CCECE/CCGEI '95

ENHANCING WEAK INPUT MODES FOR IMPROVED NLMS CONVERGENCE

S. Douglas Peters'

Benoit Champagne®

!Defence Research Establishment Atlantic
9 Grove. St., Box 1012, Dartmouth NS, B2Y 3Z7
(now with Bell Northern Research, Verdun, QC)
2INRS-Télécommunications
16 Place du Commerce. Verdun, QC, H3E 1H6

ABSTRACT

In this work, a technique is introduced to whiten the inputs
of an adaptive filter in such a way as to improve the conver-
gence of the normalized least mean-squares adaptation al-
gorithm. This approach, based on the orthogonalization of
successive input vectors, is shown to provide a better condi-
tioned input while introducing some added misadjustment.
It is shown, however, that in some applications the gains
achieved are considerably more than the losses incurred.

INTRODUCTION

It has been well documented that the Least-Mean-Squares
(LMS) algorithm (as described by Widrow and Hoff in [1])
and its variants converge slowly when the covariance matrix
of its input vectors is ill-conditioned (see, for example. [2]).
Notwithstanding the work of Slock in [3] which provides an
analytic basis that explains the exceptions to this rule, slow
convergence remains the primary drawback of LMS-based
adaptation procedures. In consequence, a number of meth-
ods that speed up LMS convergence have been proposed.
In general, the best of these methods involve transforming
the input vectors rather than changing the adaptive algo-
rithm per se. The attempt is to provide a white input to
the adaptive filter, for in this event the convergence of each
mode takes place with the same time constant. As a result.
the convergence of the Normalized LMS (NLMS) adaptive
filter, for example. depends entirely on the number of fil-
ter weights and the convergence-controlling parameter. and
can be shown to be similar to that of the Recursive Least-
Squares (RLS) algorithm, apart from the benefits of RLS
initialization to the initial convergence of that method [3.3].

In this paper, the effects of input color on NLMS conver-
gence will be revisited in the context of a simple transfor-
mation method. This technique, based on the reduction of
dominant input modes, can provide considerable increases
in LMS convergence at modest computational cost.

NLMS PRELIMINARIES

The standard NLMS algorithm updates its adjustable filter
coefficients, W in accordance with!

flexXg
X Xk

Wil = Wi +

where X 1s the input vector, the subscript % indicates the
current sample number, and i is the so-called stepsize or
convergence-controlling parameter. The error signal, ex, is

! \Ve assume real data throughout. The formulation with com-
plex data is, of course, straightforward

given by ex =dg — WwExk, where di is the desired response
of the adaptive filter.

In the literature, the convergence behaviour of the NLMS
algorithm has been linked to the condition® of the input co-
variance matrix, which is usually represented by the ratio
of its maximum eigenvalue to its minimum eigenvalue. In
particular, Slock has recently provided a very clever decou-
pled modal analysis to describe the convergence behaviour
of this algorithm 3]. Given the modal decomposition of the
input covariance matrix

N
R2E [xxr] = ZA,V,VJT.
=1

where E is the expectation operator, A; and v, are the
eigenvalues and orthonormalized eigenvectors of that ma-
trix, respectively, Slock shows that convergence in the di-
rection of a given input eigenvector takes place with time
constant given by

. tr R
R

where tr (-) denotes trace. This has a number of inter-
esting implications. For example, the convergence of the
NLMS algorithm in two situations with the same input co-
variance condition may vary widely. With .V adjustable
filter weights, i = 1, and a condition of Y(R), this variabil-
ity may be as much as

(1)

XR)+N =1 < mmax < (N =1)x{R) +1

where rqax is the time constant corresponding to the min-
imum eigenvalue, and this range is determined by the two
cases of all other eigenvalues equal to the minimum eigen-
value and all other eigenvalues equal to the maximum eigen-
value. respectively.

INPUT ORTHOGONALIZATION

Suppose that the dominant components of the input space
could be isolated and removed. Applying such a process to
each input vector, related auxiliary input vectors. x;, could
be found that consist of those components that are orthog-
onal to the dominant eigenvectors of R. Now. given that
meaningful values of desired signal, d}, could also be found
that correspond to these auxiliary inputs, the auxiliary vec-
tors could be applied to the adaptive filter as if they were
the original input vectors. The eigenvalues corresponding
to the modes which were dominant in the input covariance

2or the condition number
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are now likely to be greatly reduced in the auxiliary covari-
ance. Depending on the extent of this reduction, one of two
situations may result. In the first case, the auxiliary input
condition may be much better than the condition of the ac-
tual input covariance, having removed a large part of the
dominant components. In this event, we may dispense with
the actual inputs, applying just the auxiliary inputs to the
adaptive filter. On the other hand, in the unlikely case that
the dominant components are removed altogether then the
condition of the auxiliary covariance is extremely poor. In
this case, both the actual and auxiliary inputs should be ap-
plied to the adaptive filter. In either case, better adaptive
convergence will result.

