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ABSTRACT

We consider the problem of estimating the crossing points of a known
carrier signal with a Gaussian random process, given uniformly-
spaced, noisy samples of the random process. We derive the maxi-
mum a-posteriori (MAP) estimator for the problem, along with the
Cramér-Rao bound (CRB) on estimator variance. We also derive
an alternate, computationally efficient estimator using a minimum
mean-squared error (MMSE) approach, and show that this MMSE
estimator approximates the MAP estimator in the high-SNR regime.
Simulations show that both MMSE and MAP estimators approach
the CRB and outperform alternative estimators based on inverse lin-
ear and Lagrange interpolating polynomials.

Index Terms— MAP Estimation, Least-Mean-Square Methods,
Level-Crossing Problems, Pulse-Width Modulation

1. INTRODUCTION

The problem of accurately estimating the crossing points of an un-
known signal with a known carrier occurs in several contexts, in-
cluding the natural-sampling problem in Pulse-Width Modulation
(PWM) [1, 2] and zero-crossing FM demodulation [3]. Often, par-
ticularly in discrete-time implementations of the above applications,
only noisy uniformly-spaced samples of the random signal are avail-
able, along with a statistical characterization.

Several practical solutions to this problem may be found in the
literature, ranging in complexity from straight-line interpolation be-
tween samples, to higher-order interpolators using Lagrange poly-
nomials [1]. A summary of methods used in practice may be found
in [2, 4]. These approaches do not take advantage of any statistical
knowledge of the underlying signals. While these methods perform
well in an oversampled regime when the random signal is low-pass
in nature, they do not generalize to arbitrary signal models, and may
not be as computationally efficient as alternative methods.

This paper approaches the discrete-time crossing-point estima-
tion problem from a statistical perspective under the maximum a-
posteriori (MAP) framework. Using this approach, we derive the
MAP estimator and the Cramér-Rao bound (CRB) on estimator vari-
ance for the problem. We introduce an alternative estimator using
the minimum mean-squared error (MMSE) estimator for the random
signal, and show it to be an approximation to the MAP estimator un-
der high-SNR conditions. We present simulated results using the
sinusoid-crossing problem in click modulation [5] as a scenario. We
simulate both the MAP and MMSE estimators, and compare their
performance with both the Cramér-Rao bound (CRB) and the exist-
ing approaches mentioned above. The MAP and MMSE estimators
approach the CRB and outperform the alternative estimators we con-
sider.
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2. PROBLEM FORMULATION

We first present the discrete-time crossing-point estimation problem
in its general form. We then describe a simplified approach com-
monly used in practice.

2.1. Discrete-Time Crossing-Point Estimation Problem

Let s(t) be a continuous, real-valued, wide-sense stationary (WSS)
Gaussian random process with zero mean, autocorrelation function
rs(t − u) = E{s(t)s(u)}, and variance σ2

s = rs(0). Let y(t) be
a known, deterministic signal. We wish to determine the crossing-
points of s(t) and y(t), or equivalently, the zero-crossings of z(t)
defined as follows:

z(t) = s(t) − y(t). (1)

In order to estimate these points, we are provided with a set of K
consecutive uniformly-spaced noisy samples from s(t). We define
these noisy samples as x[k], i.e.

x[k] = s(kTs + Td) + n[k] k ∈ {0, 1, . . . ,K − 1} (2)

where Ts denotes the sampling period, Td is a known sampling off-
set, and n[k] is an additive measurement noise. We model n[k] as a
WSS discrete-time Gaussian random process with zero mean and au-
tocorrelation rn[k− l] = σ2

nδ[k− l], where σ2

n denotes the variance
and δ is the Kronecker delta function.

The discrete-time crossing-point estimation problem may be
stated as follows. Given y(t) and K samples x[k], estimate the
points τ0 < τ1 < · · · satisfying s(τi) = y(τi), or equivalently,
z(τi) = 0.

