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ABSTRACT

We present a distributed algorithm for collaborative uplink transmit
beamforming that provides robustness against uncertainties in the
channel state iriformation. Our algorithm is derived usirng the avail-
able information about the second-order statistics of the channel and
the possibly erroneous channel state. It can be applied to both line-
of-sight propagation and flat fading channels. The beamforming co-
efficients of each terminal are computed locally using the available
information about its channel and a single parameter that is broad-
casted from the base station to all the cooperating terminals.

1. INTRODUCTION

Collaborative beamforming has been recently proposed to improve
the performance of wireless communication systems by exploiting
the spatial characteristics of the channel [1]. The main idea behind
collaborative beamforming is to consider groups of nearby terminals
as a virtual antenna array forming a spatial beam in the direction
of the target base station. Collaborative beamforming techniques
differ from their classical counterparts due to their distributed nature
since the array elements are distributed among different termninals.
Thus, only limited amount of information can be shared between the
cooperating terminals with possible errors and delays.

Many algorithms have been recently proposed to provide robust-
ness against array manifold errors for line-of-sight (LOS) propaga-
tion environments [2], [3], [4]. Robust transmit beamforming for
fading channels was also considered in [5] and [6] with robustness
against mismatches in the channel state and covariance matrix, re-
spectively. However, all the algorithms presented in [2]-[6] were
derived based on the assumption that the array elements are located
within a single processing unit. Hence, they are not suitable for
collaborative transmission scenarios where the beamforming coef-
ficients have to be locally computed by the cooperating terminals.

In [7], we have presented a collaborative beamforming algo-
rithm with robustness against channel mismatches. The beamform-
ing coefficients are computed by the base station using the uplink
measurements and fed back to the cooperating terminals. In this pa-
per, we modify our algorithm in [7] to allow for the computation
of the beamforming vector for each terminal locally with minimum
feedback from the base station. First, we review the unified signal
model for both LOS and flat fading channels initially introduced in
[7]. Our signal model divides the available channel information into
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two parts: a perfectly known part that corresponds to the second-
order statistics of the channel or the local array manifolds of the co-
operating terminals, and a possibly erroneous estimate of the channel
realization driving vector that captures the randomness of the chan-
nelad d is assuamed to belong to a predefined uncertainaty set. We
formulate the beamforming problem as minimizing the total trans-
mitted power while preserving the received signal at the base station
for all the channel vectors within the uncertainty set. We provide a
closed-form solution for the optimal weight vector using the method
of Lagrange multipliers. This solution allows the beamfornming co-
efficients to be computed by each terminial using its local channel
information and the Lagrange multiplier which is computed at the
base station and broadcasted to all the cooperating terminals. Hence,
our algorithm is well-suited to collaborative transmission scenarios
where a limited amount of information has to be shared among the
terminals. We also show that our algorithm is equivalent to an opti-
mum power allocation strategy among the eigen beams of the chan-
nels of the cooperating terminals based on the strength of each eigen
beam and the uncertainty in their channel estimates.

2. SIGNAL MODEL

We consider the uplink of a narrowband wireless communication
system where MI terminals are collaboratively transmitting a com-
mon signal to the same base station. The rnth terminal is equipped
with a km -element antenna array. The received baseband signal at
the base station at the ith time instant can be written as

-if

S(i H hmhs(i) + w(?i) = wHhs(i) + v(i>) (I)
nz=1

where (.)T and (o)H denote the transpose and Hermnitian transpose,
respectively, hm is the km x 1 vector containing the channel coeffi-
cients from the mth terminal to the base station, wm is the rm x I
beamforming vector of the mth terminal, and v(i) is white Gaussian
noise with zero mean and variance a2o. The K x I stacked channel
vector is h = [h[ h'i, and the corresponding stacked beam-
forming vector is w =[w . w' where K =Am=

