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Motivation

Sensor Networks

Smart Grids

Internet of Things

Many applications require:
Sequential transmission of data
Zero- (or finite-) delay reconstruction

Salient features
Sensing is cheap
Transmission is expensive
Size of data-packet is not critical

Analyze a stylized model and evaluate fundamental trade-offs



A completely solved example of a
“simple” decentralized system with
non-classical information structure
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1. Discounted setup, β ∈ (0, 1)

Dβ(f, g) = (1 − β)𝔼(f,g)
0 [

∞

󰀖
t=0

βtd(Xt − X̂t)]; Nβ(f, g) = (1 − β)𝔼(f,g)
0 [

∞

󰀖
t=0

βtUt]

2. Average cost setup, β = 1

D1(f, g) = limsup
T→∞

1
T 𝔼(f,g)

0 [
T−1

󰀖
t=0

d(Xt − X̂t)]; N1(f, g) = limsup
T→∞

1
T 𝔼(f,g)

0 [
T−1

󰀖
t=0

Ut]

Ut = ft(X1:t, U1:t−1)

Yt =
{
Xt, if Ut = 1
ε, if Ut = 0

X̂t = gt(Y1:t)

Distortion
d(Xt − X̂t)
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Periodic transmission strategy

Error process

D = 0.69 N ≈ 1/3



Estimation under communication constraints–(Mahajan and Chakravorty)
5

An alternative strategy



Estimation under communication constraints–(Mahajan and Chakravorty)
5

An alternative strategy

Error process



Estimation under communication constraints–(Mahajan and Chakravorty)
5

An alternative strategy

Error process

D = 0.24 N ≈ 1/3
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Distortion-transmission function

0 1

D
is
to
rt
io
n

α

Periodic transmission strategy

Threshold based strategy
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for Gaussian processes

Beautiful example of stochastics and optimization
Decentralized stochastic control and POMDPs

Stochastic orders and majorization

Markov chain analysis, stopping times, and renewal theory

Constrained MDPs and Lagrangian relaxations



So how do we start?
Decentralized stochastic control
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Dealing with non-classical information structure

Belongs to the class of tractable non-classical information structures
(called partial-history sharing) identified in [Mahajan-Nayyar-Teneketzis 2013]

Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information
approach,” IEEE TAC 2013.

Non-Classical info. struct.

Common info Ct ∶= ∩
s≥t

n

∩
i=1

Iis

Local info Lit ∶= Iit ∖ Ct

g(C, L) = ψ(C)(L)

Xt, Y1:t−1

Y1:t−1, Yt
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Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information
approach,” IEEE TAC 2013.

Non-Classical info. struct.

Common info Ct ∶= ∩
s≥t
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∩
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g(C, L) = ψ(C)(L)
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The coordinated system is a centralized
(i.e., single-agent) partially observed system
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Vt(ξ) = min
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Wt(π) = min
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“Standard” POMDP. Optimal strategies
can be computed numerically.



Can we use the DP to say something
more about the optimal strategy?
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Simplifying modeling assumptions

Markov process Xt+1 = Xt +Wt

Markov chain setup Guass-Markov setup

State spaces Xt,Wt ∈ ℤ Xt,Wt ∈ ℝ

Noise distribution Unimodal and symmetric
pe = p−e ≥ pe+1

Zero-mean Gaussian
φσ(⋅)

Distortion Even and increasing
d(e) = d(−e) ≤ d(e + 1)

Mean-squared
d(e) = |e|2

Unimodal and symmetric distribution Even and increasing distortion
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Preliminaries

Almost uniform and
unimodal (ASU)

distribution about a
a πa ≥ πa+1 ≥ πa−1 ≥ πa+2 ≥ ⋅ ⋅ ⋅

ASU Rearrangement ⟹
π π+

Majorization π ⪰ ξ iff
n

󰀖
i=−n

π+i ≥
n

󰀖
i=−n

ξ+i and
n+1

󰀖
i=−n

π+i ≥
n+1

󰀖
i=−n

ξ+i

Invariant to permutations.