Because K is arbitrary and the number of crossings is not lim-
ited, the complexity of this problem is unbounded. In the follow-
ing section, we describe a two-step approach which simplifies the
discrete-time crossing-point estimation problem.

2.2. Simplified Discrete-Time Crossing-Point Estimation

Following published approaches to the discrete-time crossing-point
estimation problem [1, 2, 4] we impose a two-step structure on our
solution to the general problem. We first define ξ[k] as follows:

ξ[k] = x[k] − y(kTs + Td) (3)

In the first step, ξ[k] is monitored for changes in sign. When the
noise term is sufficiently small, ξ[k] ≈ z(kTs + Td). Thus, neglect-
ing the possibility that multiple zero crossings occur within each
sampling interval, sign changes in ξ[k] coarsely bound each zero
crossing τi to a single sample interval. When ξ[k − 1]ξ[k] < 0, we
have:

τi ∈ Ti , ([k − 1]Ts + Td, kTs + Td) (4)
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The vanishing probability that the zero crossing occurs precisely on
a sampling instant is neglected.

The second step of the simplified discrete-time crossing-point
estimation problem is defined as follows. Let the vector x denote
M = M1 +M2 consecutive samples from x[k] surrounding a single
crossing point τi:

x = [ x[k −M1], . . . , x[k − 1], x[k], . . . , x[k +M2 − 1] ]T (5)

Given y(t), the sample vector x, and the bracketing interval (4) for
the ith zero crossing of z(t), find an estimate τ̂i of the true crossing
time τi.

In the sequel, we focus on the second step of the simplified prob-
lem in order to exploit statistical knowledge of x.

3. DERIVATION OF MAP AND MMSE ESTIMATORS

Let f(τ |x) be the probability density function (pdf) of a zero cross-
ing of z(t) at time t = τ ∈ T conditioned on the sample vector x.
The MAP estimate of τ maximizes this function, i.e.:

τ̂map = argmax
τ

f(τ |x)

Let f(τ ) represent the pdf of a zero crossing at time τ . Further,
let f(x|τ ) be the conditional probability density function of sample
vector x given a zero crossing at τ . The MAP estimate τ̂map satisfies
the canonical MAP equation: [6]

d

dτ
log f(x|τ )

˛

˛

˛

˛

τ=τ̂map

= −
d

dτ
log f(τ )

˛

˛

˛

˛

τ=τ̂map

We define S(x|τ ) as follows:

S(x|τ ) ,
d

dτ
log f(x|τ ) (6)

We also assume an uniform (uninformative) a-priori distribution f(τ ),
although generalizations are possible. (For example, the a-priori dis-
tribution f(τ ) of zero crossings is well-studied [16, 17] when y(t)
is a sinusoid.) When f(τ ) is uniform, d log f(τ )/dτ = 0 and the
MAP estimate satisfies

S(x|τ )|τ=τ̂map
= 0 (7)

We express componentwise derivatives of scalars, vectors, and ma-
trices (which are always with respect to τ ) using a dot notation. For
example, ẏ(τ ) , dy(τ )/dτ .

In order to express (7), we require the pdf f(x|τ ). We begin
by considering the unconditional sample-vector pdf f(x). We then
condition on τ , giving f(x|τ ). Expressions for these distributions
are derived in the next section.

3.1. Sample Vector Distribution

Consider the discrete-time random process x[k] given by (2). Be-
cause s(t) and n[k] are statistically independent, jointly Gaussian
processes, x[k] is Gaussian with zero mean, variance σ2 = σ2

s +σ2

n,
and autocorrelation r[k] = rs(kTs) + σ2

nδ[k]. The pdf f(x) takes
the standard Gaussian form:

f(x) =
1

(2π)M/2|Σ0|1/2
exp

„

−
1

2
x

T Σ−1

0 x

«

where Σ0 is anM ×M symmetric Toeplitz covariance matrix. We
introduce the correlation vector function ρ(t) defined as follows:

ρ(t) =

2

6

4

rs (t− [k −M1]Ts − Td)
...

rs (t− [k +M2 − 1]Ts − Td)

3

7

5
.