2.1. Line-of-Sight Propagation Environment
The channel vector of the mth terminal can be written as

hr= e 2-j27rfo)T (0 )a (O) (2)
where a, 0 =-) 1ic -fDT I,. ... e- 2f 0)Tjr
is the carrier frequency, Tm, (0m) is the propagation delay of the
signal transmitted from the ith antenna of the rrth terminal towards
the basc station locatcd in the direction Om, rclativc to that transmit
ted from the first antenna of the mth terminal, and Tl(Om) is the
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propagation delay from the first antenna of the mnth terminal relative
to virtual antenna located at a common reference point. We can write
the stacked channel vector as

h =Vn (3)

where n = [li j2tifo i J2 fo Ting 0 iS the so-called
channel realization driving vector, the Kx VL matrix

where the diagonal matrix D determines the lengths of the axes of
the hyper-ellipsoid. In the case of LOS propagation, the Al x All
matrix D = diag { . . , i}, whereas, for fading channels the
K xK matrix D = diag{ [lTl MlT ]} where 1k is the
k x 1 vector containing all ones. We formulate our robust beamform-
ing problem as minimizing the total transmitted power from all the
terminals while providing high gain for all the vectors in A [4], i.e.,

0 01

a2 (02) 0

0 0

0 ( v)

and 0 is column vector of zeros with appropriate dimension. Hence,

the channel vector can be decomposed into the product of a matrix V
that contains the local array manifold vectors of the Md terminals and
a vector n containing their phase offsets. Note that the uncertainty
in the relative location and/or the synchronization error of the rnth
terminal can be modeled as an error in the propagation delay Ti.
Thus, we can model the actual channel vector as

h = V (n + A) (5)

where n = [e- e-
{T1 are the presumed delay offsets.

TA1 IT iS the estimate of n and

2.2. Flat Fading Propagation Environment
In the case of multipath flat fading channels, the channel vector of

the mnth terminal can be written as hm = R n , [8], where Rm
is the covariance matrix of the channel vector of the mth terminal,
and nm is a km x 1 vector of independent zero mean, unit variance,
complex Gaussian random variables. Note that we have assumed
that the channel vector of each terminal is independent of that of
the other terminals, i.e., the terminals are well-separated in space.
Hence, we can write the stacked channel vector as h = Vn where
the K xK matrix V is given by

V

f1 0

I
0 R

0

0

... O

0

*0 RMj

and n = KnT... . nTj]TiS the K x 1 channel realization driving
vector. We can assume that the channel is quasi-stationary, i.e. the
second-order statistics of the channel are almost constant within a

certain stationarity time interval [8]. Hence, we can model the actual
stacked channel vector h by the same model as that in Eq. (5) where
n nIT , and A is the corresponding error vector.

(6)

minwHw s.t. wHVn >1 nV C A. (8)

The constraint in the above optimization problem will be satisfied for
all ni C A if it is satisfied for the worst-case (mismatched) channel
vector in A. Thus, we can write (8) as

rninw w s.t. iin w Vn
w nit4

(9)

The minimum of wHV (n + Du) over the set A can be
found by observing that

IwHV(n + Du) w Vnz |WHVDu (10)

|wHVnI - ||DV W|| (11)

where (10) and (11) were derived using the triangle and Cauchy-
Schwarz inequalities, respectively. The worst-case error that satisfies
(10) anid (I 1) with equality is given by

DVeDVeHw
U C IDVHWI where 0 arg {wHVn} (12)

Substituting with (I 1) in (9) and phase-rotating the vector w so that
wHVn is real, we can formulate the robust beamforming problem
as the following second-order cone program

H
run w w

w
Im wHVn} 0

wHVn - ||DVHw | (13)

We will proceed to derive a closed-form solution of the opti-
mization problem in (13). First, we note that the second constraint
of (13) has to be satisfied with equality by the optimal weight vector,
or else, we can always scale down the solution to further minimize
the cost function while still satisfying the constraints. Also, the first
constraint in (13) is now redundant as it is implied by the second one

when it is satisfied with equality. Therefore, we can write (13) as

H

min w w
w

St wHV- DVHW = 1 (14)

Following the guidelines of [4], we can find a closed-form so-

lution to (14) using the method of Lagrange multipliers and by im-
posing the additional constraint wHVn 1 > 0. Since wHVn is
real-valued, we can write (14) as

H

rmin w w
,l

s.t. DVHW HVn 1-l = (15)

3. ROBUST TRANSMIT BEAMFORMING

If the cooperating terminals have perfect knowledge of the channel

vector, the optimum beamformer that maximizes the transmission
efficiency, i.e., the ratio between the received signal to noise ratio
(SNR) at the base station and the transmitted power, is given by
w =aVn where a is a scalar that determines the transmitted power.
However at the transmission instant each terminal has a possibly er

roneous estimate n of the channel realization driving vector which
might degrade the received SNR at the base station.