[LM11, NBTV13]

⪰
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x̂∈u�

𝔼[d(Xt − x̂) +Wt+1(Πt+1) | Ξt = ξ],

Lemma (Arg min of V) If π is ASU about a then the arg min of

Wt(π) = min
φ:u�→{0,1}

𝔼[λφ(Xt) + Vt(Ξt) | Πt = π,φt = φ]

is of the form

φ(x) =

⎧⎪⎪⎪

⎨⎪⎪⎪
⎩

1, if |x − a| > k(π)
0, if |x − a| < k(π)
q+, if x − a = k(π)
q−, if x − a = −k(π)

[LM11, NBTV13]

Similar to Schur-concavity
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z0
π1 is ASU about z0

Is |x1 − z0| > k1?
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z0
π1 is ASU about z0

Is |x1 − z0| > k1?

NO. u1 = ε, z1 = z0

z1
ξ1 is ASU about z1

YES. u1 = 1, z1 = x1

z1
ξ1 is ASU about z1

In both cases: x̂1 = z1

t = 2

X2 = X1 +W1 ⟹π1 = ξ1 ∗ p
π1 is ASU about z1

etc. . . .
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Step 1 Structure of optimal estimator

Transmitted Process Let Zt denote the most recently transmitted value
of the Markov process.

[LM11, NBTV13]
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Step 1 Structure of optimal estimator

Transmitted Process Let Zt denote the most recently transmitted value
of the Markov process.

Lemma Ξt is ASU about Zt

Theorem X̂t = g∗t(Ξt) = Zt

Remark The optimal estimation strategy is time-homogeneous
and can be specified in closed form.

[LM11, NBTV13]

Zt
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Step 1 Structure of optimal transmitter
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Step 1 Structure of optimal transmitter

Lemma Πt is ASU about Zt−1

Theorem Ut = ft(Xt, Πt) =
{
1, if |Xt − Et| ≥ kt
0, if |Xt − Et| < kt

Error process Let Et = Xt − Zt−1 denote the error process. {Et}∞t=0 is
a controlled Markov process where

E0 = 0 and ℙ(Et+1 = n | Et = e,Ut = u) =
{
p|e−n|, if u = 0;
pn, if u = 1.

Remark The optimal transmission strategy is a function of the
error process.

[LM11, NBTV13]

Zt−1



The results extend to infinite horizon setup
under appropriate regularity conditions.

Time-homogeneous threshold-
based strategies are optimal.



How do we find the optimal
threshold-based strategy?



Step 1 Structure of optimal strategies

Search space of
strategies (f, g)

Step 2 Performance of arbitrary
threshold strategies f(k)

τ(k) t

k

−k

Et

Step 3 Optimal costly comm.

λ(𝑘)β λ(𝑘+1)
β

λ
𝐷(𝑘)

β

𝐷(𝑘+1)
β

𝐷(𝑘+2)
β

Step 4 Distortion-transmission
trade-off

0 1α𝑐α

𝐷∗
β(α)

(𝑁 (𝑘)
β ,𝐷(𝑘)

β )

(𝑁 (𝑘+1)
β ,𝐷(𝑘+1)

β )
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Step 2 Performance of threshold strategies
Consider a threshold-based strategy

f(k)(e) =
{
1 if |e| ≥ k
0 otherwise

−k k
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β ∶= Nβ(f(k), g∗) =
1

M(k)
β (0)

− (1 − β).

Consider a threshold-based strategy

f(k)(e) =
{
1 if |e| ≥ k
0 otherwise

−k k

Let τ(k) denote the stopping time of
first transmission (starting at E0 = 0).

τ(k) t

k

−k

Et



Estimation under communication constraints–(Mahajan and Chakravorty)
16

Step 2 Performance of threshold strategies

Define L(k)β (e) = (1 − β)𝔼 [
τ(k)−1

󰀖
t=0

βtd(Et)|E0 = e].

M(k)
β (e) = (1 − β)𝔼 [

τ(k)−1

󰀖
t=0

βt
|E0 = e].

