W_t \in \mathbb{R}$

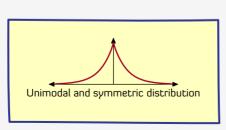
Unimodal and symmetric $\mathfrak{p}_e = \mathfrak{p}_{-e} \geqslant \mathfrak{p}_{e+1}$

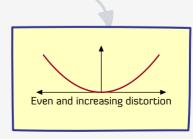
Markov chain setup

 $\varphi_{\sigma}(\cdot)$

Distortion

Even and increasing $d(e) = d(-e) \le d(e+1)$ Mean-squared $d(e) = |e|^2$





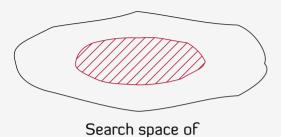
Step 2 Performance of arbitrary threshold strategies $f^{(k)}$

Step 3 Optimal costly comm.

Search space of strategies (f, g)

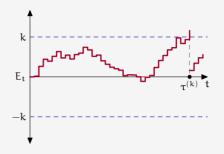
Step 2 Performance of arbitrary threshold strategies $f^{(k)}$

Step 3 Optimal costly comm.

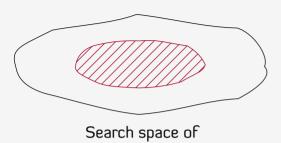


strategies (f, g)

Step 2 Performance of arbitrary threshold strategies $f^{(k)}$



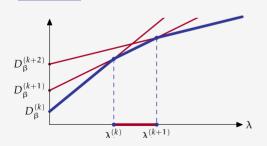
Step 3 Optimal costly comm.

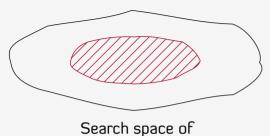


strategies (f, g)

Step 2 Performance of arbitrary threshold strategies $f^{(k)}$

Step 3 Optimal costly comm.

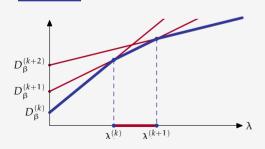


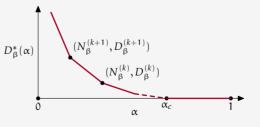


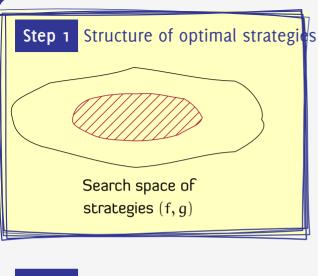
strategies (f, g)

Step 2 Performance of arbitrary threshold strategies $f^{(k)}$

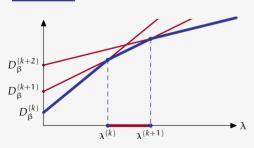
Step 3 Optimal costly comm.

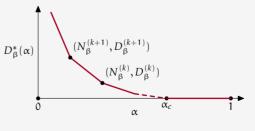




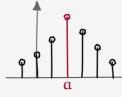


Step 2 Performance of arbitrary threshold strategies $f^{(k)}$



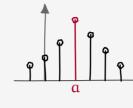


Almost uniform and unimodal (ASU) distribution about a



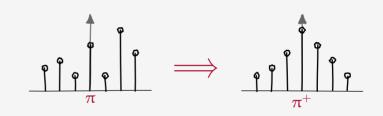
$$\begin{array}{c|c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \\ \hline & \pi_{a} \geqslant \pi_{a+1} \geqslant \pi_{a-1} \geqslant \pi_{a+2} \geqslant \cdots \end{array}$$

Almost uniform and unimodal (ASU) distribution about a



$$\pi_{\mathbf{a}}\geqslant\pi_{\mathbf{a}+1}\geqslant\pi_{\mathbf{a}-1}\geqslant\pi_{\mathbf{a}+2}\geqslant\cdots$$

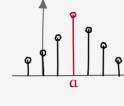
ASU Rearrangement



Preliminaries

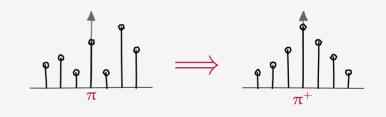
[LM11, NBTV13]

Almost uniform and unimodal (ASU) distribution about a



 $\pi_{\mathbf{a}} \geqslant \pi_{\mathbf{a}+1} \geqslant \pi_{\mathbf{a}-1} \geqslant \pi_{\mathbf{a}+2} \geqslant \cdots$

ASU Rearrangement



Majorization

$$\pi \geq \xi \text{ iff}$$

 $\sum_{i=-n}^n \pi_i^+ \geqslant \sum_{i=-n}^n \xi_i^+ \quad \text{and} \quad \sum_{i=-n}^{n+1} \pi_i^+ \geqslant \sum_{i=-n}^{n+1} \xi_i^+$ Invariant to permutations.

Definition

tion
$$\xi \triangleright \tilde{\xi}$$
 if $\xi \succeq \tilde{\xi}$ and $\tilde{\xi}$ is ASU about some point α

Definition

on
$$\xi \triangleright \tilde{\xi}$$
 if $\xi \ge \tilde{\xi}$ and $\tilde{\xi}$ is ASU about some point α

Lemma

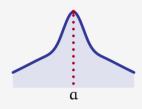
▶ If
$$\xi \triangleright \tilde{\xi}$$
 then $W_t(\xi) \geqslant W_t(\tilde{\xi})$.