Now, Σ0 may be expressed in terms of ρ(t) as

Σ0 =

2

6

4

ρ ([k −M1]Ts + Td)
T

...

ρ ([k +M2 − 1]Ts + Td)
T

3

7

5
+ σ2

nI (8)

where I is theM ×M identity matrix.
We now consider the distribution of the vector x conditioned on

a zero crossing of z(t) at τ . From (1), s(τ ) = y(τ ), and we form
the augmented sample vector

xτ = [ xT , s(τ ) ]T = [ (nT + s
T ) , s(τ ) ]T (9)

where n and s denote, respectively, the components of x due to the
noise process n[k] and signal process s(t). As n and s are jointly
Gaussian, xτ is a Gaussian random vector with zero mean and co-
variance matrix Στ which may be expressed in partitioned form as
follows:

Στ =

»

Σ0 ρ(τ )

ρ(τ )T σ2

s

–

(10)

The conditional distribution of x given τ is equivalent to the addition
of a new random variable with a known value, i.e. s(τ ) = y(τ ). The
pdf f(x|τ ) is Gaussian with conditional covariance matrixΣ(τ ) and
conditional mean µ(τ ) defined as follows: [7]

Σ(τ ) =Σ0 − σ−2

s ρ(τ )ρT (τ ) (11)

µ(τ ) =ρ(τ )σ−2

s y(τ ) (12)

In the following development, we suppress dependence of y, ρ, Σ
and µ on τ to simplify notation. We have:

f(x|τ ) =
exp

`

− 1

2
(x− µ)T Σ−1(x − µ)

´

(2π)M/2|Σ|1/2
(13)

These expressions completely characterize the conditional dis-
tribution f(x|τ ). We now continue deriving the MAP estimator.

3.2. MAP Derivation

The MAP estimate of τ satisfies (7). In order to derive the MAP
estimator, we require an expression for S(x|τ ). Combining (13)
and (6), we have:

S(x|τ ) = −
1

2

d

dτ

h

log |Σ| + (x− µ)T Σ−1(x− µ)
i

(14)

To simplify this expression, we introduce the following definitions:

a = ρ
T Σ−1

ρ/σ2

s c = x
T Σ−1

ρ

b = ρ
T Σ−1

ρ̇/σ2

s d = x
T Σ−1

ρ̇ (15)

With some manipulations and elementary identities for differentiat-
ing matrix expressions, (14) may be expressed as follows:

S(x|τ ) = b−
(ay − c)(by − d) + ẏ(ay − c) + y(by − d)

σ2
s

(16)
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Due to the terms a, b, c, and d, this form for S(x|τ ) still depends
on the conditional covariance matrix Σ, which in turn depends on
τ . We may use the Sherman-Morrison-Woodbury formula [8] to
express Σ−1 in terms of Σ−1

0
:

Σ−1 = Σ−1

0 +
Σ−1

0
ρρ

T Σ−1

0

σ2
s − ρT Σ−1

0
ρ

(17)

This formula is valid provided that Σ0 is nonsingular (which may be
guaranteed by construction) and provided σ2

s 6= ρ
T Σ−1

0
ρ, which is

guaranteed if σ2

n 6= 0. Let:

a0 = ρ
T Σ−1

0 ρ/σ2

s c0 = x
T Σ−1

0 ρ

b0 = ρ
T Σ−1

0 ρ̇/σ2

s d0 = x
T Σ−1

0 ρ̇ (18)

We apply (17) to each of the equations (15) and express the result
using (18). Using these identities, (16) may be expressed as:

S(x|τ ) =
d0y

σ2
s

−
b0(a0y − c0)(y − c0)

σ2
s(1 − a0)2

(19)

+
b0σ

2

s + (d0 − ẏ)(a0y − c0) − yb0(y − c0)

σ2
s(1 − a0)

The MAP estimate τ̂MAP corresponds to roots of (19). In prac-
tice, zero-finding method such as Brent’s algorithm [9] or Newton’s
method may be applied.

