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ABSTRACT

In this paper, we develop a new adaptive beamforming algo-
rithm for cyclostationary signals. Our algorithm is derived by
maximizing the cyclic moment of the beamformer's output
subject to a constraint that preserves all the signals within a
prescribed uncertainty set. This constraint allows the beam-
former to capture the desired signal and suppress any cyclo-
stationary interferers using the (possibly erroneous) prior in-
formation about the array manifold. We develop a state-space
model for the underlying optimization problem and derive
an iterative cyclic beamforming algorithm using the second-
order extended Kalman filter (EKF). Numerical simulations
are presented showing the superior performance of our beam-
former compared to earlier cyclic beamforming techniques.

1. INTRODUCTION

Blind cyclic beamforming is capable of extracting a cyclosta-
tionary signal-of-interest (SOI) without any knowledge of the
array manifold. It was first proposed in [1] where a class of
objective functions termed Spectral self-COherence REstoral
(SCORE) was introduced. Several cyclic beamforming algo-
rithms were also derived using different cost functions, e.g.,
[2], [3], and [4]. In all these algorithms the beamformer was
capable of extracting the SOI and suppressing noncyclic in-
terference signals. However, it was shown in [3] that if any
of the interference signals has nonzero cyclic moment at the
same cycle frequency of the SOI, the beamformer might cap-
ture the interference signal instead of the SOI. This problem
arises because the beamformer does not have any information
to discriminate between the SOI and the cyclic interference.

In many applications, some a priori spatial information
is available about the SOI and the array aperture. This in-
formation can be used to distinguish between the SOI and the

clic interference signakls In [5] Castedo et a! added linear
constraints to the cyclic beamforming algorithm in order to
exploit the spatial information available about the SOI. How-
ever, no attempt has been made in [5] to account for any er-
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rors in the available spatial information, and hence, the perfor-
mance of this beamformer may degrade severely if the prior
information about the SOI is inaccurate.

Several approaches have been recently proposed to pro-
vide robustness to the minimum variance distortionless re-
sponse (MVDR) beamformer against mismatches in the steer-
ing vector of the SOI, e.g., [6] and [7]. In this paper, we
present a new adaptive beamforming algorithm for cyclosta-
tionary signals that is capable of suppressing cyclic interfer-
ence signals using the available possibly erroneous spatial in-
formation about the SOI. Our algorithm is derived by maxi-
mizing the cyclic moment of the beamformer's output subject
to a constraint that provides high gain to all the signals within
a prescribed spatial uncertainty set. This constraint was orig-
inally employed in the robust MVDR beamformer of [6]. It
was shown to be effective in preserving the SOI in spite of
mismatches between the presumed and actual steering vector
of the SOI. Hence, this constraint provides robustness against
any errors in the prior spatial information of the SOI. We
present a state-space model model describing the constrained
cyclic beamforming problem similar to the model developed
in [7] for the robust MVDR beamformer. A second-order
EKF can be used to estimate the beamformer weight vector it-
eratively with reduced computational complexity. Numerical
simulations are presented showing the superior performance
of our beamformer compared to earlier cyclic beamforming
techniques in nonstationary signal environments and in the
presence of cyclic interference signals.

2. SEMI-BLIND CYCLIC BEAMFORMING

A zero-mean complex signal s(t) generates a spectral line at
a frequency ar after passing through the nonlinearity (.)P if it
has a nonzero pth-order cyclic moment defined as [1]

I T,
ma = ii Sp Xt c-j2 7tdt.

T/
(1)

Many communication signals have nonzero cyclic moments.
The most typical examples are linear digital modulated sig-
nals that generate spectral lines at multiples of the symbol
rate. For carrier modulated signals, the spectral lines will be
centered around c= pfC where fJ is the carrier frequency [8].
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In general, the square nonlinearity is used for one dimensional
constellations such as pulse amplitude modulated signals. In
this case, the spectral lines are obtained at c = 2fr+ -L where
i is an integer and TB is the symbol duration.