Intuitively, the modes excited by such auxiliary inputs
will be those that are present but underexcited in the ac-
tual input vectors. If some mode is absent in the input
vectors. however. the auxiliary inputs will never recover it.
Of course, this represents the case of impersistently excit-
ing inputs, which will result in non-convergence for LMS-
based adaptive algorithms and instability for RLS-based al-
gorithms [2].

In general, we have no a priori knowledge of the structure
of the input covariance matrix. Let us consider. however,
the orthogonalization of a number of successive input vec-
tors. In general, this may be accomplished via an orthogo-
nal projection matrix as given by

Pix=In—-Xix (X.'I,‘kxl,k)-l xn (2)

where Iv is the NV x N identity matrix and X, is the
(assumed full-rank) matrix made up of the i < V previous
input vectors:

Xik = [Xk~1 Xr—2** Xk—i] -

The vector
a
- -
Xix = PixXk (3)

is now orthogonal to the 1 latest input vectors. That is,
xf_‘x,’,k =0, 1=1,2,---,i

In order to meaningfully apply the auxiliary inputs X/
to an adaptive filter, we will manufacture a corresponding
“desired respomse”, d}, that approximately embodies the
correlation that exists between the actual input and actual
desired signal, dix. This relationship is most commonly writ-
ten as

dkzngk+ek, {1}
where wq is the adaptive target (the Wiener filter), and ¢

is called the additive (or residual) noise. By rewriting (3)
as X, , = Xx — Xixfi,x where

a -1
fx,k = (X?:kxz,k) X?:kxkv
we have,
. & T s .
diy Ewoxig+eix =de — [demt dima - dii] fik:
€rp = €k — [€k—1 €x—2 " €k Tiik. (3}

In general, X;, and € will be dependent. As .V becomes
large. however, this dependence will diminish since in this

. L a .
limit the quantities rm = x¥ Xx—m become independent of
the input xx.

Let us now reflect on the covariance of the auxiliary in-
put vector, X} 5, defined above. In effect, we would like to
determine the structure of the matrices

R; SE[xxT] = E[Paxx"P] =
R+ E [XA87XT] - B [(X£xT) - E[x£7XT]  (8)

where the sample subscript, &, has been removed for clarity
under the assumption of input stationarity.

INTERESTING CASES

In general, (6) is a rather difficult expression to simplify. In
this section, two limiting cases will be considered. In the
first instance, the inputs will be taken to be ii.d., and in
the second, the inputs will be taken to be correlated in the
manner of a transversal filter.

Let us consider the case of R} = £ [PlxxTPl] under
iid. input vectors. Let us also take :V to be sufficiently
large that the following expressions can be shown to hold

T tr R?
E{(IN—Pl)XX‘ (IV—PI)] :F:—z_—R‘— .
R
EP~Iv - —x.

Under these approximations, we have the eigenvalues of R

given by ,
. A tr R
AT, =4 <1 - -z-—tr’R + -3 R) .

In particular,” the eigenvalue of R] corresponding to the
dominant direction of R will be considerably less than the
corresponding eigenvalue of R. In general, this suggests
that y(Ri) < x(R). That is, the covariance of the first
auxiliary input is better conditioned than that of the ac-
tual inputs. In the pathological case when Amax = tr R
would we find that x(R{) > x(R). In this event, the appli-
cation of both the actual inputs and the auxiliary inputs to
the adaptive filter (i.e., the use of both as “driving inputs”
at each sample) will result in all modes being represented
better than they were with the actual inputs alone.

Second, let us consider a case in which the input vectors
are not i.i.d., as is the case for an adaptive transversal filter
whose inputs z(n) are highly correlated. for example. Let
the autocorrelation of such an input signal be given by

Rz{m) £ Elz(n)z(n — m)] = o™ < 1.

