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& Sequential transmission of data

> Zero- (or fnite-) delay reconstruction
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> Sensing is cheap
B Transmission is expensive
= Size of data-packet is not critical

Estimation under communication constraints-(Mahajan and Chakravorty) J



A completely solved example of a
“simple” decentralized system with
non-classical information structure
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"The system model

- {xt, iFU, = 1

e, iIFU =0 Distortion
d(X¢ —X¢)
Markov X Y N
~—»{ Transmitter /—t—- Receiver — X,
Process U
U = ft(xht’uht—ﬂ ﬁt = 9,[(Y1 )

Communication Strategies
> Transmission strategy f = {f}2 .
B> Estimation strategy g = {g¢J2 .
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"The system model I

- {xt, iFU, = 1

e, iIFU =0 Distortion
d(Xe —Xy)
Markov X Y. ~
~—»{ Transmitter r—/—t—- Receiver — X,
Process Uy
U = ft(xht’uht—ﬂ ﬁt = 9,[(Y1 )

1. Discounted setup, f € (0, 1)

Dg(f,0) = (1-BYES"® | > Btax. —R)|;  Nalf,9) = (1-BIESY [ Y pru]
t=0 t=0

2. Average cost setup, p =1

= T—1

. 1 o _ :

Di(f,g) = limsup TIE(()f’g) [ > d(X _Xt)]; N (f,g) = l|msupT_IEéf’9) [ > Ut]
T—oo t=0 T—oo =0

//

Estimation under communication constraints-(Mahajan and Chakravorty) J



r0ptimization problems I

Costly communication
ForA € Roo,  Ch(A) = Cp(ff,g%5A) = (Lng) {Ds(f,g) +ANg(f,g)}

Constrained communication

Fora e (0,1), Djle) = inf {Dg(f,g): Np(f,g) < «}

B (f,9)
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mptimization problems B

Costly communication
ForAe R.o, Cj(A) =Cp(ffg5A) = (Lng) {Ds(f,g) +ANg(f,g)}

Constrained communication

Fora e (0,1), Dj(a) = (LnF) {Ds(f,g): Ng(f,g) < «}
)g

Distortion-transmission function

We provide explicit computable expressions for both curves

Estimation under communication constraints-(Mahajan and Chakravorty) J



X1 = Xt + Wy, Wi ~N(0,1) B
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X1 = Xt + Wy, Wi ~N(0,1) B

J.H[lT'Im. 1”]17

ny

Estimation under communication constraints-(Mahajan and Chakravorty) J



Periodic transmission strategy B

er.rrlirlf R r”.m
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Periodic transmission strategy B
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Periodic transmission strategy B

er.n[irl, L x[,m

Error process

D=0.69 N=~1/3
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"An alternative strategy
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"An alternative strategy A

er.n[irl, L x[,m

Error process
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ﬁistortion-transmission function I

Periodic transmission strategy
Threshold based strategy

Distortion

0 o 1
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- B

Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for Gaussian processes

I,
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for Gaussian processes

Beautiful example of stochastics and optimization
Decentralized stochastic control and POMDPs

Stochastic orders and majorization
Markov chain analysis, stopping times, and renewal theory
Constrained MDPs and Lagrangian relaxations

I,
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So how do we start? %

Decentralized stochastic control




mealing with non-classical information structure

o

Classical info. struct.
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mealing with non-classical information structure B

“Non-Classical info. struct.

ft Xt) Y] t—1 ut

gt Y]:t—]th Xt

-~
N

00 =
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ﬁealing with non-classical information structure

ft Xt) Y1 t—1 ut

gt Y1, Vi )/(\t




ﬁealing with non-classical information structure B

n

Common info Cy == () (| It
1

s>ti=

Localinfo L! := It \ C

“Non-Classical info. struct. | g(C,L) =P(C)(L)

Belongs to the class of tractable non-classical information structures
(called partial-history sharing) identified in [Mahajan-Nayyar-Teneketzis 2013]

ft Xt) Y] t—1

Uy

gt Yia—1, Vi

B Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information
approach,” IEEE TAC 2013. Iy,

8 =
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rDealing with non-classical information structure

Belongs to the class of tractable non-classical information structures

“Non-Classical info. struct.

n

Common info C¢ = ")

s>ti=

Localinfo L! := It \ C

g9(C, L) =$(C)(L)

i
Is
1

(called partial-history sharing) identified in [Mahajan-Nayyar-Teneketzis 2013]

ft Xt) Y] t—1

Uy

9t Yia—1, Vi

Equiv.

ht

Y1.e—1

(@, V)

(83

Xt

Uy

B Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information
approach,” IEEE TAC 2013.

