
Further Analysis of the β-Order MMSE STSA
Estimator for Speech Enhancement

Eric Plourde and Benoı̂t Champagne
Department of Electrical and Computer Engineering

McGill University
Montreal, Quebec, Canada, H3A 2A7

Email: eric.plourde@mail.mcgill.ca, benoit.champagne@mcgill.ca

Abstract— In Bayesian approaches for speech enhancement,
the clean speech is estimated by minimizing the expectation of
a desired cost function. In the β-order MMSE STSA (βSA)
Bayesian estimator, the cost function is the squared difference
between the estimated and actual clean speech short-time spectral
amplitude (STSA), both to the power β > 0. In this paper we
propose an extension of the analysis of the βSA estimator for
values of β < 0. We find that when β < 0, a normalization
occurs in the βSA estimator which produces more noise reduction
as β is reduced at the expense of additional speech distortion.
Furthermore, the βSA estimator with β = −1 slightly outper-
forms the well known MMSE STSA and MMSE log-STSA (LSA)
estimators in terms of the PESQ, for the two noises studied, while
the overall MOS appreciation for β = −1 is found to be better
than both MMSE STSA and LSA for white noise.

I. INTRODUCTION

In speech enhancement, the general objective is to remove
a certain amount of noise from a noisy speech signal while
keeping the speech component as undistorted as possible.
Many approaches have been proposed to achieve this goal,
such as the spectral subtraction, Bayesian or subspace ap-
proaches [1]. In Bayesian approaches, an estimate of the clean
speech is derived by minimizing the expectation of a defined
cost function. Well-known Bayesian estimates are minimum
mean square error (MMSE) estimates of the short-time spectral
amplitude (STSA) derived by Ephraim and Malah ([2], [3]).
In the so-called MMSE STSA estimator [2], the chosen cost
function involves the difference between the estimated and
actual clean speech STSA, while in MMSE log-STSA (LSA)
[3], the difference is taken between the logarithm of the
estimated and actual clean speech STSA. Recently, these
estimators were generalized under the β-order MMSE STSA
(βSA) estimator [4] which applies a positive exponent, β, to
both the actual and estimated clean speech STSA.

In this paper, we propose an extension of the βSA estimator
analysis performed in [4] to negative values of β. After
exposing general aspects of MMSE speech enhancement, we
show that for a decreasing β, both the speech distortion
and noise reduction increases. Furthermore, compared to the
MMSE STSA and LSA estimators, the βSA estimator with
β = −1 yields better results in terms of PESQ for the two
noises studied while the overall MOS appreciation is found to
be better than both MMSE STSA and LSA for white noise.

II. THE β-ORDER MMSE STSA ESTIMATOR

Let the observed noisy speech be

y(t) = x(t) + n(t) 0 ≤ t ≤ T (1)

where x(t) is the clean speech, n(t) is the additive noise and
[0, T ] is the observation interval. Let Yk, Xk and Nk denote the
kth complex spectral components of the noisy speech, clean
speech and noise respectively.

In Bayesian STSA estimation for speech enhancement, the
goal is to obtain the estimator X̂k of Xk � |Xk| which
minimizes E{C(Xk, X̂k)} where C(Xk, X̂k) is a chosen cost
function and E denotes statistical expectation. In MMSE-
STSA, C(Xk, X̂k) = (Xk −X̂k)2 while in LSA, C(Xk, X̂k) =
(log(Xk) − log(X̂k))2.

The MMSE-STSA estimator was generalized under the
βSA estimator in [4]1 by modifying the cost function as
C(Xk, X̂k, β) = (X β

k − X̂ β
k )2 where the exponent β is a

positive real parameter. The βSA estimator is expressible as:

X̂k = Gk |Yk| (2)
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√
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[
Γ
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β

2
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(3)

with:

υk =
ξk

1 + ξk
γk, ξk =

E{Xk
2}

E{|Nk|2}
, γk =

|Yk|2
E{|Nk|2}

and where Γ(x) is the gamma function and M(a; b; z) is the
confluent hypergeometric function. Moreover, γk − 1 can be
interpreted as the instantaneous SNR while ξk acts as a long
term estimator of the SNR.

When β = 1, the βSA estimator is identical to the MMSE
STSA estimator. Furthermore, You et al. suggested in [4] that
when β → 0, the βSA estimator is equivalent to the LSA
estimator. In fact, when comparing Equation (27) in [5] and
Equation (19) in [3], one concludes that the two estimators
are actually identical. Therefore, the MMSE STSA and LSA
estimators are both subsets of the more general βSA estimator.