Now let us investigate the structure of R} in the limit that
N gets large. In this circumstance, we can take the quanti-
ties rm = X} Xk—m to have a Gaussian distribution and to
be independent of xx. The expected values of these quan-

tities are simply E[rm] = NVa!™ Moreover, we will make
use of the approximations (valid for V 3> 1 — «) that

E[XA£TXT] = E [XigigT X7
E [X,f.xr] ~ F [X.-g;xr] .

where

(113

E[XTX,] T E[XTx] =[000---04a]".

Z:
Under these assumptions, (6) becomes
Ri~(1+a’)R—-of {xkxf_l + xk..le]

=(1-a)ly, i=1,2,---,N -1



This is quite a remarkable result. Take, for example, the
case in which @« = 0.9 and N = 50. Since the ratio of
the smallest eigenvalue of the input covariance matrix to
the trace of that matrix is approximately 1:1000, we would
expect that the weight vector component in the direction
of the corresponding eigenvector would converge about one
thousand times as slow as the weight vector component in
the dominant input direction. Applying just the first auxil-
lary input to our adaptive filter, however, we would expect
optimal NLMS convergence under the same circumstances.

PRACTICAL CONSIDERATIONS

In this section, algorithmic details and computational com-
plexity will be addressed. In order to refer to the numerous
possible algorithms made available through the use of in-
put orthogonalization, a subscript notation is adopted. In
general, the NLMSs algorithm, where S is some nonempty
set of integers such that $ C {0,1,---, N — 1}, results. The
integer elements of S correpond to the inputs used to drive
the adaptation process. For example, NLMSyq; is simply
the standard NLMS algorithm while NLMS ;) refers to the
algorithm in which only the second auxiliary input is used to
<rive the NLMS process. Due to the complexity of the gen-
<:.. NLMSs algorithm, we adopt an approximation which
= not exactly perform an orthogonalization after the first
.zr projection. For low projection orders, however, losses
erformance are very small compared to the gains in ef-
acy. A spectfication for the NLMS{ 3 process using the
inroximate orthogonalization is supplied below with the
su perscnpt asterisks omitted for clarity. At right are given
the approximate number of multiplications and d1v1510ns
required for each step in the case of a transversal adaptive

iuter.

X —
1 Xok = Xk; dok =dxk
2 yx = WiXok N
3 forj=1to1
xT_.x
~1.k
4 k= —"TJ——’—— 11
) va k_]xk B )
3 Xy b = Xjw1k = Xkej frk N
6 dik = dymrn ~ di~jfr.x 1
7  endfor
R eip =dix — WEXix N
N . (L€ k X .
9 Wiy = Wi + -ﬂ—-fvi;é- N o1

XikXik

The output of the adaptive filter is denoted by yx. Note that
it is not necessary to explicitly construct the orthogonal
projection matrices to obtain any x;. A Schmidt orthog-
onalization, which is approximated in lines 4 and 5 above,
is likely to be a more practical alternative. In the case of
a transversal filter, the relationship between fi x and fi -1
provides for the minimal arithmetic requirements reported
for line 4.

Using the informal complexity notation commeon in the
literature in which the NLMS complexity is on the order of
2.V (i.e.,O[2N]), the complexity of NLMSy;y is O[(i +3).V]
for t > 0 and a transversal filter. The current recommenda-
tion is to limit the application of auxiliary inputs to the first
or perhaps second orthogonalization, as there is usually no
advantage of extending the concept further. For compari-
son, “fast” RLS methods have been reported with O[8.V],
also for a transversal filter. For N-input adaptive filters, of
course, the complexities will be significantly larger.

MISADJUSTMENT

The steady-state misadjustment behaviour of the NLMS
algorithm has been investigated thoroughly (see, for exam-
ple, [3] or [4]). The performance of this algorithm using
auxiliary inputs, however, is not a simple matter to quan-
tify. The difficulty arises due to the fact that the available
misadjustment formulas depend on the driving input and
the corresponding minimum mean squared error (MMSE).
The misadjustment of interest, however, is a function of the
actual inputs, x. and the corresponding MMSE. Under the
usual simplifying assumption that the additive noise is inde-
pendent of x and white, the misadjustment at convergence
can be written as

(7)

. . I .
where the weight error vector is defined as v = wo —w, and
€ is the additive noise in the assumed model (4). Unfortu-
nately, the standard NLMS misadjustment formula. namely,

M= = s£- applies only in the case in which the actual inputs

drive the NLMS process. In the case of auxiliary inputs. we

have
cforer]_
E] -4

but the connection between this expression and (7) is, in
general, difficult. As an example, however, let us consider
the case of NLMS;} applied to alarge .V (in absolute terms
and with respect to the input autocorrelation) transversal
filter. In this event, we may take f to be independent of x,
and E[fi] = R.(1)/R:(0), which gives us

i 2R:(0)R2(1)E [V xkv] xi—1]
2-70 [R2(0) + RZ(1)] £ [¢?]