Estimation under communication constraints-(Mahajan and Chakravorty)

Iy,

8 =

3y



ﬁealing with non-classical information structure

—

“Non-Classica

Belongs to ti7eTrass OT tractante no-tassicat AoT auUon S0 ucoul es

The coordinated system is a centralized
(i.e., single-agent) partially observed system

(called partial-history sharing) identified in [Mahajan-Nayyar-Teneketzis 2013]

ft Xt) Y] t—1

Uy

9t Yia—1, Vi

Equiv.

ht

Y1.e—1

(@, V)

(83

Xt

Uy

B Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information
approach,” IEEE TAC 2013.
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"Information states and dynamic program B

Information states Pre-transmission belief : TT¢(x) = P(Xy = x| Y7.4—1).
Post-transmission belief : Z;(x) = P(X; = x| Y7.¢).

O =
N
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"Information states and dynamic program B

Information states Pre-transmission belief : TTy(x) = P(X¢ = x| Y7.0_1).
Post-transmission belief : Z;(x) = P(X; = x| Y7.¢).

U1 X] | UZ Xz | U3 Xg | U4 X4
%1.1.1.1.1.1.1.1
o & | e = | e = ma =
Structural results There is no loss of optimality in using

U = f¢(X¢,Ty) and Xt = g¢(Z¢).

O =
N
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"Information states and dynamic program B

Information states Pre-transmission belief : TTy(x) = P(X¢ = x| Y7.0_1).
Post-transmission belief : Z;(x) = P(X; = x| Y7.¢).

U1 X] | UZ 5(\2 | U3 5(\3 | U4 24
%1.1.1.1.1.1.1.1
o & | e = | e = ma =
Structural results There is no loss of optimality in using

U = f¢(X¢,Ty) and Xt = g¢(Z¢).

Dynamic Program Wopq(m) =0
andfort=T,...,0

Vi (&) = g;'jfg E[d(X¢ —X) + Wi () [ 2 = &,

Welm) =  min  ERQ@(Xe) + Vi (E) [T =7, o = @l.
@:X—{0,1}

N

\

I
L - . . 9
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"Information states and dynamic program B

Inform

X | Y1e—1).
“Standard” POMDP. Optimal strategies | Ya:0).
can be computed numerically.

Structural results There is no loss of optimality in using
Uy = £ (X, TTe)  and Xt = gt(Zt).

Dynamic Program Wry () =0
andfort=T,...,0
Vi(€) = min E[d(Xy — %) + W1 (M) | 2 = &y

ReX

Welm) =  min  ERQ@(Xe) + Vi (E) [T =7, o = @l.
@:X—{0,1}

O =
N
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Can we use the DP to say something
more about the optimal strategy?



rSimplifying modeling assumptions

Markov process Xir1 = X¢ + Wy
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Markov process Xir1 = X¢ + Wy
Markov chain setup Guass-Markov setup
State spaces Xt, Wy € Z Xe, W € R
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rSimplifying modeling assumptions

Markov process Xir1 = X¢ + Wy

Markov chain setup

State spaces Xt, Wy € Z
Noise distribution Unimodal and symmetric
Pe = P—e = Pe+1

/N

Unimodal and symmetric distribution
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Zero-mean Gaussian
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rSimplifying modeling assumptions B

Markov process Xir1 = X¢ + Wy
Markov chain setup Guass-Markov setup
State spaces Xt, Wy € Z Xe, W € R
Noise distribution Unimodal and symmetric Zero-mean Gaussian
Pe = P—-e = Pe+1 (PG(')
Distortion Even and increasing Mean-squared
d(e) =d(—e) < d(e+1) d(e) = lef?