Similar to Schur-concavity
$$| f \pi > \tilde{\pi} \text{ then } V_t(\pi) \geqslant V_t(\tilde{\pi}).$$

Definition

Lemma Similar to Schur-concavity

Lemma (Arg min of W)



$$\xi \triangleright \tilde{\xi}$$
 if $\xi \succeq \tilde{\xi}$ and $\tilde{\xi}$ is ASU about some point α

- ▶ If $\xi \triangleright \tilde{\xi}$ then $W_t(\xi) \geqslant W_t(\tilde{\xi})$.
- $\blacktriangleright \text{ If } \pi \triangleright \tilde{\pi} \text{ then } V_t(\pi) \geqslant V_t(\tilde{\pi}).$

If ξ is ASU about α then α is the arg min of

$$V_{t}(\xi) = \min_{\widehat{x} \in \mathcal{X}} \mathbb{E}[d(X_{t} - \widehat{x}) + W_{t+1}(\Pi_{t+1}) \mid \Xi_{t} = \xi],$$

Step 1 Properties of the value functions

 $V_{t}(\xi) = \min_{\hat{\mathbf{x}} \in \Upsilon} \mathbb{E}[d(X_{t} - \hat{\mathbf{x}}) + W_{t+1}(\Pi_{t+1}) \mid \Xi_{t} = \xi],$

ILM11. NBTV131

 $\xi \triangleright \tilde{\xi}$ if $\xi > \tilde{\xi}$ and $\tilde{\xi}$ is ASU about some point α **Definition**

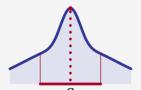
ightharpoonup If $\xi
ightharpoonup \tilde{\xi}$ then $W_t(\xi) \geqslant W_t(\tilde{\xi})$. Lemma

Similar to Schur-concavity ▶ If $\pi \triangleright \tilde{\pi}$ then $V_t(\pi) \geqslant V_t(\tilde{\pi})$.

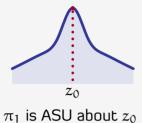
Lemma (Arg min of W) If ξ is ASU about α then α is the arg min of

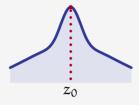
Lemma (Arg min of
$$V$$
) If π is ASU about α then the arg min of

$$W_{t}(\pi) = \min_{\phi: \mathcal{X} \to \{0,1\}} \mathbb{E}[\lambda \phi(X_{t}) + V_{t}(\Xi_{t}) \mid \Pi_{t} = \pi, \phi_{t} = \phi]$$



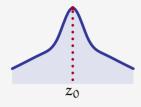
is of the form
$$\phi(x) = \begin{cases} 1, & \text{if } |x-\alpha| > k(\pi) \\ 0, & \text{if } |x-\alpha| < k(\pi) \\ q_+, & \text{if } x-\alpha = k(\pi) \\ q_-, & \text{if } x-\alpha = -k(\pi) \end{cases}$$





 π_1 is ASU about z_0

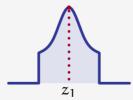
Is $|x_1 - z_0| > k_1$?



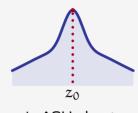
 π_1 is ASU about z_0

Is
$$|x_1 - z_0| > k_1$$
?

NO.
$$u_1 = \varepsilon$$
, $z_1 = z_0$



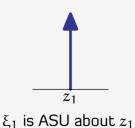
 ξ_1 is ASU about z_1

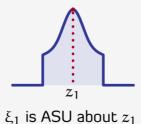


$$\pi_1$$
 is ASU about z_0

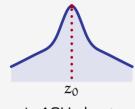
Is
$$|x_1 - z_0| > k_1$$
?

YES.
$$u_1 = 1$$
, $z_1 = x_1$ NO. $u_1 = \varepsilon$, $z_1 = z_0$





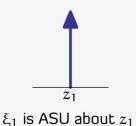
[LM11, NBTV13]

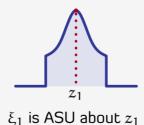


$$\pi_1$$
 is ASU about z_0

Is
$$|x_1 - z_0| > k_1$$
?

YES.
$$u_1 = 1$$
, $z_1 = x_1$ NO. $u_1 = \varepsilon$, $z_1 = z_0$



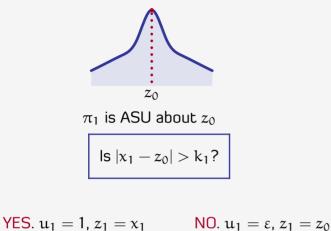


In both cases:
$$\hat{\chi}_1 = z_1$$

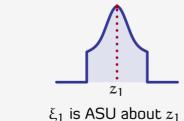
III both cases: $x_1 = z_1$

t = 2

[LM11, NBTV13]



 z_1 ξ_1 is ASU about z_1



In both cases: $\hat{\chi}_1=z_1$

Estimation under communication constraints-(Mahajan and Chakravorty)

t = 2

[LM11, NBTV13]

$$z_0$$
 π_1 is ASU about z_0

$$X_2 = X_1 + W_1 \Longrightarrow \pi_1 = \xi_1 * \mathfrak{p}$$

 π_1 is ASU about z_1

 ξ_1 is ASU about z_1

YES. $u_1 = 1$, $z_1 = x_1$ NO. $u_1 = \varepsilon$, $z_1 = z_0$

etc. ...

$$\sum_{z_1}$$

In both cases: $\hat{\chi}_1=z_1$

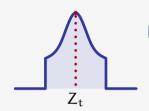
 ξ_1 is ASU about z_1

Transmitted Process

Let $Z_{\rm t}$ denote the most recently transmitted value of the Markov process.

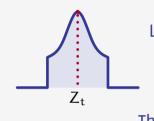
Transmitted Process

Let $Z_{\rm t}$ denote the most recently transmitted value of the Markov process.



Lemma Ξ_t is ASU about Z_t

Transmitted Process Let $Z_{\rm t}$ denote the most recently transmitted value



Lemma Ξ_{t} is ASU about Z_{t}

Theorem

 $\hat{X}_t = q_t^*(\Xi_t) = Z_t$

of the Markov process.

Remark

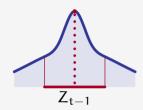
The optimal estimation strategy is time-homogeneous and can be specified in closed form.