Proposition {Et}∞t=0 is a regenerative process. By renewal theory,
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β ∶= Dβ(f(k), g∗) =

L(k)β (0)
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β (0)
and N(k)

β ∶= Nβ(f(k), g∗) =
1

M(k)
β (0)

− (1 − β).

Consider a threshold-based strategy

f(k)(e) =
{
1 if |e| ≥ k
0 otherwise
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Let τ(k) denote the stopping time of
first transmission (starting at E0 = 0).

τ(k) t

k

−k

Et

Computing L(k)β andM(k)
β is sufficient

to compute the performance of f(k)

(i.e., to compute D(k)
β and N(k)

β ).
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Step 2 Computing 𝐋(u�)β and 𝐌(u�)
β

Markov chain setup L(k)β (e) = d(e) + β
k

󰀖
n=−k

pn−eL(k)β (n)

M(k)
β (e) = 1 + β

k

󰀖
n=−k

pn−eM(k)
β (n)

−k k
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Step 2 Computing 𝐋(u�)β and 𝐌(u�)
β

Markov chain setup L(k)β (e) = d(e) + β
k

󰀖
n=−k

pn−eL(k)β (n)

M(k)
β (e) = 1 + β

k

󰀖
n=−k

pn−eM(k)
β (n)

Proposition L(k)β = [[I − βP(k)]−1d(k)]. P(k) is substochastic.

M(k)
β = [[I − βP(k)]−1𝟏(k)].

−k k
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pn−eL(k)β (n)
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β (e) = 1 + β

k

󰀖
n=−k

pn−eM(k)
β (n)

Proposition L(k)β = [[I − βP(k)]−1d(k)]. P(k) is substochastic.

M(k)
β = [[I − βP(k)]−1𝟏(k)].

Gauss-Markov setup L(k)β (e) = d(e) + β󰀕

k

−k
φ(n − e)L(k)β (n)dn

M(k)
β (e) = 1 + β󰀕

k

−k
φ(n − e)M(k)

β (n)dn
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Proposition L(k)β = [[I − βP(k)]−1d(k)]. P(k) is substochastic.

M(k)
β = [[I − βP(k)]−1𝟏(k)].

Gauss-Markov setup L(k)β (e) = d(e) + β󰀕

k

−k
φ(n − e)L(k)β (n)dn

M(k)
β (e) = 1 + β󰀕

k

−k
φ(n − e)M(k)

β (n)dn

Fredholm Integral Equations of the 2nd kind.
Solutions exist and are unique.

−k k
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D(k)
β and N(k)

β can be computed using these expressions.



We found the performance of a
generic threshold-based strategy

How does this lead to
identifying an optimal strategy?



Step 1 Structure of optimal strategies

Search space of
strategies (f, g)

Step 2 Performance of arbitrary
threshold strategies f(k)

τ(k) t

k

−k

Et

Step 3 Optimal costly comm.

λ(𝑘)β λ(𝑘+1)
β

λ
𝐷(𝑘)

β

𝐷(𝑘+1)
β

𝐷(𝑘+2)
β

Step 4 Distortion-transmission
trade-off

0 1α𝑐α

𝐷∗
β(α)

(𝑁 (𝑘)
β ,𝐷(𝑘)

β )

(𝑁 (𝑘+1)
β ,𝐷(𝑘+1)

β )
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)
β > L(k)β and M(k+1)

β > M(k)
β

Depends on
unimodularity of noise
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)
β > L(k)β and M(k+1)

β > M(k)
β

Implication:

D(k+1)
β ≥ D(k)

β and N(k+1)
β < N(k)

β

Use DP and monotonicity
of Bellman operator
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Submodularity C(k)
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β + λN(k)
β is submodular in (k, λ).
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)
β > L(k)β and M(k+1)

β > M(k)
β

Implication:

D(k+1)
β ≥ D(k)

β and N(k+1)
β < N(k)

β

Submodularity C(k)
β (λ) ∶= D(k)

β + λN(k)
β is submodular in (k, λ).