I/ N AN

Unimodal and symmetric distribution Even and increésing distortion

1y,

N\

5]
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ASU Rearrangement I T T T
tlelell = otlll]s
7T 7-(+

N

M\

Estimation under communication constraints-(Mahajan and Chakravorty)



Greliminaries [LM11, NBTV13] B

Almost uniform and
unimodal (ASU) T
distribution about T
. i [y

a V 7Ta>7'[a+1>7ta7127ta+2>"'

ASU Rearrangement T T 7]t T — ? T T TTT

Tt +
Majorization > Eiff
n n n+1 n+1
Yoz Y g ad Y omz) oy
i=—m i=—m i=—mn i=—m
> Invariant to permutations.

N

M\
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Step1 Properties of the value functions w11 nsTVIS) B

Definition £ EiFE > & and & is ASU about some point a
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Step1 Properties of the value functions w11 nsTVIS) B

Definition £ EiFE > & and & is ASU about some point a
Lemma B IF &> & then Wi (&) > W, (E).
Similar to Schur-concavity B IF 7t [> 7 then Vi(m) > V(7).
Lemma (Arg min of W) IF & is ASU about a then a is the arg min of

Vi (&) = )[(nelg E[d(Xe —X) + Wep1(TTegq) | Z¢ = &),

N

~
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Step1 Properties of the value functions w11 nsTVIS) o

Definition £ EiFE > & and & is ASU about some point a
Lemma B IF &> & then WL (&) > Wi (E).
Similar to Schur-concavity & IFt > 7 then Vi(m) > V(7).
Lemma (Arg min of W) IF & is ASU about a then a is the arg min of

Vi (&) = )[(nelg E[d(X¢ —X) + Wi (TTegq) | Z¢ = &,

Lemma (Arg min of V) IF 7t is ASU about a then the arg min of
Wi(m) = min  EA@(X¢) + Ve(Ze) [ Ty =, @ = @]
@:X—{0,1}
is of the form
1, if[x — a| > k()
ox) = 0, ?le —al < k()
q+, iFx—a=xk(n)

q_, ifFx—a=—k(n)

~
N

-
N
Il
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Step 1l Structure of optimal strategies (LM11, NBTV13] o

Zo
717 is ASU about zg
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Step 1l Structure of optimal strategies (LM11, NBTV13] o

Zo
717 is ASU about zg

Is |X] —Zo| >k1?
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Step 1l Structure of optimal strategies

Zo
717 is ASU about zg

Is |X] —Zo| >k1?

NO. Uy =§,2Z1 =2p

Z1
&7 is ASU about z;
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Step 1l Structure of optimal strategies

Zo
717 is ASU about zg

Is |X] —Zo| >k1?

YES.u1 =1, 21 = xq NO.uy =¢,z1 =29

Z1 Z.1
&, is ASU about z; &7 is ASU about z;
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Step 1l Structure of optimal strategies

Zo
717 is ASU about zg

Is |X] —Zo| >k1?

YES.u1 =1, 21 = xq NO.uy =¢,z1 =29

Z1 Z.1
&, is ASU about z; &7 is ASU about z;

In both cases: X1 = z;
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Step 1l Structure of optimal strategies [LM11, NBTV13] a
t=2

Zo
717 is ASU about zg

Is |X] —Zo| >k1?

YES.u1:1,z1:x1 NO.u1:£,Z]:Zo

Z1 Z1
&, is ASU about z; &7 is ASU about z;

In both cases: X1 = z;
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Step 1l Structure of optimal strategies [LM11, NBTV13] a

Zo
717 is ASU about zg

Is |X] —Zo| >k1?