[LM11, NBTV13]

[LM11, NBTV13]

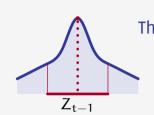
Lemma

 Π_t is ASU about Z_{t-1}



Lemma

ma Π_t is ASU about Z_{t-1}



Theorem
$$U_t = f_t(X_t, \Pi_t) = \begin{cases} 1, & \text{if } |X_t - E_t| \geqslant k_t \\ 0, & \text{if } |X_t - E_t| < k_t \end{cases}$$

[LM11. NBTV13]

Lemma Π_t is ASU about Z_{t-1}

$$Z_{t-1}$$

Theorem
$$U_t = f_t(X_t, \Pi_t) = \begin{cases} 1, & \text{if } |X_t - E_t| \geqslant k_t \\ 0, & \text{if } |X_t - E_t| < k_t \end{cases}$$

Error process
$$\text{Let } \frac{E_t = X_t - Z_{t-1} \text{ denote the error process. } \{E_t\}_{t=0}^{\infty} \text{ is a controlled Markov process where }$$

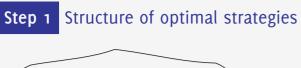
$$E_0=0\quad\text{and}\quad \mathbb{P}(E_{t+1}=n\mid E_t=e,U_t=u)=\begin{cases} p_{|e-n|}, & \text{if } u=0;\\ p_n, & \text{if } u=1. \end{cases}$$

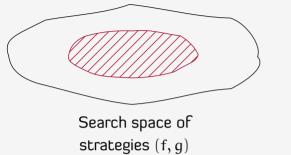
The results extend to infinite horizon setup under appropriate regularity conditions.

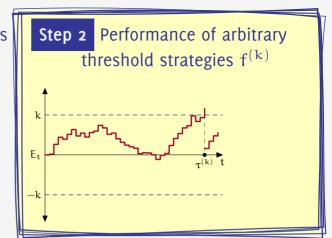
Time-homogeneous thresholdbased strategies are optimal.

How do we find the optimal

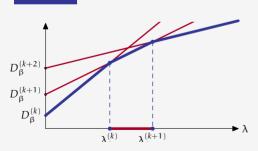
threshold-based strategy?



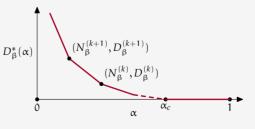




Step 3 Optimal costly comm.

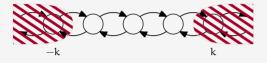


Step 4 Distortion-transmission trade-off



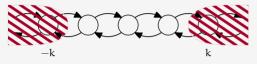
Consider a threshold-based strategy

$$f^{(k)}(e) = \begin{cases} 1 & \text{if } |e| \geqslant k \\ 0 & \text{otherwise} \end{cases}$$



Consider a threshold-based strategy

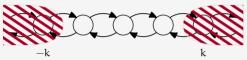
$$f^{(k)}(e) = \begin{cases} 1 & \text{if } |e| \geqslant k \\ 0 & \text{otherwise} \end{cases}$$



Let $\tau^{(k)}$ denote the stopping time of first transmission (starting at $E_0=0$).

Consider a threshold-based strategy

$$f^{(k)}(e) = egin{cases} 1 & \text{if } |e| \geqslant k \\ 0 & \text{otherwise} \end{cases}$$



Define

Let $\tau^{(k)}$ denote the stopping time of first transmission (starting at $E_0=0$).

$$L_{\beta}^{(k)}(e) = (1 - \beta) \mathbb{E} \left[\sum_{t=0}^{\tau^{(k)} - 1} \beta^t d(E_t) \middle| E_0 = e \right].$$

$$M_{\beta}^{(k)}(e) = (1 - \beta) \mathbb{E} \left[\sum_{i=1}^{\tau^{(k)} - 1} \beta^{t} \middle| E_{0} = e \right].$$

Consider a threshold-based strategy

$$f^{(k)}(e) = \begin{cases} 1 & \text{if } |e| \geqslant k \\ 0 & \text{otherwise} \end{cases}$$

Define

Let $\tau^{(k)}$ denote the stopping time of first transmission (starting at $E_0 = 0$).

$$M_{\beta}^{(k)}(e) = (1-\beta) \, \mathbb{E} \left[\sum_{}^{\tau^{(k)}-1} \beta^t \middle| E_0 = e \right].$$

 $\{E_t\}_{t=0}^{\infty}$ is a regenerative process. By renewal theory, Proposition

$$D_{\beta}^{(k)} \coloneqq D_{\beta}(f^{(k)}, g^*) = \frac{L_{\beta}^{(k)}(0)}{M_{\alpha}^{(k)}(0)} \quad \text{and} \quad N_{\beta}^{(k)} \coloneqq N_{\beta}(f^{(k)}, g^*) = \frac{1}{M_{\alpha}^{(k)}(0)} - (1 - \beta).$$

Step 2

Consider
$$L_{\beta}^{(k)} \text{ and } M_{\beta}^{(k)} \text{ is sufficient}$$
 to compute the performance of $f^{(k)}$ (i.e., to compute $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}$).
$$L_{\beta}^{(k)}(e) = (1-\beta) \, \mathbb{E} \left[\sum_{k=0}^{\tau^{(k)}-1} \beta^t d(E_t) \, | E_0 = e \right].$$

$$\mathbf{M}_{\beta}^{(k)}(e) = (1 - \beta) \mathbb{E} \left[\sum_{i=0}^{\tau^{(k)} - 1} \beta^{t} \middle| \mathbf{E}_{0} = e \right].$$

$$\begin{split} & \text{Proposition} & \quad \{E_t\}_{t=0}^{\infty} \text{ is a regenerative process. By renewal theory,} \\ & D_{\beta}^{(k)} \coloneqq D_{\beta}(f^{(k)},g^*) = \frac{L_{\beta}^{(k)}(0)}{M_{\alpha}^{(k)}(0)} & \text{and} & N_{\beta}^{(k)} \coloneqq N_{\beta}(f^{(k)},g^*) = \frac{1}{M_{\alpha}^{(k)}(0)} - (1-\beta). \end{split}$$

