
A Simplified Early Auditory Model with Application

in Speech/Music Classification

Wei Chu and Benôıt Champagne
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Abstract

The past decade has seen extensive research on audio classification
and segmentation algorithms. However, the effect of background noise
on the performance of classification has not been investigated widely.
Recently, an early auditory model [1] that calculates a so-called audi-
tory spectrum, has been employed in audio classification where excel-
lent performance is reported along with robustness in noisy environ-
ment. Unfortunately, this early auditory model is characterized by
high computational requirements and the use of nonlinear processing.
In this paper, by introducing certain modifications we propose a sim-
plified version of this model which is linear except for the calculation
of the square-root value of the energy. A speech/music classification
task is carried out to evaluate the classification performance wherein a
support vector machine (SVM) is used as the classifier. Compared to
a conventional FFT-based spectrum, both the original auditory spec-
trum and the proposed simplified auditory spectrum show more robust
performance in noisy test cases. Test results also indicate that, with
a reduced computational complexity, the performance of the proposed
simplified auditory spectrum is close to that of the original auditory
spectrum.

Keywords— Audio classification; early auditory model;
auditory spectrum; noise-robustness.

1 Introduction

Audio classification and segmentation can provide useful
information for both audio and video content understand-
ing. In recent years many studies have been carried out
on audio classification. In a work by Scheirer and Slaney
[2], to classify speech and music, as many as 13 features
have been employed which include 4Hz modulation energy,
spectral rolloff point, spectral centroid, spectral flux (delta
spectrum magnitude), ZCR, etc. By using audio features
such as energy function, ZCR, fundamental frequency, and
spectral peak tracks, Zhang and Kuo [3] proposed an ap-
proach to automatic segmentation and classification of au-
diovisual data. Lu et al. [4] proposed a two-stage robust
approach that is capable of classifying and segmenting an
audio stream into speech, music, environment sound, and
silence. In a recent work, Panagiotakis and Tziritas [5]
proposed an algorithm for audio segmentation and classifi-
cation using mean signal amplitude distribution and ZCR.

Although in some previous research the background noise
has been considered as one of the audio types or as a com-
ponent of some hybrid sounds, the effect of background
noise on the performance of classification has not been in-
vestigated widely. A classification algorithm trained using
clean test sequences may fail to work properly when the ac-
tual testing sequences contain background noise with cer-
tain SNR levels (see test results in [6] and [7]). The so-called

early auditory model proposed by Wang and Shamma [1] is
proved to be robust in noisy environment due to an inherent
self-normalization property which causes noise suppression.
Recently, this early auditory model has been employed in
audio classification and excellent performance has been re-
ported in [6] and [7]. However, this model is characterized
by high computational requirements and the use of nonlin-
ear processing. It would be desirable that this early audi-
tory model be simplified, or even approximated in frequency
domain wherein efficient FFT algorithms are available.

In this paper, by introducing certain modifications, we
propose a simplified version of this early auditory model
which is linear except for the calculation of the square-
root value of the energy. To evaluate the classification per-
formance, a speech/music classification task is carried out
wherein a support vector machine (SVM) is used as the clas-
sifier. Compared to a conventional FFT-based spectrum,
both the original auditory spectrum and the proposed sim-
plified auditory spectrum show more robust performance
in noisy test cases. Experimental results also show that,
in spite of its reduced computational complexity, the per-
formance of the proposed simplified auditory spectrum is
close to that of the original auditory spectrum.

The paper is organized as follows. Section 2 briefly intro-
duces the early auditory model [1] considered in this work.
A simplified version of this model is proposed in Section
3. Section 4 explains the extraction of audio features and
the setup of the classification tests. The test results are
presented in Section 5.

2 Early Auditory Model

The auditory spectrum used in this work are calculated
from a so-called early auditory model introduced in [1] and
[8]. This model, which can be simplified as a three-stage
processing sequence (see Fig. 1), describes the transfor-
mation of an acoustic signal into an internal neural rep-
resentation referred to as auditory spectrogram. A signal
entering the ear first produces a complex spatio-temporal
pattern of vibrations along the basilar membrane (BM). A
simple way to describe the response characteristics of the
BM is to model it as a bank of constant-Q highly asymmet-
ric bandpass filters h(t, s), where t is the time index and s
denotes a specific location on the BM (or equivalently, s is
the frequency index).

At the next stage, the motion on the BM is transformed
into neural spikes in the auditory nerves and the biophysical
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process is modeled by the following three steps: a temporal
derivative which is employed to convert instantaneous mem-
brane displacement into velocity, a nonlinear sigmoid-like
function g(·) which models the nonlinear channel through
the hair cell, and a lowpass filter w(t) which accounts for
the leakage of the cell membranes [1].