YES.u]:1,Z]:X] NO.u1:£,Z]:Zo

Z1 Z1
&, is ASU about z; &7 is ASU about z;

In both cases: X1 = z;

t=2

X2 =X +Wj=m =& *p
717 is ASU about z;

etc. ...
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Step 1l Structure of optimal estimator [LM11, NBTV13] B

Transmitted Process Let Z, denote the most recently transmitted value
of the Markov process.

ny,

IS
I\

i /)
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Transmitted Process Let Z, denote the most recently transmitted value
of the Markov process.
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Step 1l Structure of optimal estimator [LM11, NBTV13] B

Transmitted Process

Lemma

Theorem

Remark

Estimation under communication constraints-(Mahajan and Chakravorty)

Let Z, denote the most recently transmitted value
of the Markov process.

=¢ is ASU about Z;

The optimal estimation strategy is time-homogeneous
and can be specified in closed form.
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Step1 Structure of optimal transmitter  mi11 neTVI3) B

Lemma T, is ASU about Z;_
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Step1 Structure of optimal transmitter  mi11 neTVI3) B

Lemma T, is ASU about Z;_
1, iFIXy —E¢ > ke
Theorem Uy = fe (X, TTe) =< -
it t( ty t) {O, iF|Xt—Et|<kt
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Step1 Structure of optimal transmitter  mi11 neTVI3) B

Lemma T, is ASU about Z;_;
1, iF|Xy — B¢ = k¢
Theorem Uy = (X, TTe) =< -
it t( ty t) {O, iF|Xt—Et|<kt
Ly g
Error process Let E; = X — Z{_1 denote the error process. {E}{°, is

a controlled Markov process where

iF— O
Eo =0 and P(Et—l—] :n‘Et:e)ut:u):{‘pe—nl) | u=0;
Pn, |Fu =1.

Remark The optimal transmission strategy is a function of the

error process.

Estimation under communication constraints-(Mahajan and Chakravorty) m\\‘]



The results extend to infinite horizon setup
under appropriate regularity conditions.

Time-homogeneous threshold-
based strategies are optimal.



How do we find the optimal
threshold-based strategy?
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N QRN Structure of optimal strategies

%22

Search space of
strategies (f, g)

N JER Optimal costly comm.

—

Performance of arbitrary

threshold strategies f(*)

=

—k

N (Wl Distortion-transmission

trade-off




Performance of threshold strategies A

Consider a threshold-based strategy

£ (e) = 1 iflel >k
0 otherwise

/
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Performance of threshold strategies A

Consider a threshold-based strategy Let T%) denote the stopping time of
first transmission (starting at Eo = 0).

0 otherwise

£ (e] {1 if le| > k
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Performance of threshold strategies A

Consider a threshold-based strategy Let T%) denote the stopping time of
first transmission (starting at Eo = 0).

£ (e) = 1 iflel >k
0 otherwise

Define
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Performance of threshold strategies A

Consider a threshold-based strategy Let T%) denote the stopping time of
first transmission (starting at Eo = 0).

0 otherwise

£ (e] {1 if le| > k

(k)1

Define L (e)=(1-B)E [ Y BUA(E[Eo = e].
t=0
()1
M (e) = (1—B)E [ Y BYE :e}
t=0
Proposition {E¢}$2, is a regenerative process. By renewal theory,
Lg”(0) 1
DU =Dg(fM), g*) = —F and N = Ng(f) g*) = —(1=B).

Estimation under communication constraints-(Mahajan and Chakravorty) /m\\‘]



Performance of threshold strategies A

of
).
Computing Lg{) and Mg‘) is sufficient
to compute the performance of (%)
(i.e., to compute Dg{) and Ng‘)).
—]
(k)1
Define L (e)=(1-B)E [ ZO BtA(E,)[Eg = e].
t=
()1
M (e) = (1—B)E [ Y BYE :e}
t=0
Proposition {E¢}$2, is a regenerative process. By renewal theory,
Lg”(0) 1
B0 ) (0 g = —P and NY = Ng(f), g*) = —(1-p).
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Computing Lék)

Markov chain setup

and M(k
L (e +(5an€
n=—k
MP () =148 Y pn_cM
n=—k

Estimation under communication constraints-(Mahajan and Chakravorty)
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Computing Lg{) and M(k) A

Markov chain setup L (e )+ B Z Prnel
n=—k
N
N\ NOReRSR N MEI() =148 Y preMy
“x K =
Proposition L(k) = [[I — pPk)]-T d(k)}. P(¥) is substochastic.