Let us define the ellipsoidal uncertainty set A as

A = - an1 Du llul }1 (7)

The Lagrangian associated with (15) is given by

L(W, A) = wH (IK + AQ) W + AhHw + AwHh -A (1L6)

where IK denotes the K K identit matrix the K x 1 vector

h = V77, and the K X K Hermitian matrix Q = VD2VH _hh
By equating the complex gradient of (16) to zero, we can write the
optimal solution of (15) as

w =-A(I+AQ) h (17)

where the optimal value of the Lagrange multiplier A satisfies the
constraint in (15), i.e.,
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0 A h (IK +AQ)- Q (IK +AQ) h

-2Ah (IK+AQ)-lh- (18)

We define the eigen decomposition ofQ as Q = ULUH where I' is
the diagonal K x K matrix containing the eigenvalues of the matrix
Q arranged in non-increasing order and U is the K X K matrix
containing the corresponding eigenvectors. If we define c = UHh,
we can write the solution of (18) as the root of the function

fKA)2 K 2 1f(A) = A2E ( A )2 -2 E(1 A (I 9)

where yi is the ith eigenvalue of the matrix Q, and c? is the ith entry
of the vector c.

The value of A can be evaluated by solving for all the roots of
(19) and selecting the root that yields the minimum value of the cost
function in (15) while satisfying the additional constraint wHVi
1 > 0. However, it was shown in [4] that the additional constraint
is satisfied for all values of A greater than a threshold An,jr,, and that
there exists only one root of (19) that satisfies A > Amin where

1 -ICKI(-K CK

7K
(20)

AK is the single negative eigenvalue of the matrix Q and CK is the
corresponding entry of the vector c. Therefore, Newton-Raphson
method can be used to solve for the value of the optimal A in (18),
where the iterations are initialized with Amin .

Given the optimal value of the Lagrange multiplier, the complex-
valued robust beamforming weight vector can be written as

W A 2I+AV(D nnH)VH Vn (21)
We will proceed to further simplify (21) and show how it can be com-
puted locally by each terminal. Using the matrix inversion lemma,
we can write (21) as

w = v(AI ((D'2 _ tijH)- + AVHV) 1'VHV)nt (22)

For the case of LOS propagation, VHV = Y where Y
diag {k1, . . },1, and hence, using the matrix inversion lemma we
can further simplify (22) to

w = -AV (I YA(D

VT 'T- nT

rH)r) + I,
))

nHT k--1

where T = D2 + -L. Since changing the norm of the beam-
forming vector affects only the transmitted power and not the trans-
mission efficiency, we can drop the denominator of (23) and use the
equivalent beamforming vector

w=V(D I+{I ) (124)
A

Hence, the beamforming vector for the rnth terminal can be obtained
by weighting its classical weight vector estimate e-j27fT a (Om)
by (2 km + A) 1. This is an optimal power allocation strategy for
each terminal based on the uncertainty in its phase offset.

In the case of fading channels, we can write the robust beam-
former weight vector in (22) as

W =-V D(2R+-IK) n1 (25)

* Optimal beamformer
- - Classical non-robust beamformer
- Robust beamformer

a 11 _

m 10 _
_D

-o

8 5

7
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Robustness parameter

Fig. 1 Average received signal power versus E.

where 3 nH(D2 R )n-l-- and the Al x All block-
diagonal matrix = V V. Therefore, normalizing the transmit-
ted power such that the constant 3 = 1, the rnth terminal beamform-
ing vector is given by

Wrm RmnmRm kIkn?) Al (26)

Let the eigen decomposition of Rm be R E= E fEfEH. There-
fore, we can write (26) as

k rOl. > H INr

Wm Z- A"m em,k
k=

(27)

where er,k is the kth eigen vector of Rm and u m,k is the associated
eigen value. Thus, our robust beamforming technique is an optimum
power allocation strategy along the eigen beams of the channel co-
variance matrix based on the uncertainty in the channel estimate and
the power associated with each eigen mode. When the channel is
perfectly known, i.e., Em = 0, the beamforming gain increases as the
eigen beam power increases. However, when there is any uncertainty
in the channel estimate, the beamforming gain does not necessarily
increase as the eigen beam power increases, i.e., the beamforming
gain decreases if o,,k increases beyond 1/(AE2 ).