Naı̈vely applied root-finding methods are both numerically sen-
sitive and computationally expensive. To design a more efficient
estimator, we will make a number of approximations in order to sim-
plify (19). In doing so, we will arrive at a MMSE formulation for
the problem.

3.3. MMSE Derivation

Consider the minimum mean-squared error (MMSE) estimate ŝ(τ )
of s(τ ) at arbitrary τ given the vector x of nearby samples. This
estimate is given by the Wiener-Hopf equation: [10]

ŝ(τ ) = ρ(τ )T Σ−1

0 x = c0

The expected mean-squared error for this estimate is given by: [10]

ǫ = σ2

s − ρ(τ )T Σ−1

0 ρ(τ ) = σ2

s(1 − a0)

As ǫ is a variance and Σ0 is nonnegative definite, ǫ ∈ [0, σ2

s ]. We
may consider ǫ to be a measure of confidence in ŝ(τ ). When x

consists of samples near τ , and assuming a modest oversampling
rate, we should expect this error to be small compared to σ2

s .
Due to the 2-step structure of our estimator, τ ∈ T . This bound

allows us to choose a vector x of nearby samples such that 1 − a0

is small over the region of possible zero crossings. When this is the
case, the second term on the right-hand side of (19) dominates. We
define the MMSE estimate τ̂mmse, which satisfies:

S(x|τ )|τ=τ̂MMSE
≈

b0(a0y − c0)(y − c0)

(1 − a0)2

˛

˛

˛

˛

τ=τ̂MMSE

≈
b0(y − c0)

2

(1 − a0)2

˛

˛

˛

˛

τ=τ̂MMSE

≈ 0 (20)

The approximated MAP estimate corresponds to solutions of this
equation. The two candidates are roots of b0 and y − c0. However,
as b0 is a function of τ and Σ−1

0
only, it does not involve the sample

vector in any way. This term may contribute only static solutions to
the estimator equation, which we may disregard.

Thus, the MMSE estimate satisfies:

τ̂mmse = argτ

h

x
T Σ−1

0 ρ(τ ) = y(τ )
i

(21)

This result relates the MMSE estimate of s(τ ) to the carrier signal. It
is comparable to the Wiener-Hopf equations, except that in contrast
to the usual situation, τ is unknown and y(τ ) is known.

Amore intuitive interpretation follows. The expression x
T Σ−1

0
ρ

defines a family of interpolating estimators for the unknown signal
s(τ ). When parameterized by the sample vector x, this estimator
is a function only of the time variable τ . We seek τ such that this
function equals the carrier function y(τ ).

Since both the carrier signal and ρ(τ ) are in general nonlinear
functions, a line-search method must once again be adopted.

3.4. Fundamental Performance Limits

The Cramér-Rao bound for the random parameter τ bounds the vari-
ance σ2

τ̂ of any unbiased estimator as follows: [6]

σ2

τ̂ ≥ [Eτ {Iτ}]
−1

(22)

where Eτ { · } denotes the statistical expectation operator with re-
spect to τ , and Iτ is the Fisher information for the random parameter
τ given as follows: [11]

Iτ = µ̇
T Σ−1

µ̇ +
1

2
tr

h

Σ−1Σ̇Σ−1Σ̇
i

(23)

This expression may readily be simplified using the notation intro-
duced in (15). With the additional definition e = ρ̇

T Σ−1
ρ̇/σ2

s , the
result is as follows:

Iτ =
ey2 + 2byẏ + aẏ2

σ2
s

+ b2 + ae

As before, it is desirable to express Iτ without using the conditional
covariance matrix Σ. Accordingly, we define e0 = ρ̇