7

W

~
i’ln

—_
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Computing Lék)

Markov chain setup

Proposition

Gauss-Markov setup

Estimation under communication constraints-(Mahajan and Chakravorty) //n\\\‘—J

and M(k) A

La (e +Bane

n=—k

_']+‘B 2: Pn— eM

n=—k

P js substochastic.



Computing Lg{) and Mg{)

Markov chain setup

Proposition

Gauss-Markov setup

Estimation under communication constraints-(Mahajan and Chakravorty)

k
L) =d(e)+B Y pncly’(n)

n=—k

k
M (e) =1+8 kaneM(ﬁk)(n)

LY = [[1— pP9]-Tal¥)]. P(%) is substochastic.

k
L3 (e) =d(e) + BJ o(n— e)Ly (n)dn

k
Mg‘)(e) =1+ BJ en— e)M%k) (n)dn
K
Fredholm Integral Equations of the 2nd kind.
Solutions exist and are unique. m,
17



Computing Lg{) and Mg{) A

Dfik) and Ng‘) can be computed using these expressions.

Proposition LY = [[1— pP9]-Tal¥)]. P(¥) is substochastic.

k
Gauss-Markov setup L3 (e) =d(e) + BJ e(n—e)L§ ()dn
—k
k
M (e) =1+p J p(n—e)M (n)dn
—k

Fredholm Integral Equations of the 2nd kind.
Solutions exist and are unique. w,

W

~
i’ln

—_
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We found the performance of a
generic threshold-based strategy

How does this lead to
identifying an optimal strategy?



a

NN Structure of optimal strategies Performance of arbitrary
threshold strategies f(*)

%22

Search space of
strategies (f, g)

N(JJER Optimal costly comm. (W W Distortion-transmission
trade-off

B



Step .3 Properties of optimal thresholds B

Monotonicity Lt >15 and METY > MG

Depends on
unimodularity of noise

Iy,
L . . . 185
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Step .3 Properties of optimal thresholds B

Monotonicity Lt >15 and METY > MG
Use DP and monotonicity Jgllizsi.
K+1 K 1
of Bellman operator Dé > D}S ) and NESH ) < Né,k)

Iy,
L . . . 185
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{ Step 3 Properties of optimal thresholds B

Monotonicity Lt >15 and METY > MG
Implication:
Dgﬁq) > Dék) and Nék+1) < N(Bk)
Submodularity Cg‘) (A) = Dg‘) + AN g‘) is submodular in (k,A).

g,
185
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Step .3 Properties of optimal thresholds B

Monotonicity

Submodularity

Proposition

(k+1) (k) (k+1) (k)
LB >L(5 and MB >M(z’>

Implication:
(k+1) (k) (k+1) (k)
Dg > Dg’ and Ng < Ng

C3Y(A) =D + AN is submodular in (k, A).

K% (A) = are min CY)(A) is increasing in A.
5 (A) g min Cp (A) g

Uy,
185
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Step .3 Properties of optimal thresholds B

Monotonicity Lt >15 and METY > MG
Implication:
(k+1) (k) (k+1) (k)
DB > DB and NB < NB
Submodularity Cg‘) (A) = Dg‘) + AN g‘) is submodular in (k,A).
Proposition K} (A) = arg_min CS”()\) is increasing in A.
kGZZO

Thus, optimal threshold increases with increase in A.
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Characterizing the optimal threshold
for a given communication cost is tricky.

Instead, we will characterize the optimal
communication cost for a given threshold.