Let x(k) be the At x 1 complex vector representing the
sampled output signal of an Ml-sensor array. We assume that
the signal environment consists of D statistically indepen-
dent signals with nonzero pth-order cyclic moment at the fre-
quency av and I signals with zero pth-order cyclic moment
at a, We can model x(k) as

D I

x(k) =s (kf)a(J,(,j) + ni(k)at(On,i) + V(k) (2)

where si (k) is the ith cyclostationary signal arriving from the
direction 0,i, ni(k) is the ith noncyclic interference signal
arriving from 0n,i a(0) is the Al x 1 array manifold vector,
v(k) is an M x 1 vector of white Gaussian noise with zero
mean and covariance KT2I, and I denotes the identity matrix.

If there is only one signal with a nonzero pth-order cyclic
moment at the frequency a,, i.e., D = 1, we can recover this
signal and suppress the interference by choosing the weight
vector w of the narrowband beamformer such that it mini-
mizes the cost function [3]

J= E.ej27a k YP(k))
k

where y(k) = xH(k)w is the complex-valued beamformer
output. Several techniques have been proposed to minimize
(3), e.g., using the least mean squares algorithm and the re-
cursive least squares (RLS) algorithm [3], [4]. On the other
hand, when the environment consists of several signals with
nonzero cyclic moment at the frequency cv the beamformer
does not have enough information to discriminate between
these signals. Nevertheless, in many applications some prior
information about the spatial characteristics of the SOI can
be obtained. This intormation can be used to capture the SOI
and suppress cyclic interference signals. Without any loss of
generality, let s, (k) be the SOI and a0 be its presumed steer-
ing vector. We assume that actual steering vector of the SOI
belongs to the uncertainty set [6]

A = { =ao+ e |lell }
We constrain the beamformer such that it provides a high

gain to all the steering vectors in the uncertainty set. The
modified cyclic beamforming problem can be written as

rin IC j27rce k _rH rkwA
2

w
k

s.t. a&HW> 1 Va C A. (5)

This constraint has been originally proposed in [6] to pre-
vent performance degradation of the MVDR beamformer due
to mismatches in the steering vector of the 801. We can write
the constraint in (5) as

(3)

min a&HW| = 1 (6)

The minimum of awH over the uncertainty set can be found
by noticing that

a& wl > aw£Wle w > a0wW -£|Wjj (7)

where the two inequalities follow from the triangle and Cauchy
Shwartz inequalities, respectively. The worst-case error vec-
tor that satisfies (7) with equality is given by e =-ew1w w
where X arg{a w} [6]. Hence, we can write (5) as

imn k_ (XH (k)w)OP
k

s.t. |caHw wll = 1 (8)

3. STATE-SPACE MODEL

In order to solve the non-convex optimization problem in (8),
we will use a state-space modeling approach similar to that
used in [7] to solve the robust MVDR beamforming prob-
lem. We note that for slowly varying signal environments
we can approximate (JH(k)w(k))P by qH(k)w(k) where
qH(k) = (XH(k)w(k 1))P- XH(k) and w(k) is the esti-
mate of the beamforming vector at the kth instant [4]. There-
fore, a state-space model describing the optimization problem
in (8) is given by the following process equation

(9)

and the associated measurement equation

k] [yH q (k)w(k) cn, (k)(1 0)
j a w(k)~ w(k)~ nvn,2(k)

where w(k) is the state vector, n,(k) is the process noise
that allows tracking of the beamforming vector in nonstation-
ary environments and is assumed to be white Gaussian with
zero mean and covariance a2 I, and n,r I(k) and rn, (k) are
the measurement noise sequences assumed to be independent
white Gaussian with zero mean and covariances cal and T2.