T Σ−1

0
ρ̇/σ2

s

and use the expressions (17) and (18):

Iτ =
b20y

2 + 2b0yẏ + a0ẏ
2

σ2
s(1 − a0)

+
a0e0

1 − a0

+
b20(1 + a0)

(1 − a0)2
+
e0y

2

σ2
s

(24)

This expression is averaged over values of τ by the expectation
operator in (22). How this expectation is evaluated depends on the
form of y(t) and hence the application. In a normally operating
click- or pulse-width modulation system, y(t) is periodic and the
crossing points we wish to estimate are a-priori guaranteed to occur
exactly once per half-period (or full period, in the case of sawtooth
PWM.) In these applications, it is possible to determine the Cramér-
Rao bound by taking the expectation in (22) over a single half- or
full-period of y(t).

4. PERFORMANCE SIMULATION

In the following subsections, we introduce a test scenario, describe
the signal models used, and briefly review a number of alternative
estimators used to evaluate the performance of our approach. We
then present some simulation results.
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4.1. Scenario and Methodology

We assume a strictly bandlimited model for s(t); thus, rs(t) =
σ2

s sinc(ωt/π).We also adopt a sinusoidal carrier y(t) = A cos(ωt+
θ) in order to derive an estimator useful for click modulation [5].
Note that the carrier frequency ω and the bandlimit of s(t) are iden-
tical in this scenario.

In addition to regular samples from s(t), we require precise
knowledge of each crossing point in order to determine the error for
each estimator. To do this, it is useful to generate s(t) in such a way
that it may be evaluated at arbitrary time instants. We begin with the
Karhunen-Loève expansion for the bandlimited signal s(t):

s(t) = l.i.m.
N→∞

PN
n=1

snψn(t) t0 ≤ t ≤ tM−1 (25)

where l.i.m. represents the limit in the mean-squared sense. For
strictly bandlimited spectra, the functions ψn(t) are scaled Prolate
Spheroidal Wave Functions (PSWFs) [6, 12, 13]. The correspond-
ing sn are uncorrelated, zero-mean Gaussian random variables with
variance λn, where λn are parameter-dependent eigenvalues asso-
ciated with each eigenfunction ψn(t). We generate the PSWFs and
associated eigenvalues according to the procedures outlined in [14,
15].

In practice, the expected energy λn associated with each eigen-
function within the observation interval decreases rapidly as n in-
creases, and the summation in (25) may be truncated. We truncate
the summation when additional terms contribute less than 10−10 of
the total energy in s(t) over the observation interval. Depending on
the scenario being simulated, this requires between 6 and 10 terms.

For each simulation, segments of s(t) of length (M − 1)Ts are
generated randomly. The carrier phase θ of y(t) is chosen randomly,
and z(t) = s(t) − y(t) is formed. We then sample and add noise,
forming the observation vector x. This sample vector (and the un-
derlying z(t)) are not a-priori guaranteed to have a zero-crossing in
T ; candidates that do not have a zero crossing in the desired region
are discarded.

4.2. Reference Estimators

In addition to the MAP and MMSE estimators corresponding to (19)
and (21), and the Cramér-Rao bound given in (22) and (24), we eval-
uate a number of alternative estimators. These estimators are taken
from the literature and are useful for comparison.

The following list introduces acronyms used to identify both the
reference estimators and the quantities derived above.

CRB Cramér-Rao Bound.

UB Upper-bound estimator; selects randomly from an uniform
distribution on T . Variance is T 2

s /12.

MAP Exact MAP estimator; solves for nearby root of (19).

MMSE Approximation to MAP estimator given by (21).

POL Solution to ξ̂(t) = 0, where ξ̂(t) is the unique Lagrange
interpolating polynomial of degreeM−1 satisfying ξ[n] =

ξ̂(nTs + Td) at theM samples of x. See e.g. [2].