{ Step 3 Optimal costly communication: Markov chain B

Define AL :=={A € R0 : k§(A) =k} .
_ [A(k_1) }\(k)] 2
- R \

C(k)(?\(k)) _ CESkH)()\Ek)) A1) AK) A




{ Step 3 Optimal costly communication: Markov chain B

A

Define Al :=={A € R0 : k§(A) = k} .
_ [A(k_1) }\(k)] 2
- R \

SO = ) -
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{ Step 3 Optimal costly communication: Markov chain B

A

Define Al :=={A € R0 : k§(A) = k} .
_ [A(k_1) }\(k)] 2
- R \

SO = ) -
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{ Step 3 Optimal costly communication: Markov chain B

A
Dy ! (k+1) (%)
| A\ _ P —Dpg
Di¥ i
R >\
Ay

Define Al :=={A € R0 : k§(A) = k} .
_ [A(k_1) }\(k)] 2
- R \

C(k)(?\(k)) _ CESkH)()\Ek)) A1) AK) A
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{ Step 3 Optimal costly communication: Markov chain B

D2 ! (k+1) (k)
A\ _ P —Dpg
Dy | |
}\E;kj }\gcﬂ) =0

Define Al :=={A € R0 : k§(A) = k} .
_ [A(k_1) }\(k)] 2
- R \

C(k)(?\(k)) _ CESkH)()\Ek)) A1) AK) A
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{ Step 3 Optimal costly communication: Markov chain B

Define Al :=={A € R0 : k§(A) = k} .
_ [A(k_1) }\(k)] 2
- R \

C(k)(?\(k)) _ CESkH)()\Ek)) A1) AK) A
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Step :8 Optimal costly communication: Markov chain B

(k+1) ; i (k) ~ (k+1)
Theorem Strategy f is optimal for A € (A, A" .

C’é()\) = MiNkez., Cg‘) is piecewise linear, continuous,

concave, and increasing function of A.
",

L - . . 9%
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{ Step 3 Optimal costly communication: Markov chain B

(k+1) ; 3 (k) ~ (k+1)
Theorem Strategy f is optimal for A € (A, A" .

C’é(?\) = MiNkez., C}Sk) is piecewise linear, continuous,

concave, and increasing function of A.
",

L - . . 9%
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"IEZNT symmetric birth-death Markov chain (p = 0.3)

24r

04 | | | | | | | |
1 5) 10 15 20 25 30 35

A

I,

—2 ~
Estimation under communication constraints-(Mahajan and Chakravorty) ”//m\\‘J



'BTE Optimal costly communication: Gauss-Markov B

Lemma Dg‘) is increasing in k and Ng‘) is decreasing in k.

Dg‘) and Nfsk) are differentiable in k.

N

\
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'BTE Optimal costly communication: Gauss-Markov B

Lemma Dg‘) is increasing in k and Ng‘) is decreasing in k.

Dg‘) and Nfsk) are differentiable in k.

%D
Theorem Strategy f(*) is optimal for A = — '?k)
6kN[3
Ch(A) = mimer., Cg‘) is continuous, concave, and

increasing function of A.

N

R
\

S
=
7

i 20\
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'BTE Optimal costly communication: Gauss-Markov B

Lemma Dg‘) is increasing in k and Ng‘) is decreasing in k.

Dg‘) and Nfsk) are differentiable in k.

%D
Theorem Strategy f(*) is optimal for A = — '?k)
6kN[3
Ch(A) = mimer., Cg‘) is continuous, concave, and

increasing function of A.

. 3 : A
Scaling with variance o2 Ch o(A) = 02C% | (§>

N

R
\

S
=
7

i 20\
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'BTE Optimal costly communication: Gauss-Markov B

Lemma Dg‘) is increasing in k and Ng‘) is decreasing in k.

Dg‘) and Nfsk) are differentiable in k.

akD(k)
Theorem Strategy f(*) is optimal for A = — Fk)
0xNg
Ch (A) = minger., Cg‘) is continuous, concave, and
increasing function of A.
Scaling with variance o C* (A) = o?C* A
& BoM =0"Ch {52
akD(k)
Computation Use bisection search to And k such that A = 3 ka)
LA

I,

I\
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;. I

N QRN Structure of optimal strategies Performance of arbitrary

threshold strategies f(*)

Search space of
strategies (f, g)

—

N JER Optimal costly comm. N W Distortion-transmission
trade-off




Step /W Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,g9°) =

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).
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Step /W Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,g9°) =