Therefore, for both LOS propagation and fading environments,
the cooperating terminals can start transmission using their classi-
cal non-robust beamforming vectors. With the base station feeding
back the parameter A computed using the uplink measurements, each
terminal can compute its robust beamforming vector based on the
knowledge of its chanrnel realization vector estimate and covariance
matrix (local array manifold) only. This process can be repeated to
track any changes in the operating environment.

4. NUMERICAL SIMULATIONS

Simnulation]- Line-of-sight propagation environment
We consider the uplink of a wireless communication system with

1l = 5 cooperating terminals. Each terminal is equipped with an
antenna array of ki = 4, k2 = 3, k3 = 2, k4 = 4, and k5 = 5 ele-
ments with half-wavelength spacing. The antenna arrays of the first,
third, and fourth terminals are located parallel to the X-axis with
the center of the arrays presumed to be at [10.75A, 5A], [15.25A, 0],
and [12.75A, -3A], respectively. The arrays of the second and fifth
terminals are located parallel to the Y-axis with the center of the ar-
rays presumed to be at [15A, 6.5A] and [18A, A], respectively. The
actual location of the mth terminal is displaced along the X- and
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-*- Optimal beamformer
- - Classical non-robust beamformer
= Robust beamformer
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Fig. 2. Average received signal power versus £.

Y-axes from its nominal location by independent random displace-
ments that are uniformly distributed between [-0.5 m 0.5Am]
where 6, = 0.2,82 = 4, 83 = 2, 64 = 1, and 85 = 0.2. The uncer-
tainty set A is formed using the values {Em = 86m}. The desired
base station is located along {tom = 0°5 =1 where 0Om is measured
relative to the X-axis, and the wave propagation model is planar.
Simulation results are averaged over 104 Monte Carlo runs.

Fig. 1 shows the average received power by the desired base
station using our robust beamformer versus different choices of the
parameter E that correspond to different sizes of the robustness set A.
It also shows the average received power obtained using the classical
weight vector w = nV*, and the maximum received power using
the optimal beamformer, i.e., with perfect knowledge of the channel.
Note that all the beamforming vectors are normalized to have unit
norm. We can clearly see the performance improvements (more than
1 dB gain in SNR) achieved by our beamformer compared to the
classical one. Moreover, it is not very sensitive to the exact size of
the uncertainty set and performs well over a wide range of
Simulation 2: Flatfading environment

We consider the same collaborative transmission scenario de-
scribed in the previous simulation. The propagation environment for
each of the 5 terminals is modeled as a Ricean flat-fading channel
with Ricean K-factor equal to 0.1, 0.2, 0.2, 0.3, and 0.5 and LOS
arrival angles 10°, 20°, 30°, 40°, and 50° for the 1st to 5th user,
respectively. The scattered component of the received signal due
to each of the 5 terminals has a Laplacian power-angle-profile with
mean angle of arrival 90°, 150°, 270°, 40 , and 180° and angular
spread 10°, 30, 6°, 5°, and 20 for the 1st to 5th user, respectively.
We generate 100 independent channel realizations. For each channel
realization, the estimate of the channel realization driving vector of
the mth terminal is obtained as

iim ,: nm +m,nl.1A
|mflm

(28)

where A, is a standard circular Gaussian vector with independent
components, and 6, is the relative magnitude of the error in the
channel vector estimate. The values of 6, are given by 0.4, 2, 4,
4, and 0.2 for m = 1 to 5, respectively. The set A is formed using
{ =--ml Simulation results are averaged over 50 independent
realizations of {Am and 100 independent channel realizations.

Fig. 2 shows the average received signal power at the base sta-
tion versus different values of the parameter All the beamforming
vectors have been normalized to have unit norm. From this figure,
we can clearly see that the proposed robust beamforming technique

- Ciassical non-robust beamformer
_ Robust beamformer 6

-10 -8 -6 -4
Transmitted SNR (dB)

Fig. 3. Average SER versus transmitted SNR.

can improve the received signal power by more than 1 dB com-
pared to the classical non-robust beamformer. We can also notice
that the received signal power does not degrade considerably over a
wide range of the size of the robustness set. Fig. 3 shows the aver-
age symbol error rate (SER) versus the transmitted signal power for
different beamformers for the QPSK constellation. For our robust
beamformer, we have selected the value of E that yields the high-
est received SNR. We can clearly see from Fig. 3 that the power
gain offered by our beamforming technique is translated into a cor-
responding gain in the average SER.
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