Based on the above state-space model, a state estimator
can be used to estimate and track the beamforming vector
w(k). The estimator will yield a vector that minimizes the
mean square values of n,c 1(k) and nc,2(k), hence mini-
mizing the cost function in (8) and the mean square error
in satisfying the constraint in (8), respectively. The process
noise variance o72 should be chosen to reflect the degree of
nonstationarity of the environment. Also, the value of T2
should be chosen small enough such that the constraint is
satisfied with enough accuracy, e.g., 2 = 10-4 in our ex-
perimental setup. The value of ca should be selected as the
expected value of the cost function. Assuming that the inter-
fering sources are suppressed at convergence of the estimator,
i.e., xH(k)w = aH(0, )WSI (k) + VH (k)w, we can write

2 E{ej2rac k_qH(k)w } = 1-2ReTmO51a (0H) I)w}

+ (O2WH a(0, )aH(O")W + 7211Wl2)P (11)Vs sl sl v
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where o7 2 =LE s (k) 2} is the power of the SOI. Note that the
above expression for ao2 is a function of wHa(&s,) and lwll
which are unknown a priori. Nevertheless, at high signal-to-
noise ratio (SNR), we can approximate cT as

a2 a2P WHa (Os )I2O=M 2 (12)
where we have assumed that the SOI is added coherently by
the beamformer. We will show through numerical simulations
that our state estimator performs well for a wide range of or2

Due to the nonlinearity of the measurement equation, we
will use a real-valued second-order EKF to estimate the beam-
former weight vector. We define the 2M1I real-valued weight
vector w (k) = [Re{wT (k) }, Im{WT (k) }]T . The equivalent
state-space model is given by

w-v(k +1) = i-v(k)+ iw (k) (13)
z(k) = h(k, w(k))+ flm(k) (14)

where nw (k) = [Re{nT(k)}, lm{nLT (k)}]T is the 21 x 1
process noise vector with covariance matrix Q = (T2 /2)I,
nnm (k) = [Re{ rrrn (k)}, IMlmj2nn(k) , nm,2(k)]T is the mea-
surement noise with the diagonal covariance matrix R =

diag{ul2,2 a2/2, u2 }, z(k) = [cos(27asvk), sin(27rca k), 1]T,
h(k,w) = [qr(k)w,qi(k)wv wAowv wE-v the
2M1 I vectors qi(k) = '-Imf{qT(k) ,RefqT(k)} T and
qr (k) = [Re{qT (k)}, Im{qT (k)} ]T, and the 2M x 2Al matrix

A0 Re{aoaH} I-mfaoa' (15
Ao = Im 0HR{ (15)Im{aoa~' Re{aoa H'}

The Jacobian of the measurement vector h(k, w) and the Hes-
sian of its third component are given respectively by

Hb(k,i= qrqiq Aov
WlVTAoiW

w 1
T

H(3) (k,w) Ao- (iAow)
WW - ,7T~ (fVTA ) 29 lW

wVT
wll3

The recursion for the estimated weight vector starts with an
initial weight vector estimate w (0) with the associated covari-
ance P(100), and updates the weight vector estimate through

wv(k) = wv(k -1) + G(k) (z -z(kk -1)), (17)
where the filter gain G(k) and the predicted measurement
1(kk l-) are given by

G(k) = P(kk -1)HT(k, w(k- 1))S (k) (18)

z(k k 1)= tr{H.I(k,w(k- 1))P(kk -1) e3

+ h (k, w(k -1)) (19)

where e3 0 0 11T The innovation covariance matrix and
the covariance matrix of the predicted weight vector are given
respectively by

S(k) = H(k, iv(w 1))P(kfkk 1)HT(k, wv(k- 1)) ftR

^tr{H(3jwk,v(k 1))P(k7k 1)

H(3) (k, iv-k- 1))P(k~k-1)l (20)unun :

- Optimal SINR
RLS-CCAB

18 - Proposed semi-blind cyclic beamformer
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Fig. 1. Average output SINR versus u72

P(kk -1) = P(k -1k -1) + Q,

and the updated state covariance matrix is given by

P(k k) = P(kk -1)-G(k)S(k)GH(k).