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

Let kE be such that

(k%) (K5 +1)
NB > o> Nﬁ

2
e
v
>

/
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Step /W Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,g9°) =

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

Let kE be such that

(k%) (K5 +1)
NB > o> Nﬁ

\

() optimal

2
msy———————

/
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Step /W Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,g9°) =

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

/f(k“) optimal
Let kE be such that

Dng) :
(k%) (ki +1)
/: Ng® >a>Ng™*
]
D+ I
k (%) optimal |
]
]
(k)

Dg |
]

Y > )\

(k)

Ag

/
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Step /W Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,g9°) =

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

£(k+1) gptima

—_— =

Randomized strategy (0%, f(*), f**1) is optimal where

O NG + (1 — 09 NGT) = «
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Step /W Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality

A strg m if
(
( X N+ k1) ).
DB((X) ( B ) B )
(NG, DE)
0 Xc 1 g
[0 8

Randomized strategy (0%, f(*), f**1) is optimal where

O NG + (1 — 09 NGT) = «

/

\l/Z
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Step /W Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A stra m if

e S

v

Randomized strategy (0%, f(*), f**1) is optimal where

O NG + (1 — 09 NGT) = «

/

\l/Z
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"IEZNT symmetric birth-death Markov chain (p = 0.3)

3*

0.7 0.8 0.9

W2
N
S

§
-
i”ln
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Step /W Distortion-transmission trade-off: Gauss-Markov |

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,g9°) =

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

A

. . . . . . Z 55
Estlmatlon under communication constraints-(Mahajan and Chakravorty) ’//m\\‘J



Step /W Distortion-transmission trade-off: Gauss-Markov |

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,¢°) =«
(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

k*
such thatN( pledl «. Therefore,

Theorem There exists a kj (o) 5

(kG ()
D%(a) =Dy * "

S Wy

I\

W,
K/
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Step /W Distortion-transmission trade-off: Gauss-Markov |

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,¢°) =«
(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

k*
such thatN( pledl «. Therefore,

Theorem There exists a kj (o) 5
(K ()
D%(a) =Dy * "
Scaling with variance o? D3 (&) = 02D} ; («)

‘
I\

\\\“’ )
9/// U1

S Wy
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Step /W Distortion-transmission trade-off: Gauss-Markov |

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,¢°) =«
(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

k*
such thatN( pledl «. Therefore,

Theorem There exists a kj (o) 5

(kG ()
D%(a) =Dy * "

Scaling with variance o? D% («) = 02D% ().
g B,o B,

Computation Use bisection search to And k such that Nék) = «.

S Wy

I\

W,
K/
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"EEETY Gauss-Markov with o2 = 1 h

o
(N
T

0.8 0.9 1

S

L - . . 265
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" Conclusion j
? —
Analyze fundamental limits of estimation

under communication constraints

=

S
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" Conclusion

? -—

Analyze fundamental limits of estimation
under communication constraints

=

Possible generalizations to more realistic models

> Packet drops
& Rate constraints (effect of quantization)

= Network delays

S
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" Conclusion

? -—

Analyze fundamental limits of estimation
under communication constraints

=

Possible generalizations to more realistic models

> Packet drops
& Rate constraints (effect of quantization)

= Network delays

A simple non-trivial “toy-problem” for decentralized control
B Decentralized control is full of difficult problems and negative results.

&= |t is important to identify “easy” problems and positive results.

S
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" Conclusion

? -—

Analyze fundamental limits of estimation
under communication constraints

=

Possible generalizations to more realistic models

> Packet drops
& Rate constraints (effect of quantization)

= Network delays

A simple non-trivial “toy-problem” for decentralized control
B Decentralized control is full of difficult problems and negative results.

&= |t is important to identify “easy” problems and positive results.