Markov chain setup

$$L_{\beta}^{(k)}(e) = d(e) + \beta \sum_{n=-k}^{k} p_{n-e} L_{\beta}^{(k)}(n)$$

$$M_{\beta}^{(k)}(e)=1+\beta\sum_{n=-k}^{k}p_{n-e}M_{\beta}^{(k)}(n)$$

Markov chain setup

$$L_{\beta}^{(k)}(e) = d(e) + \beta \sum_{n=-k}^{k} p_{n-e} L_{\beta}^{(k)}(n)$$

 $M_{\beta}^{(k)} = [[I - \beta P^{(k)}]^{-1} \mathbf{1}^{(k)}].$

$$M_{\beta}^{(k)}(e) = 1 + \beta \sum_{n=-k}^{k} p_{n-e} M_{\beta}^{(k)}(n)$$

Proposition

$$L_{\beta}^{(k)} = \big[[I - \beta P^{(k)}]^{-1} d^{(k)} \big]. \qquad P^{(k)} \text{ is substochastic}.$$

Markov chain setup

 $L_{\beta}^{(k)}(e) = d(e) + \beta \sum_{i=1}^{K} p_{n-e} L_{\beta}^{(k)}(n)$ $M_{\beta}^{(k)}(e) = 1 + \beta \sum_{n=-k}^{k} p_{n-e} M_{\beta}^{(k)}(n)$

 $L_{\beta}^{(k)} = [[I - \beta P^{(k)}]^{-1} d^{(k)}].$ $P^{(k)}$ is substochastic. **Proposition**

$$M_{\beta}^{(k)} = \left[\left[I - \beta P^{(k)} \right]^{-1} \mathbf{1}^{(k)} \right].$$

$$L_{\beta}^{(k)}(e) = d(e) + \beta \int_{-k}^{k} \phi(n-e) L_{\beta}^{(k)}(n) dn$$

$$M_{\beta}^{(k)}(e) = 1 + \beta \int_{-k}^{k} \phi(n-e) M_{\beta}^{(k)}(n) dn$$

Markov chain setup

$$L_{\beta}^{(k)}(e) = d(e) + \beta \sum_{n=-k}^{k} p_{n-e} L_{\beta}^{(k)}(n)$$
$$M_{\beta}^{(k)}(e) = 1 + \beta \sum_{n=-k}^{k} p_{n-e} M_{\beta}^{(k)}(n)$$

Proposition

 $L_{\beta}^{(k)} = [[I - \beta P^{(k)}]^{-1} d^{(k)}].$ $P^{(k)}$ is substochastic. $M_{\alpha}^{(k)} = [[I - \beta P^{(k)}]^{-1} \mathbf{1}^{(k)}].$

Gauss-Markov setup

 $M_{\beta}^{(k)}(e) = 1 + \beta \int_{-1}^{k} \varphi(n - e) M_{\beta}^{(k)}(n) dn$ Fredholm Integral Equations of the 2nd kind.

 $L_{\beta}^{(k)}(e) = d(e) + \beta \int_{-\kappa}^{\kappa} \varphi(n - e) L_{\beta}^{(k)}(n) dn$

Solutions exist and are unique. Estimation under communication constraints-(Mahajan and Chakravorty)

 $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}$ can be computed using these expressions.

Proposition
$$L_{\beta}^{(k)} = \left[[I - \beta P^{(k)}]^{-1} d^{(k)} \right]. \qquad P^{(k)} \text{ is substochastic.}$$

$$M_{\beta}^{(k)} = \left[\left[I - \beta P^{(k)} \right]^{-1} \mathbf{1}^{(k)} \right].$$

Gauss-Markov setup
$$L_{\beta}^{(k)}(e) = d(e) + \beta \int_{-k}^{k} \phi(n-e) L_{\beta}^{(k)}(n) dn$$

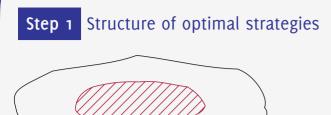
$$M_\beta^{(k)}(e)=1+\beta\int_{-k}^k\phi(n-e)M_\beta^{(k)}(n)dn$$
 Fredholm Integral Equations of the 2nd kind.

Solutions exist and are unique.

Estimation under communication constraints-(Mahajan and Chakravorty)

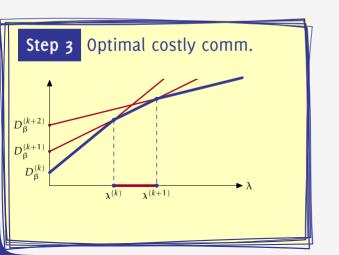
We found the performance of a generic threshold-based strategy

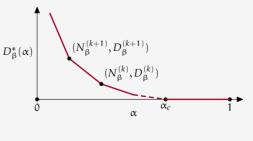
How does this lead to identifying an optimal strategy?