Proposition k∗β(λ) ∶= arg min
k∈ℤ≥0

C(k)
β (λ) is increasing in λ.

Thus, optimal threshold increases with increase in λ.



Characterizing the optimal threshold
for a given communication cost is tricky.

Instead, we will characterize the optimal
communication cost for a given threshold.
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Step 3 Optimal costly communication: Markov chain

λ

𝑘∗
β(λ)

λ(k−1) λ(k)

Define Λ(k)
β ∶= {λ ∈ ℝ≥0 : k∗β(λ) = k}

= [λ(k−1)
β , λ(k)β ].

C(k)
β (λ(k)β ) = C(k+1)

β (λ(k)β )
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Theorem Strategy f(k+1) is optimal for λ ∈ (λ(k)β , λ(k+1)
β ] .

C∗
β(λ) = mink∈ℤ≥0 C

(k)
β is piecewise linear, continuous,

concave, and increasing function of λ.
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λ(k)β =
D(k+1)

β −D(k)
β

N(k)
β −N(k+1)

β

Step 3 Optimal costly communication: Markov chain

λ(𝑘)β λ(𝑘+1)
βΛ(𝑘)

β

λ

𝐷(𝑘)
β

𝐷(𝑘+1)
β

𝐷(𝑘+2)
β

(λ(k)β , D(k)
β + λ(k)β N(k)

β )

Theorem Strategy f(k+1) is optimal for λ ∈ (λ(k)β , λ(k+1)
β ] .

C∗
β(λ) = mink∈ℤ≥0 C

(k)
β is piecewise linear, continuous,

concave, and increasing function of λ.
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Example Symmetric birth-death Markov chain (𝐩 = 𝟎.𝟑)
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0.4
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1
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2
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λ

C
∗ β
(λ
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β = 0.95

β = 0.9
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Step 3 Optimal costly communication: Gauss-Markov

Lemma D(k)
β is increasing in k and N(k)

β is decreasing in k.

D(k)
β and N(k)

β are differentiable in k.
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Step 3 Optimal costly communication: Gauss-Markov

Lemma D(k)
β is increasing in k and N(k)

β is decreasing in k.

D(k)
β and N(k)

β are differentiable in k.

Theorem Strategy f(k) is optimal for λ = −
∂kD(k)

β

∂kN(k)
β

C∗
β(λ) = mink∈ℝ≥0 C

(k)
β is continuous, concave, and

increasing function of λ.
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Scaling with variance σ2 C∗
β,σ(λ) = σ2C∗

β,1(
λ
σ2)
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Step 3 Optimal costly communication: Gauss-Markov

Lemma D(k)
β is increasing in k and N(k)

β is decreasing in k.

D(k)
β and N(k)

β are differentiable in k.

Theorem Strategy f(k) is optimal for λ = −
∂kD(k)

β

∂kN(k)
β

C∗
β(λ) = mink∈ℝ≥0 C

(k)
β is continuous, concave, and

increasing function of λ.

Scaling with variance σ2 C∗
β,σ(λ) = σ2C∗

β,1(
λ
σ2)

Computation Use bisection search to find k such that λ = −
∂kD(k)

β

∂kN(k)
β
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Example Gauss-Markov with σu� = 𝟏
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Step 1 Structure of optimal strategies

Search space of
strategies (f, g)

Step 2 Performance of arbitrary
threshold strategies f(k)

τ(k) t

k

−k

Et
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Step 4 Distortion-transmission
trade-off
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Step 4 Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f∘, g∘) is optimal for the constrained communication problem if

(C1) Nβ(f∘, g∘) = α

(C2) There exists λ∘ ≥ 0 such that (f∘, g∘) is optimal for Cβ(f, g; λ∘).



Estimation under communication constraints–(Mahajan and Chakravorty)
23

Let k∗β be such that

N(k∗
β)

β > α > N(k∗
β+1)

β

Step 4 Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f∘, g∘) is optimal for the constrained communication problem if

(C1) Nβ(f∘, g∘) = α

(C2) There exists λ∘ ≥ 0 such that (f∘, g∘) is optimal for Cβ(f, g; λ∘).