At the last stage, a lateral inhibitory network (LIN) de-
tects discontinuities along the cochlear axis s. The opera-
tions can be effectively divided into the following steps: a
derivative with respect to the tonotopic axis s that mimics
the lateral interaction among LIN neurons, a local smooth-
ing v(s) due to the finite spatial extent of the lateral in-
teractions, a half-wave rectification (HWR) modeling the
nonlinearity of the LIN neurons, and a temporal integration
which reflects the fact that the central auditory neurons are
unable to follow rapid temporal modulations [1].

These operations effectively compute a spectrogram of
an acoustic signal. At a specific time index t, the output
y5(t, s) is referred to as an auditory spectrum. For simplic-
ity, the spatial smoothing v(s) is ignored in the implemen-
tation [1].

Figure 1. Schematic description of the early auditory
model [1]

3 Simplified Early Auditory Model

Due to a complex computation procedure and the use
of nonlinear processing in the above early auditory model,
the computational complexity of the auditory spectrum is
expected to be much higher than that of a conventional
FFT-based spectrum. It is thus desirable that the model
be simplified.

3.1 Pre-emphasis and Nonlinear Compres-
sion

This early auditory model is proved to be noise-robust
due to an inherent self-normalization property [1]. Accord-
ing to the stochastic analysis carried out in [1], the following
relationships hold

E[y5(t, s)] = E[y4(t, s)] ∗t Π(t)
E[y4(t, s)] = E[g′(U)E[max(V, 0)|U ]]
V = (∂tx(t)) ∗t ∂sh(t, s)
U = (∂tx(t)) ∗t h(t, s)

(1)

where E denotes statistical expectation, E[y5(t, s)] is the
output average auditory spectrum, Π(t) is a temporal inte-
gration function, and ∗t denotes time-domain convolution.
According to [1], E[y4(t, s)] is a quantity that is propor-

tional to the energy1 of V and inversely proportional to
the energy of U . The definitions of U and V given in (1)
further suggest that the auditory spectrum is an averaged
ratio of the signal energy passing through differential fil-
ters ∂sh(t, s) and cochlear filters h(t, s), or equivalently, the
auditory spectrum is a self-normalized spectral profile [1].
Considering that the cochlear filters are broad while the
differential filters are narrow and centered around the same
frequencies, this self-normalization property leads to unpro-
portional scaling for spectral components of the sound sig-
nal. Specifically, a spectral peak receives a relatively small
normalization factor whereas a spectral valley receives a
relatively large normalization factor. The difference in the
normalization is known as spectral enhancement or noise
suppression [1].

In case when the hair cell nonlinearity is replaced by
a linear function, e.g., g′(x) = 1 (see Fig. 1), we have
E[y4(t, s)] = E[max(V, 0)] [1]. E[y4(t, s)] is the spectral
energy profile of the sound signal x(t) across the channels
indexed by s [1]. With a linear function g(x), it is found in
our test that if the input signal is not pre-emphasized, the
classification performance of the modified auditory spec-
trum is close to that of the original auditory spectrum. A
close performance may suggest that a scheme for noise sup-
pression is implicitly part of this modified auditory model.
However, according to [1], with a linear function g(x), the
whole processing scheme is viewed as estimating the en-
ergy resolved by the differential filters alone without self-
normalization. It seems that the self-normalization as men-
tioned in [1] cannot be employed to explain the noise sup-
pression for this modified model. The actual cause of the
noise suppression in this case is under investigation.

3.2 HWR and Temporal Integration

Referring to Fig. 1, the LIN stage consists of a derivative
with respect to the tonotopic axis s, a local smoothing v(s),
a half-wave rectification, and a temporal integration (imple-
mented via lowpass filtering and a downsampling at a frame
rate [9]). The HWR and temporal integration serve to ex-
tract a positive quantity corresponding to a specific frame
and a specific channel (i.e., a component of the auditory
spectrogram). A simple way to interpret this positive quan-
tity is that it is the square-root value of the frame energy
in a specific channel. Based on these considerations, an ap-
proximation to the HWR and temporal integration is pro-
posed where the original processing is replaced by the cal-
culation of the square-root value of the frame energy. Fig.
2 shows the auditory spectrograms of a one-second speech
clip calculated using the original early auditory model and
the modified model (i.e., the original model with proposed
modifications on HWR and temporal integration). The two
spectral-temporal patterns are very close.

1E[y4(t, s)] is related to E[max(V, 0)], a quantity proportional
(though not necessarily linearly) to the standard deviation σ of V
when V is zero mean. In [1], quantity E[max(V, 0)] is referred to as
energy considering the one-to-one correspondence between σ and σ2.
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(a)Original model
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(b)Modified model

Figure 2. Auditory spectrograms of a one-second speech
clip.

3.3 Simplified model

By introducing modifications to the original processing
steps of pre-emphasis, nonlinear compression, half-wave
rectification, and temporal integration, we propose a sim-
plified version of this model. Except for the calculation of
the square-root value of the energy, this simplified model is
linear. Considering the relationship between time-domain
energy and frequency-domain energy as per Parseval Theo-
rem [10], it is possible to further implement this simplified
model in the frequency domain so that significant reduc-
tions in computational complexity can be achieved. Such
a self-normalized FFT-based model has been further pro-
posed and applied in a speech/music/noise classification
task in [11].