Search space of strategies (f, g)







Monotonicity

$$L_{\beta}^{(k+1)} > L_{\beta}^{(k)} \quad \text{and} \quad M_{\beta}^{(k+1)} > M_{\beta}^{(k)}$$

Depends on unimodularity of noise

Monotonicity

$$L_{\beta}^{(k+1)} > L_{\beta}^{(k)}$$
 and $M_{\beta}^{(k+1)} > M_{\beta}^{(k)}$

Use DP and monotonicity of Bellman operator

Implication:

$$D_{\beta}^{(k+1)}\geqslant D_{\beta}^{(k)}\quad\text{and}\quad N_{\beta}^{(k+1)}< N_{\beta}^{(k)}$$

Monotonicity

$$L_{\beta}^{(k+1)} > L_{\beta}^{(k)}$$
 and $M_{\beta}^{(k+1)} > M_{\beta}^{(k)}$

Implication:

$$D_{\beta}^{(k+1)}\geqslant D_{\beta}^{(k)}\quad\text{and}\quad N_{\beta}^{(k+1)}< N_{\beta}^{(k)}$$

Submodularity

$$C_{\beta}^{(k)}(\lambda) \coloneqq D_{\beta}^{(k)} + \lambda N_{\beta}^{(k)} \text{ is submodular in } (k, \lambda).$$

Monotonicity

$$L_{\beta}^{(k+1)} > L_{\beta}^{(k)}$$
 and $M_{\beta}^{(k+1)} > M_{\beta}^{(k)}$

Implication:

$$D_{\beta}^{(k+1)}\geqslant D_{\beta}^{(k)}\quad\text{and}\quad N_{\beta}^{(k+1)}< N_{\beta}^{(k)}$$

 $C_{\beta}^{(k)}(\lambda) := D_{\beta}^{(k)} + \lambda N_{\beta}^{(k)}$ is submodular in (k, λ) .

Submodularity

Proposition
$$\mathbf{k}_{\beta}^{*}(\lambda) \coloneqq \arg\min_{\mathbf{k} \in \mathbb{Z}_{>0}} C_{\beta}^{(\mathbf{k})}(\lambda)$$
 is increasing in λ .

Monotonicity

 $L_{eta}^{(k+1)} > L_{eta}^{(k)}$ and $M_{eta}^{(k+1)} > M_{eta}^{(k)}$

Implication:

$$D_{\beta}^{(k+1)}\geqslant D_{\beta}^{(k)}\quad\text{and}\quad N_{\beta}^{(k+1)}< N_{\beta}^{(k)}$$

 $C_{\beta}^{(k)}(\lambda) := D_{\beta}^{(k)} + \lambda N_{\beta}^{(k)}$ is submodular in (k, λ) .

Proposition

Submodularity

ion
$$k_{\beta}^*(\lambda) \coloneqq \arg\min_{k \in \mathbb{Z}_{>0}} C_{\beta}^{(k)}(\lambda)$$
 is increasing in λ .

Thus, optimal threshold increases with increase in $\boldsymbol{\lambda}.$

Characterizing the optimal threshold for a given communication cost is tricky.

Instead, we will characterize the optimal communication cost for a given threshold.

Define
$$\Lambda_{\beta}^{(k)} \coloneqq \{\lambda \in \mathbb{R}_{\geqslant 0} : k_{\beta}^*(\lambda) = k\}$$

$$= [\lambda_{\beta}^{(k-1)}, \lambda_{\beta}^{(k)}].$$

$$C_{\beta}^{(k)}(\lambda_{\beta}^{(k)}) = C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)})$$

$$\lambda^{(k-1)} \lambda^{(k)}$$

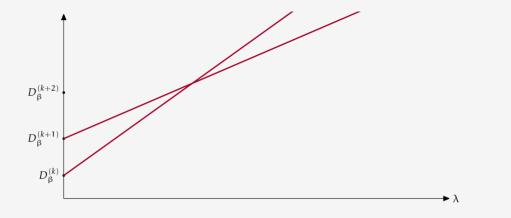
Estimation under communication constraints-(Mahajan and Chakravorty)

Define
$$\Lambda_{\beta}^{(k)} \coloneqq \{\lambda \in \mathbb{R}_{\geqslant 0} : k_{\beta}^*(\lambda) = k\}$$

$$= [\lambda_{\beta}^{(k-1)}, \lambda_{\beta}^{(k)}].$$

$$C_{\beta}^{(k)}(\lambda_{\beta}^{(k)}) = C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)})$$

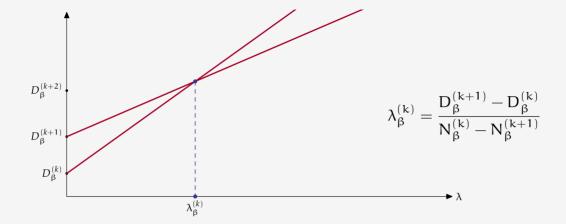
Estimation under communication constraints-(Mahajan and Chakravorty)



Define
$$\Lambda_{\beta}^{(k)} \coloneqq \{\lambda \in \mathbb{R}_{\geqslant 0} : k_{\beta}^*(\lambda) = k\}$$

$$= [\lambda_{\beta}^{(k-1)}, \lambda_{\beta}^{(k)}].$$

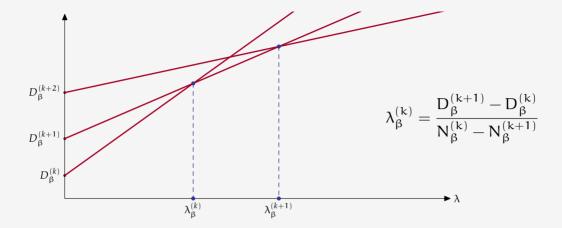
$$C_{\beta}^{(k)}(\lambda_{\beta}^{(k)}) = C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)})$$



Define
$$\Lambda_{\beta}^{(k)} \coloneqq \{\lambda \in \mathbb{R}_{\geqslant 0} : k_{\beta}^*(\lambda) = k\}$$

$$= [\lambda_{\beta}^{(k-1)}, \lambda_{\beta}^{(k)}].$$

$$C_{\beta}^{(k)}(\lambda_{\beta}^{(k)}) = C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)})$$