λ(k)β

λ

D(k)
β

D(k+1)
β

D(k+2)
β
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Let k∗β be such that
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β

Step 4 Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
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Example Symmetric birth-death Markov chain (𝐩 = 𝟎.𝟑)
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Step 4 Distortion-transmission trade-off: Gauss-Markov

Sufficient conditions for constrained optimality
A strategy (f∘, g∘) is optimal for the constrained communication problem if

(C1) Nβ(f∘, g∘) = α

(C2) There exists λ∘ ≥ 0 such that (f∘, g∘) is optimal for Cβ(f, g; λ∘).
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Step 4 Distortion-transmission trade-off: Gauss-Markov

Sufficient conditions for constrained optimality
A strategy (f∘, g∘) is optimal for the constrained communication problem if

(C1) Nβ(f∘, g∘) = α

(C2) There exists λ∘ ≥ 0 such that (f∘, g∘) is optimal for Cβ(f, g; λ∘).

Theorem There exists a k∗β(α) such thatN
(k∗

β(α))
β = α. Therefore,

D∗
β(α) = D

(k∗
β(α))

β

Scaling with variance σ2 D∗
β,σ(α) = σ2D∗

β,1(α).

Computation Use bisection search to find k such that N(k)
β = α.
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Example Gauss-Markov with σu� = 𝟏
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Analyze fundamental limits of estimation
under communication constraints

Possible generalizations to more realistic models
Packet drops
Rate constraints (effect of quantization)
Network delays

A simple non-trivial “toy-problem” for decentralized control
Decentralized control is full of difficult problems and negative results.

It is important to identify “easy” problems and positive results.

Full version available at arXiv:1505.04829.
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The system model

Markov
Process

Transmitter Receiver
Xt

Ut

Yt X̂t

1. Discounted setup, β ∈ (0, 1)

Dβ(f, g) = (1 − β)𝔼(f,g)
0 [

∞

󰀖
t=0

βtd(Xt − X̂t)]; Nβ(f, g) = (1 − β)𝔼(f,g)
0 [

∞

󰀖
t=0

βtUt]

2. Average cost setup, β = 1

D1(f, g) = limsup
T→∞

1
T 𝔼(f,g)

0 [
T−1

󰀖
t=0

d(Xt − X̂t)]; N1(f, g) = limsup
T→∞

1
T 𝔼(f,g)

0 [
T−1

󰀖
t=0

Ut]

Ut = ft(X1:t, U1:t−1)

Yt =
{
Xt, if Ut = 1
ε, if Ut = 0

X̂t = gt(Y1:t)

Distortion
d(Xt − X̂t)
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Optimization problems

Costly communication
For λ ∈ ℝ>0, C∗

β(λ) = Cβ(f∗, g∗; λ) ∶= inf
(f,g)

{Dβ(f, g) + λNβ(f, g)}

Constrained communication
For α ∈ (0, 1), D∗

β(α) ∶= inf
(f,g)

{Dβ(f, g) : Nβ(f, g) ≤ α}

λ

C∗
β

C∗
β is cts, inc, and concave

α

D∗
β

D∗
β is cts, dec, and convex
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Dealing with non-classical information structure

Belongs to the class of tractable non-classical information structures
(called partial-history sharing) identified in [Mahajan-Nayyar-Teneketzis 2013]

Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information
approach,” IEEE TAC 2013.

Non-Classical info. struct.

Common info Ct ∶= ∩
s≥t

n

∩
i=1

Iis

Local info Lit ∶= Iit ∖ Ct

g(C, L) = ψ(C)(L)

Xt, Y1:t−1

Y1:t−1, Yt

⟺ Y1:t−1

Xt

Yt
Equiv.

ht (φt, γt)

φt

γt

Ut

X̂t

ft

gt

Ut

X̂t
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Information states and dynamic program

Information states Pre-transmission belief : Πt(x) = ℙ(Xt = x | Y1:t−1).
Post-transmission belief : Ξt(x) = ℙ(Xt = x | Y1:t).