While only the case β > 0 was considered in [4], the
resulting expression for the gain in (3) is in fact valid for

1An equivalent estimator for the power spectra of the clean speech, X̂ 2
k ,

was also derived in [5] and termed Generalized MMSE.
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β > −2. Therefore, the study for the case −2 < β < 0 is
missing in [4] and will be the subject of the remainder of this
paper.

III. THE CASE β < 0

A. A normalization interpretation

In the case −2 < β < 0, β = − |β| and the βSA cost
function becomes:

C(Xk, X̂k, β) =

(
1

X |β|
k

− 1

X̂ |β|
k

)2

(4)

=

(
X̂ |β|

k −X |β|
k

X |β|
k X̂ |β|

k

)2

(5)

=
C(Xk, X̂k, |β|)(

XkX̂k

)2|β| (6)

Therefore, we see that using a negative β amounts to nor-
malizing the cost function for a positive β, i.e. C(Xk, X̂k, |β|),
by
(
XkX̂k

)2|β|
. The denominator in (6) can be thought of

as an approximation of the power spectrum to the exponent
2 |β|. Therefore, taking β < 0 has the effect of normalizing the
cost function by the estimated power spectrum to the exponent
2 |β|. This normalization penalizes the estimation error more
heavily when the power spectrum is small, which corresponds
to spectral valleys, than when it is large, i.e. spectral peaks.
Therefore, it takes advantage of the masking properties of the
human ear: in fact, more noise is likely to be audible in the
speech spectral valleys (i.e. for low speech spectral amplitude
values) than in the speech spectral peaks where the noise is
more likely to be masked by the speech. The βSA estimator
for β < 0 will therefore favor a more accurate estimation of
the speech in the spectral valleys.

It is worth noting that the βSA cost function for the case
β < 0 is closely related to one proposed by Loizou in [6]:

C(Xk, X̂k, q) =
(Xk − X̂k)2

X q
k

(7)

where q is a real, positive or negative, parameter2. Loizou’s
motivation to derive that estimator was in fact to exploit the
masking properties of the ear. In fact, the arguments we just
exposed were also proposed by Loizou in [6] for q > 0. Both
estimator will therefore have a similar behavior and favor
an accurate estimation of the speech in the spectral valleys.
However, in the case of (6), a |β| exponent appears in the
numerator and, also, the normalization is performed using both
the estimated and actual speech spectral amplitudes.

B. Analysis of the estimator

1) Gain vs. instantaneous SNR: Figure 1 shows the gain,
20 log(Gk), versus the instantaneous SNR, γk − 1, when
ξk is fixed, for several estimators: MMSE STSA (or βSA
with β = 1), LSA (or βSA with β → 0) and βSA with

2In [6], the cost function is defined using p = −q.

β = −0.5,−1,−1.5. As can be seen, the gain decreases as β
decreases.
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Fig. 1. Estimator gain (20 log(Gk)) vs instantaneous SNR (γk − 1) (ξk =
0dB)

For β > 0, the gain is a monotonically decreasing function
of γk − 1. However, when β < 0, the βSA gain is not a
monotonically decreasing function anymore. Furthermore, in
[4], it was noted that the gain tended to the Wiener filter gain
(which is ξk/(1 + ξk)) as the instantaneous SNR increased.
For β < 0, we see that it is still the case, however, the gain
can now become less than the Wiener filter’s.

2) Noise reduction vs. speech distortion: As observed in
Fig. 1, the gain decreases as β decreases, therefore, more noise
reduction and also more speech distortion should be expected
for lower β values. In order to study the speech distortion
and noise reduction properties of the estimator, we adapted
distortion metrics presented in [7] for the time domain to act
respectively as a speech distortion metric (Υ(Gk)) and noise
reduction metric (Ψ(Gk)) in the frequency domain:

Υ(Gk) = E
{

[Xk − GkXk]2
}

(8)

Ψ(Gk) =
1

E
{

[Gk |Nk|]2
} (9)

In Eq. 8, Υ(Gk) measures the clean speech distortion energy
and, therefore, its value increases for increasing speech distor-
tions. In Eq. 9, Ψ(Gk) reflects the inverse of the noise energy
remaining in the enhanced speech and increases for increasing
noise reduction.

Figure 2 plots Υ(Gk) and Ψ(Gk) vs. the frequency for
different gains Gk as given by the associated estimators
(average of 30 sentences, white noise, SNR = 0 dB).

As expected, we can see that the speech distortion increases
as β is decreased while the noise reduction also increases.
Therefore, the βSA estimator introduces more speech distor-
tion energy but also performs better at noise reduction as β
is decreased. The use of negative β enables extension of the
trade-off between speech distortion and noise reduction. Since
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Fig. 2. (a) Speech distortion metric vs. frequency (0 - 1000 Hz) (b) Noise
reduction metric vs. frequency (0 - 4000 Hz) (average of 30 sentences, white
noise, SNR = 0 dB) (– – – MMSE STSA; - - - LSA; —— βSA, β = −1).

the energy of the speech signal is mainly at low frequencies,
the speech distortion energy is also mainly located at low
frequencies.