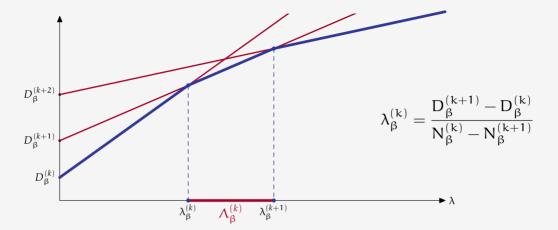
Define
$$\Lambda_{\beta}^{(k)}\coloneqq\{\lambda\in\mathbb{R}_{\geqslant 0}:k_{\beta}^*(\lambda)=k\}$$

$$=[\lambda_{\beta}^{(k-1)},\lambda_{\beta}^{(k)}].$$

$$C_{\beta}^{(k)}(\lambda_{\beta}^{(k)})=C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)})$$

$$\lambda^{(k-1)}$$

Estimation under communication constraints-(Mahajan and Chakravorty)



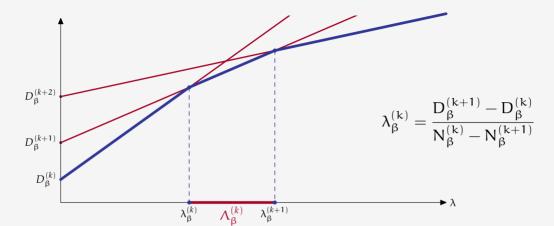
Define
$$\Lambda_{\beta}^{(k)}\coloneqq\{\lambda\in\mathbb{R}_{\geqslant 0}:k_{\beta}^*(\lambda)=k\}$$

$$=[\lambda_{\beta}^{(k-1)},\lambda_{\beta}^{(k)}].$$

$$C_{\beta}^{(k)}(\lambda_{\beta}^{(k)})=C_{\beta}^{(k+1)}(\lambda_{\beta}^{(k)})$$

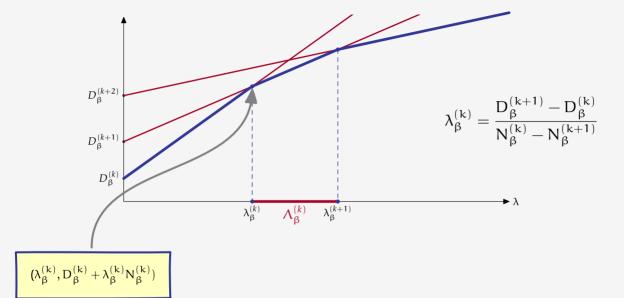
$$\lambda^{(k-1)}$$

Estimation under communication constraints-(Mahajan and Chakravorty)



orem Strategy
$$f^{(k+1)}$$
 is optimal for $\lambda \in (\lambda_{\beta}^{(k)}, \lambda_{\beta}^{(k+1)}]$.

 $C^*_\beta(\lambda) = \text{min}_{k \in \mathbb{Z}_{\geqslant 0}} \, C^{(k)}_\beta$ is piecewise linear, continuous, concave, and increasing function of λ .



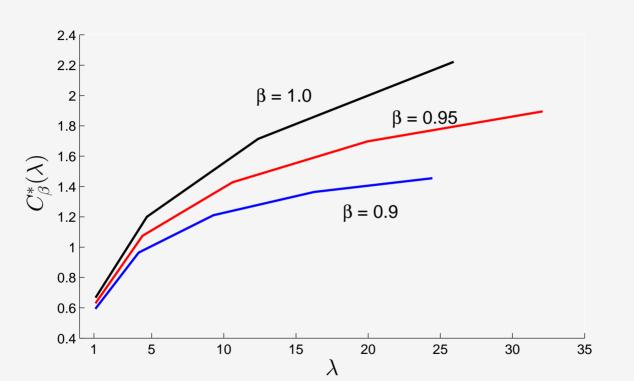
Theorem

Strategy $f^{(k+1)}$ is optimal for $\lambda \in (\lambda_{\beta}^{(k)}, \lambda_{\beta}^{(k+1)}]$.

 $C^*_{\beta}(\lambda) = \min_{k \in \mathbb{Z}_{\geqslant 0}} C^{(k)}_{\beta}$ is piecewise linear, continuous, concave, and increasing function of λ .

Estimation under communication constraints-(Mahajan and Chakravorty)

Example Symmetric birth-death Markov chain (p = 0.3)



Step 3 Optimal costly communication: Gauss-Markov

Lemma

 $D_{\beta}^{(k)}$ is increasing in k and $N_{\beta}^{(k)}$ is decreasing in k.

 $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}$ are differentiable in k.

Step 3 Optimal costly communication: Gauss-Markov

Lemma

na $D_{\beta}^{(k)}$ is increasing in k and $N_{\beta}^{(k)}$ is decreasing in k.

 $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}$ are differentiable in k.

Theorem

m Strategy $f^{(k)}$ is optimal for $\lambda = -\frac{\partial_k D_\beta^{(k)}}{\partial_k N_\beta^{(k)}}$

 $C^*_{\beta}(\lambda)=\min_{k\in\mathbb{R}_{\geqslant 0}}C^{(k)}_{\beta}$ is continuous, concave, and increasing function of λ .

Step 3 Optimal costly communication: Gauss-Markov

Lemma

 $D_{\beta}^{(k)}$ is increasing in k and $N_{\beta}^{(k)}$ is decreasing in k.

 $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}$ are differentiable in k.

Theorem

Strategy $f^{(k)}$ is optimal for $\lambda = -\frac{\partial_k D_{\beta}^{(k)}}{\partial_k N_{\beta}^{(k)}}$

 $C_{\beta}^{*}(\lambda) = \min_{k \in \mathbb{R}_{>0}} C_{\beta}^{(k)}$ is continuous, concave, and increasing function of λ .

 $C_{\beta,\sigma}^*(\lambda) = \sigma^2 C_{\beta,1}^* \left(\frac{\lambda}{\sigma^2}\right)$ Scaling with variance σ^2

Step 3 Optimal costly communication: Gauss-Markov

Lemma

 $D_{\beta}^{(k)}$ is increasing in k and $N_{\beta}^{(k)}$ is decreasing in k.