4 Audio Classification Test

4.1 Audio Sample Database

To carry out performance test, a generic audio database
is built which include speech, music and noise clips. Music
clips include five different types, i.e., blues, classical, coun-
try, jazz, and rock. Eleven types of noise, which include

speech babble, car interior noise, copy center noise, etc.,
are employed to form the noise set. These noise data are
used to generate noisy speech and noisy music clips with
different SNR values. The training set and testing set each
contain 1200 one-second speech clips and 1200 one-second
music clips. Testing set also contains 1200 noise clips. The
sampling rate is 16 kHz.

In the following, a clean test refers to a test wherein
both the training set and testing set contain clean speech
and clean music. A test with a specific SNR value refers
to a test wherein the training set contains clean speech and
clean music while the testing set contains noisy speech and
noisy music (both with that specific SNR value).

4.2 Audio Features

In this work, audio features are extracted based on the
aforementioned auditory spectrum and FFT-based spec-
trum. Using auditory spectrum data, mean and vari-
ance are further calculated in each channel over a one-
second time window. Corresponding to each one-second
audio clip, the auditory feature set is a 256-dimensional
mean+variance vector.

For FFT-based spectrum, narrow-band (30 ms) spectrum
is calculated using 512-point FFT with an overlap of 20
ms. To reduce the dimension of the obtained power spec-
trum vector, we may use methods like principal component
analysis (PCA). In this work, to simplify the processing,
we propose a simple grouping scheme to reduce the dimen-
sion. The grouping is carried out according to the following
formula

Y (i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X(i) 1 ≤ i ≤ 80

1
2

1∑
k=0

X(2i − 80 − k) 81 ≤ i ≤ 120

1
8

7∑
k=0

X(8i − 800 − k) 121 ≤ i ≤ 132

(2)

where i is the frequency index, and X(i) and Y (i) rep-
resent the power spectrum before and after grouping, re-
spectively. This grouping scheme gives emphasis to low-
frequency components. Based on this grouping scheme, a
set of 256 power spectrum components is transformed into
a 132-dimensional vector. After discarding the first and the
last two components, and applying logarithmic operation,
we obtain a 128-dimensional power spectrum vector. Fur-
ther, mean and variance are calculated similarly on different
frequency indices over a one-second time window.

4.3 Implementation

In this work, we use a Matlab toolbox developed by
Neural Systems Laboratory, University of Maryland [9], to
calculate the auditory spectrum. Relevant modifications
are introduced to this toolbox to meet the needs of our
study.
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The support vector machine was recently employed in
audio classification task [6] [12]. In this work, we use
SVMstruct algorithm [13]– [15] to carry out the classifica-
tion task.

5 Performance Analysis

The FFT-based spectrum features are used as a reference
to compare the performance of the auditory spectrum fea-
tures. The test results are listed in Table I, where “AUD”,
“AUD S” and “FFT” represent the original auditory spec-
trum, the simplified auditory spectrum, and the FFT-based
spectrum respectively.

TABLE I

Classification error rate (%) for the auditory spectrum

(AUD), its simplified version (AUD S), and the FFT-based

spectrum (FFT).

SNR (dB) AUD AUD S FFT
∞ 2.63 3.04 1.42
20 3.04 3.08 32.21
15 3.42 3.75 40.67
10 6.00 7.38 44.17
5 18.25 24.00 46.13

Average 6.67 8.25 32.92

Although the conventional FFT-based spectrum provides
an excellent performance in clean test case, its performance
degrades rapidly and significantly as the SNR decreases,
leading to a very poor overall performance. Compared to
the conventional FFT-based spectrum, the original audi-
tory spectrum and the proposed simplified auditory spec-
trum are more robust in noisy test cases. Results in Table I
also indicate that, with a reduced computational complex-
ity, the performance of the proposed simplified auditory
spectrum is close to that of the original auditory spectrum,
especially when SNR≥10 dB.

6 Conclusions

In this paper, we have proposed a simplified version of
an early auditory model [1] by introducing modifications
to the original processing steps of pre-emphasis, nonlinear
compression, half-wave rectification (HWR), and tempo-
ral integration. Except for the calculation of the square-
root value of the energy, the proposed simplified early au-
ditory model is linear. To evaluate the classification perfor-
mance, a speech/music classification task has been carried
out wherein a support vector machine is used as the clas-
sifier. Compared to the conventional FFT-based spectrum,
the original auditory spectrum and the proposed simplified
auditory spectrum are more robust in noisy test cases. Ex-
perimental results also indicate that, in spite of a reduced
computational complexity, the performance of the proposed
simplified auditory spectrum is close to that of the original
auditory spectrum.
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