(21)

(22)

The consistency of the beamformer can be checked using
the normalized innovation square (NIS) test [9]. Under the
Gaussian assumption for the measurement noise, the NIS

E0(k) = (z- z(kk -1)) S- (k) (z- z(kk -1)) (23)

is Chi-square distributed with three degrees of freedom and
should lie within the confidence region of the Chi-square dis-
tribution if the beamformer is consistent [9].

For initialization of the iterative algorithm, a random vec-
tor estimate w(0) can be used together with an initial covari-
ance matrix estimate P (1 0) = 3I, where 3 is selected such
that the NIS of the first iteration is acceptable. Therefore, by
ignoring the second-order terms and the measurement noise
covariance matrix in (20), we can approximate 3 as

13 jz (I)z(1 0))H(H(1, w(0)) w

(z(1) - z( 0o)). (24)

4. NUMERICAL SIMULATIONS

We consider a linear array of I = 10 elements. The de-
sired signal is a BPSK signal with normalized carrier fre-
quency f- 0.15 and bit rate 0.02 impinging on the array
from 0 -10' with SNR 10 dB. A second BPSK signal
with normalized carrier frequency of 0.17 and bit rate 001
arrives from 0 = 500 with INR= 30 dB. Symbols are trans-
mitted using Nyquist-shaped modulation pulses with 1000
excess bandwidth The presumed angle of arrival of the SOI
is 0o = 8- . The sensors are assumed to be uniformly spaced
with spacing equal to A/2 where A is the wavelength of the
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Fig. 2. Average output SINR versus transmitted bits.

SOI. The actual sensor locations are displaced along the array
line by random displacements uniformly distributed between
[-0.05A, 0.05A]. The parameters of our beamformer are se-
lected as E = 3, <T2 = 0, and (T2 = 10-4. Simulation results
are averaged over 100 Monte Carlo runs.

Fig. 1 shows the average output signal-to-interference-
plus-noise ratio (SINR) of our semi-blind cyclic beamformer
after 50 transmitted bits versus different values of the param-
eter v7. Fig. 1 also shows the output SINR of the RLS im-
plementation of the constrained cyclic adaptive beamformer
(RLS-CCAB) of [21 and the optimal output SINR obtained
when the beamformer has exact knowledge of the array man-
ifold. Note that the approximate value of oT in (12) is equal
to 108. We can clearly see from Fig. 1 that our beamformer
performs well and is superior to the RLS-CCAB over a wide
range of the parameter c,2

Next, we evaluate the performance of our beamformer in
a nonstationary environment. We consider the same scenario
as that in the previous simulation for the first 50 transmitted
bits. A second cyclic interference signal having the same car-
rier frequency and bit rate as those of the SOI impinges on the
array from 0 = 30° with INR= 30 dB after the 50th transmit-
ted bit. The parameters of our semi-blind cyclic beamformer
are selected as oT2 = 10-8, T2 = 108, and T2 = 10-4.
Fig. 2 compares the performance of our semi-blind cyclic
beamformer with that of the RLS-CCAB and the cyclic gen-
eralized sidelobe canceler (RLS-CGSC) beamformer of [5].
We can clearly see from Fig. 2 that our beamformer has supe-
rior performance to both beamformers in terms of the output
SINR The RLS CCAB beamformer is unable to discriminate
the cyclic interference from the desired signal and hence the
SINR drops after the addition of the cyclic interference. Also,
the RLS-CGSC is unable to extract the desired signal due to
the error in the prior information about its steering vector On
the other hand, our proposed semi-blind beamformer can ex-
tract the desired signal and suppress the cyclic interference
in spite of those mismatches. This can be seen from Fig. 3

-50 _

- Proposed semi-blind cyclic beamformer
-60 - - RLS-CCAB

- RLS-CGSC beamformer

-80 -60 -40 -20 0 20 40 60 80
Angle of arrival (degrees)

Fig. 3. Beampattern.

which shows the beampattern of different beamformers com-
puted at the frequency of the desired signal at the 100th trans-
mitted bit. We can clearly see the superior performance of our
proposed beamformer as it provides a high gain towards the
desired signal while suppressing the cyclic interference signal
and maintaining a low sidelobe level.
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