 $D_{\beta}^{(k)}$ and $N_{\beta}^{(k)}$ are differentiable in k.

Theorem

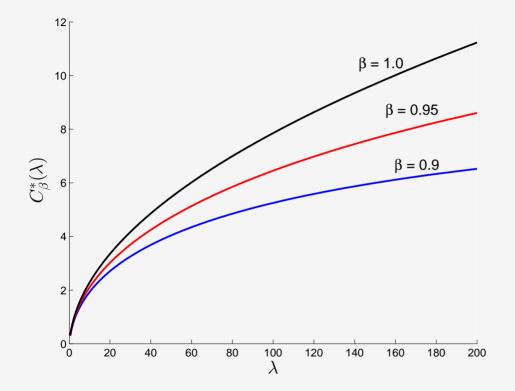
Strategy $f^{(k)}$ is optimal for $\lambda = -\frac{\partial_k D_{\beta}^{(k)}}{\partial_k N_{\beta}^{(k)}}$ $C_{\beta}^{*}(\lambda) = \min_{k \in \mathbb{R}_{>0}} C_{\beta}^{(k)}$ is continuous, concave, and

increasing function of λ . $C_{\beta,\sigma}^*(\lambda) = \sigma^2 C_{\beta,1}^* \left(\frac{\lambda}{\sigma^2}\right)$

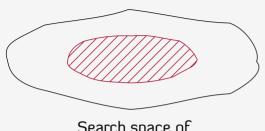
Scaling with variance
$$\sigma^2$$

Use bisection search to find k such that $\lambda = -\frac{\partial_k D_\beta^{(k)}}{\partial_k N_a^{(k)}}$ Computation

Example Gauss-Markov with $\sigma^2 = 1$

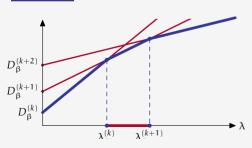


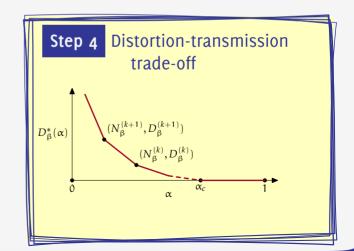
Step 1 Structure of optimal strategies



Search space of strategies (f, g)

Step 2 Performance of arbitrary threshold strategies $f^{(k)}$





Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

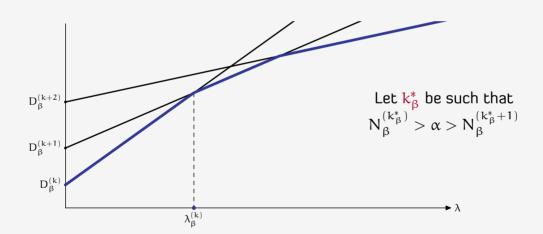
(C1)
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$

(C2) There exists
$$\lambda^{\circ}\geqslant 0$$
 such that (f°,g°) is optimal for $C_{\beta}(f,g;\lambda^{\circ}).$

Sufficient conditions for constrained optimality

A strategy $(\mathbf{f}^{\circ}, \mathbf{g}^{\circ})$ is optimal for the constrained communication problem if

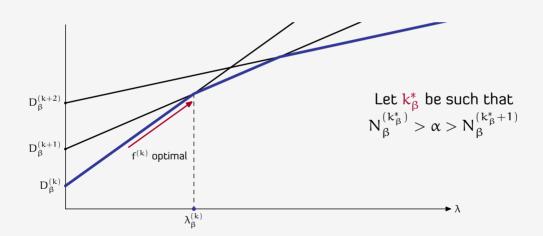
(C1)
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$



Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

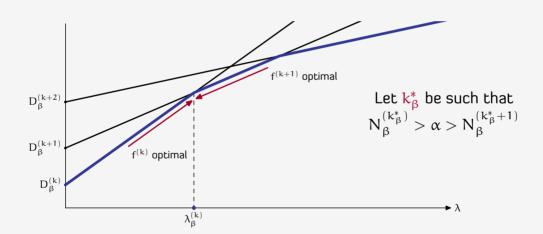
(C1)
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$



Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

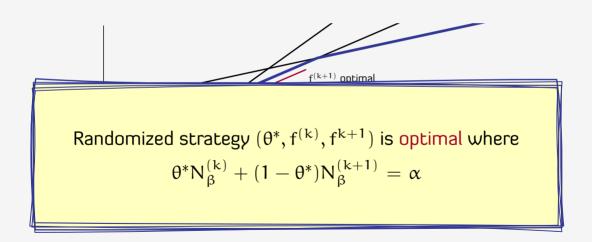
(C1)
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$

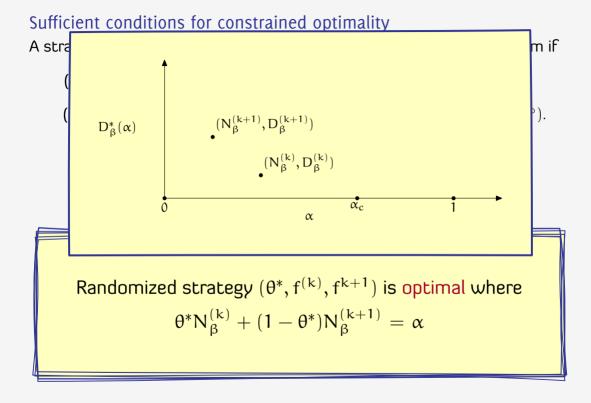


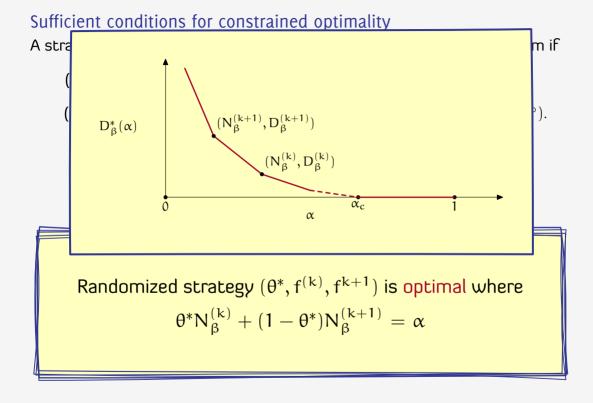
Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