M; =

Unfortunately, the second term on the right hand side of
this expression is problematic. It is clear, however, that the
misadjustment will be greater for NLMS(yy than for the
standard NLMS process. For i.i.d. input vectors, however,
it is easily shown that these two algorithms provide the
same misadjustment performance.

A SIMULATED EXAMPLE

In this section, the frequently utilized example of an adap-
tive equalizer as found in §9.13 of [2] is examined. Here, the
channel is modelled as a finite-duration impulse response
filter whose impulse response is given by

hff‘ ={ ;— [l#cos(u {n - ’))} , n= 1,‘7’.3
0, otherwise

We use W = 3.5, representing the most challenging case
considered in [2]. This value of ¥V results in an input co-
variance condition of 46.8 for .V == 11. The simulation here
copies that in [2] in all respects.

In Figure 1, the eigenvalues of the covariance matrices
of the vectors x} for 1 = 0.1.2 are displaved. We observe
that the estimated condition of R} is more than ten times
smaller than that of the true covariance matrix. The eigen-
values here were estimated based on 10* input samples.

Figure 2 shows the simulated learning curves of the
NLMSyyy algorithms for 1 = 0.1,2. These curves (and
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those in Figure 3) represent an ensemble average over 200
independent trials. For clarity, the upper and lower curves
of Figures 2 and 3 are offset by +5 and —35 dB, respec-
tively. The convergence-controlling parameter, fi, assumed
the value of 0.5 for those cases illustrated in Figure 2. We
note that the initial slope of the learning curve (a nominal
measure of convergence) for NLMS(;} compares favourably
to that which would have been obtained had the inputs been
white. This slope may be calculated from (1) in the case
when all of the modal time constants are equal. For exam-
ple, for i = 0.5, a slope of —10loge/r =~ —0.3dB/sample
would be optimal. This slope is aiso in evidence in the
lowest line of Figure 3. This learning curve represents the
performance of the RLS algorithm in similar circumstances.
In this instance, the RLS “forgetting factor”, A, was chosen
in order to match the tracking performance of the NLMS
filter with & = 0.5 in accordance with [4]

21 = AN
2+ 1=V

A= (3)

The remaining curves of Figure 3 represent a compari-
son of the robustness of the NLMS¢;} and RLS algorithms.
Shown are the learning curves of LK&JMSD} with 7 = 0.6
and RLS with similar tracking behaviour according to (8)
(i.e.,A = 0.922). Note that while these curves exhibit a
similar initial slope, the small adaptive time constant re-
sulting from the current values of A and 2 has deleterious
effects for both algorithms. Essentially, the excitation is
such that the algorithms cannot acquire useful information
on the least excited modes using such a small time con-
stant. A longer time constant (smaller z or larger A) is re-
quired. For the NLMS(,y algorithm, this difficuity results in
a poorer steady-state misadjustment than would otherwise
be expected. For the RLS algorithm, on the other hand. in-
stability results. This suggests that the generalized NLMSs
algorithm can provide tracking performance comparable to
the similarly-tuned RLS method with better efficiency and
robustness.

Note that the initial inverse covariance estimates for the
RLS algorithm were taken to be (1 — A)Iy. This initializa-
tion, which may be considered poor, was used for purposes
of comparison. Proper initialization of the RLS algorithm
would result in better initial convergence, but is immaterial
when considering the tracking performance.

CONCLUSIONS

A method has been proposed to whiten the input vectors
for application to adaptive filters. It has been shown that
this approach is suitable for improving the convergence be-
haviour of NLMS adaptive filters. Based on the orthogonal-
ization of successive input vectors, the proposed technique
can reliably and efficiently enhance the performance of this
practical adaptive algorithm. Analysis has been provided
to demonstrate the basis for this method in two limiting
cases. The resulting complexities and misadjustment, have
been discussed, and the algorithm has been shown to con-
verge in a manner comparable to that of RLS adaptation.
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