Π1 Ξ1

U1 X̂1

Π2 Ξ2

U2 X̂2

Π3 Ξ3

U3 X̂3

Π4 Ξ4

U4 X̂4

Structural results There is no loss of optimality in using

Ut = ft(Xt, Πt) and X̂t = gt(Ξt).

Dynamic Program WT+1(π) = 0

and for t = T, . . . , 0

Vt(ξ) = min
x̂∈u�

𝔼[d(Xt − x̂) +Wt+1(Πt+1) | Ξt = ξ],

Wt(π) = min
φ:u�→{0,1}

𝔼[λφ(Xt) + Vt(Ξt) | Πt = π,φt = φ].
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Simplifying modeling assumptions

Markov process Xt+1 = Xt +Wt

Markov chain setup Guass-Markov setup

State spaces Xt,Wt ∈ ℤ Xt,Wt ∈ ℝ

Noise distribution Unimodal and symmetric
pe = p−e ≥ pe+1

Zero-mean Gaussian
φσ(⋅)

Distortion Even and increasing
d(e) = d(−e) ≤ d(e + 1)

Mean-squared
d(e) = |e|2

Unimodal and symmetric distribution Even and increasing distortion
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Step 1 Structure of optimal strategies [LM11, NBTV13]

z0
π1 is ASU about z0

Is |x1 − z0| > k1?

NO. u1 = ε, z1 = z0

z1
ξ1 is ASU about z1

YES. u1 = 1, z1 = x1

z1
ξ1 is ASU about z1

In both cases: x̂1 = z1

t = 2

X2 = X1 +W1 ⟹π1 = ξ1 ∗ p
π1 is ASU about z1

etc. . . .
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Step 2 Performance of threshold strategies

Define L(k)β (e) = (1 − β)𝔼 [
τ(k)−1

󰀖
t=0

βtd(Et)|E0 = e].

M(k)
β (e) = (1 − β)𝔼 [

τ(k)−1

󰀖
t=0

βt
|E0 = e].

Proposition {Et}∞t=0 is a regenerative process. By renewal theory,

D(k)
β ∶= Dβ(f(k), g∗) =

L(k)β (0)
M(k)

β (0)
and N(k)

β ∶= Nβ(f(k), g∗) =
1

M(k)
β (0)

− (1 − β).

Consider a threshold-based strategy

f(k)(e) =
{
1 if |e| ≥ k
0 otherwise

−k k

Let τ(k) denote the stopping time of
first transmission (starting at E0 = 0).

τ(k) t

k

−k

Et
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λ(k)β =
D(k+1)

β −D(k)
β

N(k)
β −N(k+1)

β

Step 3 Optimal costly communication: Markov chain

λ(𝑘)β λ(𝑘+1)
βΛ(𝑘)

β

λ

𝐷(𝑘)
β

𝐷(𝑘+1)
β

𝐷(𝑘+2)
β

λ

𝑘∗
β(λ)

λ(k−1) λ(k)

Define Λ(k)
β ∶= {λ ∈ ℝ≥0 : k∗β(λ) = k}

= [λ(k−1)
β , λ(k)β ].

C(k)
β (λ(k)β ) = C(k+1)

β (λ(k)β )

Estimation under communication constraints–(Mahajan and Chakravorty)
23

Let k∗β be such that

N(k∗
β)

β > α > N(k∗
β+1)

β

Step 4 Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f∘, g∘) is optimal for the constrained communication problem if

(C1) Nβ(f∘, g∘) = α

(C2) There exists λ∘ ≥ 0 such that (f∘, g∘) is optimal for Cβ(f, g; λ∘).

λ(k)β

f(k) optimal

f(k+1) optimal

λ

D(k)
β

D(k+1)
β

D(k+2)
β

Randomized strategy (θ∗, f(k), fk+1) is optimal where

θ∗N(k)
β + (1 − θ∗)N(k+1)

β = α

0 1αc
α

D∗
β(α)

(N(k)
β , D(k)

β )

(N(k+1)
β , D(k+1)

β )