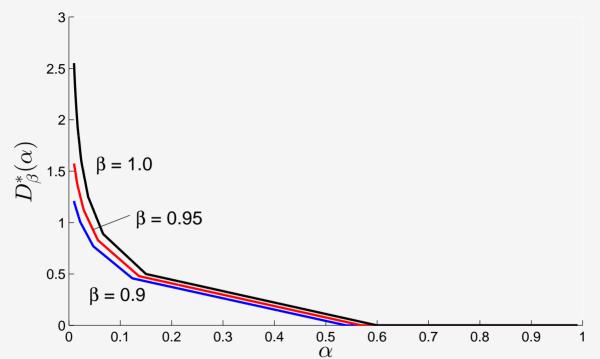
(C1)
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$







Example Symmetric birth-death Markov chain (p = 0.3)



Sufficient conditions for constrained optimality

A strategy (f°,g°) is optimal for the constrained communication problem if

(C1)
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$

(C2) There exists
$$\lambda^{\circ}\geqslant 0$$
 such that (f°,g°) is optimal for $C_{\beta}(f,g;\lambda^{\circ}).$

Sufficient conditions for constrained optimality

A strategy $(\mathbf{f}^{\circ}, g^{\circ})$ is optimal for the constrained communication problem if

(C1)
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$

(C2) There exists $\lambda^{\circ}\geqslant 0$ such that (f°,g°) is optimal for $C_{\beta}(f,g;\lambda^{\circ}).$

There exists a $k_{\beta}^*(\alpha)$ such that $N_{\beta}^{(k_{\beta}^*(\alpha))} = \alpha$. Therefore,

$$D_{\beta}^{*}(\alpha) = D_{\beta}^{(k_{\beta}^{*}(\alpha))}$$

Sufficient conditions for constrained optimality

A strategy (f°, g°) is optimal for the constrained communication problem if

(C1)
$$N_{\beta}(f^{\circ}, g^{\circ}) = \alpha$$

(C2) There exists $\lambda^{\circ} \geq 0$ such that (f°, g°) is optimal for $C_{\beta}(f, g; \lambda^{\circ})$.

 $D_{\beta}^{*}(\alpha) = D_{\beta}^{(k_{\beta}^{*}(\alpha))}$

Scaling with variance
$$\sigma^2$$
 $D^*_{\beta,\sigma}(\alpha) = \sigma^2 D^*_{\beta,\mathbf{1}}(\alpha)$.

There exists a $k_\beta^*(\alpha)$ such that $N_\beta^{(k_\beta^*(\alpha))}=\alpha.$ Therefore,

Sufficient conditions for constrained optimality

A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) $N_{\beta}(f^{\circ}, q^{\circ}) = \alpha$

Theorem

(C2) There exists $\lambda^{\circ} \geq 0$ such that (f°, g°) is optimal for $C_{\beta}(f, g; \lambda^{\circ})$.

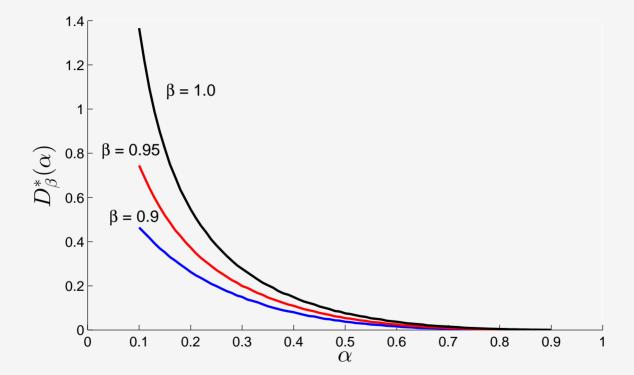
Scaling with variance σ^2 $D_{\beta,\sigma}^*(\alpha) = \sigma^2 D_{\beta,1}^*(\alpha).$

Use bisection search to find k such that $N_{\beta}^{(k)} = \alpha$. Computation

 $D_{\beta}^{*}(\alpha) = D_{\beta}^{(k_{\beta}^{*}(\alpha))}$

There exists a $k_{\beta}^{*}(\alpha)$ such that $N_{\beta}^{(k_{\beta}^{*}(\alpha))}=\alpha.$ Therefore,

Example Gauss-Markov with $\sigma^2 = 1$



Analyze fundamental limits of estimation under communication constraints

Analyze fundamental limits of estimation under communication constraints

Possible generalizations to more realistic models

- > Packet drops
- ▶ Rate constraints (effect of quantization)
- > Network delays

Analyze fundamental limits of estimation under communication constraints

Possible generalizations to more realistic models

- ▶ Packet drops
- ► Rate constraints (effect of quantization)
- Network delays

A simple non-trivial "toy-problem" for decentralized control

- ▶ Decentralized control is full of difficult problems and negative results.
- ▶ It is important to identify "easy" problems and positive results.

Analyze fundamental limits of estimation under communication constraints

Possible generalizations to more realistic models

- ▶ Packet drops
- ► Rate constraints (effect of quantization)
- Network delays

A simple non-trivial "toy-problem" for decentralized control

- ▶ Decentralized control is full of difficult problems and negative results.
- ▶ It is important to identify "easy" problems and positive results.

Full version available at arXiv:1505.04829.