Full version available at arXiv:1505.04829.
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The system model Yloptimization problems 1rDe.a\ling with non-classical information structure

Costly communication

Common info C, := 1) h I

Xiy, iFU =1 ForA€ R-o, Cj(A) =Cp(f,g%\) = inf {Dp(f,g) +ANp(f,g)} sztis=l
e, iFU =0 Distortion (G2

Localinfo L} == Ii \ C¢
X, - R

L
Y, Constrained communication opGlassicallnioNs et g(C, L) = h(C)(L)
Transmitter Receiver Re

Forace (0,1), Djla :,I'(';(Dw.g)-Nrs[f,glsa)

Belongs to the class of tractable non-classical information structures

(called partial-history sharing) identified in [Mahajan-Nayyar-Teneketzis 2013]
U = F(Xasey Ure1) R

=gu(V1.0)

-

Discounted setup, B € (0,1)

Dlf,0) = (1- B [3 placx—RJ[i  Nalfig) =(1-BIES? [ 3 ptuy] eor)
= =

N

Average cost setup, B =1

— 7=
. 1 plha) 2 o 1 plfa) A
Di(f,g) = Lg(e —RJs Nilhg) =1 LE9
1(6v9) =tmsup 1 EY'® [ aix =i Mahg) ~tmsup 7B [§ ui] DT

D} is cts, dec, and convex
2
J&Sumatmn under communication constraints-(Mahajan and Chakravorty)

1r§implifying modeling assumptions

B Nayyar, Mahajan and Teneketzis, "Decentralized stochastic control with partial history sharing: A common Information
approach,” EEE TAC 2013,

,
3 8 e
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"VIETZEE structure of optimal strategies

&sumatmn under communication constraints-(Mahajan and Chakravorty)
Tnformation states and dynamic program

[LM11, NBTV13] 1
Information states

t=2
Pre-transmission belief : TT(x) = P(X, = x| Y;.._;). = Markov process Xesr =X+ Wi
Post-transmission belief : Z¢(x) = P(X¢ = x| Y1.1).
A o i o Xp=Xi+ Wi = m =& *
% T U R W R Markov chain setup Guass-Markov setup z0 2= AS‘U h "‘t Lixp
‘ T | [ 1, ot m is ASU about zo e
< =< R s State spaces Xe, W € Z Xe, Wy € R
I ERE
— Noise distribution Unimodal and symmetric Zero-mean Gaussian
Pe =P-e = Pes1 o)
Structural results There is no loss of optimality in using .
U= fe(Xeoy) and R = gu(=). Distortion Even and increasing Mean-squlared YES.wi =121 =x NO.wy =&,z =2

dfe) =d(—e) < d(e+1) dfe) =|e]

Dynamic Program Wiy (m) =0

andfort=T,...,0

V(€) = M E[A(Xe — &) + Wera (TTer1)

a z z
> f E 2 i & is ASU about z; & is ASU about z;
L Py =@l

Walm) = min | ERQ(Xe) + V(Ee) [Te = ol

Eenand a
In both cases: %) =z
| Estimation under communication constraints-(Mahajan and Chakravorty)
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"SR Performance of threshold strategies YVIEIE] optimal costly communication: Markov chain [ SR Distortion-transmission trade-off: Markov chain |
Consider a threshold-based strategy i

Let t'¥) denote the stopping time of

Sufficient conditions for ¢ i |
first transmission (starting at Eo = 0). A stre mif
1 iflefzk
09 (e) =
©=10 otherwise o {
D
~ Axﬂu _ N:?K‘ ( Dy (N, D) ).
N =
& x (NG, D)
0
Define W@ =0-pE[ > a*a(&.)‘zgze]. A 5 :
=
<0
M (e) = (1-B)E [ Y e :e]
=0 Randomized strategy (0%, %), f*+') is optimal where
ONG + (1— 0N =«
i Define A tKp(A) =k} B ( ) B
Proposition {E(}32, is a regenerative process. By renewal theory, . /}\M] KN
L0 ) A {
D i Dy (0, g7) = 2 and NU i Np (9, g7) = —(—p). ! B
o (1), g = o (10, g T ) ) . f !
MPF(0) MPF(0) CPRP) = CEIR) P T

U
1%
Estimation under communication constraints-(Mahajan and Chakravorty) a® || Estimation under communication constraints-(Mahajan and Chakravorty)
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