It was found, through informal listening tests, that the
value of β = −1 was a good compromise between noise
reduction and speech distortion, on the other hand, serious
speech distortions were introduced when β became smaller
than −1.5.

C. PESQ and MOS test results

We present comparative results for three estimators: MMSE
STSA (or βSA with β = 1), LSA (or βSA with β → 0)
and βSA with β = −1. Thirty sentences from the TIMIT
database, each sampled at 8 kHz, were used where 3 men and 3
women each spoke 5 sentences. Two types of noise were used
from the NOISEX database (white and buccaneer-1 noises, the
latter having mainly low frequency noise and a high frequency
component) [8]. The observation frames were of 32ms and a
50% overlap was used between all frames in the overlap-add
method used for the reconstruction of the enhanced speech.
All algorithms used the decision-directed approach for the
estimation of ξk [2] and a voice activity detector proposed in
[9] was used to evaluate the noise spectral amplitude variance.

Table I presents the PESQ results on a scale from 1 to
4.5, with 4.5 being the best score. As can be seen, the βSA
with β = −1 slightly outperforms MMSE STSA and LSA, in
terms of PESQ, for almost all cases, being equivalent to LSA
for buccaneer-1 noise at 10 dB SNR.

While PESQ is widely used to assess speech enhancement
algorithm performances, it cannot handle all artifacts caused
by such algorithms [10] and further assessment needs to be
made using subjective tests.

In order to compare the results obtained with PESQ, we
performed informal MOS subjective listening tests on 6 sub-
jects using a subset of 4 sentences from the initial 30, each
spoken by a different individual (2 men, 2 women). Therefore,

TABLE I

PESQ RESULTS FOR MMSE STSA, LSA AND βSA (β = −1)

ESTIMATORS.

Noisy MMSE LSA βSA
speech STSA (β = −1)

white
0 dB 1.29 1.39 1.44 1.47
5 dB 1.37 1.60 1.70 1.72

10 dB 1.58 1.83 1.95 1.96

buccaneer-1
0 dB 1.29 1.46 1.53 1.57
5 dB 1.44 1.67 1.78 1.81

10 dB 1.67 1.91 2.03 2.03

the average for each final MOS score is made over 24 scores.
As suggested by ITU-T P.835 [11], MOS tests included an
assessment of the speech distortion (5 = Not distorted, 1 =
Very distorted), background noise (5 = Not noticeable, 1 =
Very intrusive) and overall speech quality (5 = Excellent, 1 =
Bad). Tests were performed in an isolated acoustic room using
beyerdynamic DT880 headphones.

TABLE II

MOS RESULTS FOR MMSE STSA, LSA AND βSA (β = −1)

ESTIMATORS (SNR = 0DB).

Noisy MMSE LSA βSA
speech STSA (β = −1)

white
Speech 3.9 2.4 2.9 2.8

Background 1.2 2.2 2.5 2.9
Overall 1.7 2.1 2.5 2.7

buccaneer-1
Speech 3.7 2.8 3.1 2.8

Background 1.2 2.4 2.8 2.9
Overall 1.8 2.4 2.8 2.5

When comparing LSA and βSA with β = −1 MOS test
results (Table II), we see that the latter demonstrated more
speech distortion but also more noise reduction than the former
for both noises, as expected from section III-B. However, the
overall perception was not the same for both noises. In fact,
βSA with β = −1 was thought to be better than LSA for
white noise but the inverse was found for buccaneer-1 noise.
Also, based on Figure 2, MMSE STSA should have yielded
less speech distortion than the other two estimators, however,
this is not what we have observed. This could be due to the
fact that, when a frame overlap of 50% is used, a perceivable
echo is present in the MMSE STSA enhanced signal which
is quite less perceivalble in LSA and βSA and may not have
been well taken into account by Equation 8.

IV. CONCLUSION

In this paper, we proposed an extension of the βSA esti-
mator analysis for β < 0. We showed a normalization effect
as well as an increasing noise reduction for a decreasing β
accompanied by increasing speech distortion. Furthermore,
when setting β = −1 in the βSA estimator, we showed that it
achieved better results in terms of PESQ than MMSE STSA
and LSA. Finally, overall MOS appreciation for β = −1
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is found to be better for white noise but inferior than LSA
for the buccaneer-1 noise. One interesting avenue will be to
investigate the use of different values of β > −2 across the
frequency axis.
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