ILIN Linear interpolation between the nearest samples of ξ[k]
defined in (3). This method may be viewed as a degenerate
case of the POL method. See e.g. [2].

Parameter Value Description

T−1

s 192 kHz sampling rate
ω/2π 24 kHz bandlimit of s(t)
M 4 number of samples
A 1 carrier amplitude

σ2

n

`

2−15
´2

/12 noise variance

σ2

s (1/4)2 signal variance

Table 1. Operating point parameters
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Fig. 1. Estimator performance; number of samplesM varies

4.3. Results

Each of the following plots is generated by varying a single param-
eter, where the others are held at the operating point described in
Table 1. Each data point in the following plots corresponds to the
results from approximately 3000 simulations.

For each data point, outliers corresponding to crossing-point es-
timates outside (4) have been removed. Outliers of this type are read-
ily identifiable in a practical estimator. In the simulations reviewed
here, outliers are only generated at the low-SNR range in Figure 3.
The frequencies of these outliers are described below.

The noise variance has been chosen to model 16-bit quantiza-
tion noise, which represents a minimal amount of distortion in high-
quality audio recordings. The signal variance has been chosen to
provide a reasonable dynamic range with minimal probability that
the input signal has an amplitude greater than the carrier (an unde-
sirable condition known as modulator overload.) The sampling rate
and bandlimit of s(t) are design details, for which we have attempted
to choose reasonable values.

Figure 1 shows the estimator performance as the number of sam-
ples is varied over the even numbers between 2 and 10. The CRB,
POL, MMSE, and MAP estimators rapidly approach a limit beyond
which more samples do not improve performance. The ILIN estima-
tor, in all cases, only uses 2 samples.

Figure 2 shows the estimator performance as a function of the
oversampling rate. The horizontal axis is normalized to the sam-
pling rate so that 1 corresponds to Nyquist-rate sampling. Data near
critical (Nyquist-rate) sampling has been omitted because in this re-
gion, the assumptions of our two-step estimator (i.e. the that zero
crossings are well-separated when s(t) is sampled) are not satisfied.

Figure 3 shows the estimator performance as the SNR (σs/σn,
shown in dB) is varied. For high-fidelity switching amplifiers, the
SNR may be well over 90 dB. In the high-SNR regime, when high
accuracy is required, the MAP and MMSE estimators have an ad-
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Fig. 3. Estimator performance; SNR varies

vantage over the POL and ILIN estimators. In this scenario, outliers
were generated at the lowest three SNRs for the MAP (4%, 1%, and
0.2%) and MMSE (4%, 1%, and 0.2%) estimators.

In certain cases, the estimator surpasses the calculated Cramér-
Rao bound. This is due to our assumption that f(τ ) is uniformly
distributed in (24). Because s(t) is zero-mean, crossing points are
a-priori most likely to occur in the neighbourhood of y(t) = 0.
However, when y(t) is sinusoidal, the carrier slew ẏ(t) is also maxi-
mized when y(t) = 0. This combination produces the most accurate
crossing-point estimates precisely where they are most likely to oc-
cur. Preliminary results show the Cramér-Rao bound to be below
each estimator’s performance when f(τ ) is correctly modeled.

5. DISCUSSION

Lagrange interpolation performs well when the underlying signal
s(t) is low-pass and sufficiently oversampled. Unlike the methods
we introduce, the Lagrange method does not generalize to arbitrary
signal and noise models.

In real-time applications such as switching amplifiers, the viabil-
ity of an algorithm depends on its computational cost. Accordingly,
the POL and MMSE estimators are the chief competitors among the
estimators we have examined. Both Lagrange interpolation [18] and
the MMSE estimator (21) may be posed as a zero-finding problem
using a convolutional filter with time-varying taps to interpolate the
random signal s(t). Thus, in terms of computational cost, the chief
difference between POL and MMSE is how the taps are computed.

Exploration of this process is to be evaluated in a later work.
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