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Abstract—In this paper, we propose a novel power allocation 
scheme for physical-layer network coding (PNC) in uplink multi­
way relay channels (MWRC). The power allocation is formulated 
as a constrained optimization problem under the transmitting 
power constraint of user terminals, aiming at maximizing the 
success probability of the successive interference cancellation 
(SIC) detection at the relay. Optimizing over such a metric 
maximizes the probability of correctly detecting all user signals, 
which is critical to the network code generation at the relay. 
Specifically, we first develop a generalized closed-form success 
probability of the SIC detection on signals with pulse-amplitude 
modulation (PAM) at the relay. A constraint optimization is 
formulated over this probability subject to the power constraints 
of user terminals. We implement an evolutionary particle swarm 
optimization (PSO) algorithm to solve the problem whose cost 
function is complicated and not necessarily concave. The numer­
ical results show that the proposed power allocation method can 
improve the quality of network code extraction at the relay.

I. Introductions

Physical layer network coding (PNC), first proposed in 
[1], is a throughput improvement scheme compared to the 
conventional network coding (NC) [2]. Since then, a large 
volume of research on PNC has been mainly conducted in two­
way relay channels (TWRC) [3]—[5]. To generalize and further 
extend the study on PNC, the use of PNC in multi-way relay 
channels (MWRC), where multiple users share information 
through a single relay, has gradually received attention [6]- 
[8]. In an MRWC PNC system among N  users, the relay 
mixes N  pieces of received user signals and generates N  -  1 
network codes. These codes are usually designed to be strongly 
correlated with each other like a chain [8], whose robustness 
highly depends on the detection accuracy of all received user 
signals at the relay. For this reason, successfully detecting 
every piece of user signal from the superimposed signals at 
the relay will significantly improve the efficacy of network 
code generation. Hence, it is critical to devise mechanisms 
that ensure the detection accuracy at the relay for PNC in 
MWRC.

Successive interference cancellation (SIC) [9], which mit­
igates the interfering effects by discriminating superimposed 
signals based on their relative power levels, is a widely adopted 
detection scheme for multi-user communications. Existing

Funding for this work was provided by a grant from the Natural Sciences 
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studies on the efficiency of the SIC mainly emphasize improv­
ing the sum rate of the system, where the aim is to enhance the 
average detection accuracy of each user signal. For instance, a 
relay selection strategy for an NC scheme is proposed in [10], 
where the goal is to choose the best relay that preserves the 
maximized signal-to-interference-plus-noise ratio (SINR). In 
[11], a beamforming scheme for a superposition code of PNC 
is designed to achieve an acceptable symbol error rate (SER) 
in the SIC detection. Many works exploiting the SIC detection 
for non-orthogonal multiple access (NOMA) systems, such 
as [12]—[15], also address their respective problems from the 
perspective of the sum-rate maximization.

Unfortunately, a limited number of works explicitly focus on 
improving the accuracy of the entire chain of correlated signals 
during the SIC process, as is critical for PNC in MWRC. In 
this regard, the work in [16] analyzes the closed-form word 
error rate (WER) for the SIC decoders, which characterizes the 
success probability of detecting all signals in the successive 
process. Thus, it provides a valuable metric for evaluating 
the quality of the entire chain of detected signals. However, 
this work mainly emphasizes the theoretical analysis and does 
not involve further consideration on utilizing the metric for 
practical system design.

Inspired by the work of [16], we propose a novel power al­
location for the SIC detection on signals with pulse-amplitude 
modulation (PAM) at the relay for PNC in MWRC. To be 
specific, we first extend the work in [16] and develop a 
generalized closed-form success probability of the SIC de­
tection on signals with PAM signaling. We then formulate 
a constrained optimization problem, where the aim is to 
maximize the success probability of the SIC detection at the 
relay under the transmitting power constraint of user terminals. 
Optimizing over this metric maximizes the probability of 
correctly detecting all signals from the superimposed signals, 
which improves the efficacy of the network code generation 
at the relay. To solve this optimization problem where the 
cost function is complicated and not necessarily concave, we 
implement an evolutionary particle swarm optimization (PSO) 
algorithm. The simulation results verify the derivation of the 
success probability and demonstrate the effectiveness of the 
proposed power allocation in improving the relay’s ability to 
extract network codes from the superimposed signals.

The paper is organized as follows: In Section n, we in-
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Fig. 1. Illustration o f  the PNC in MWRC.

traduce the system model of the PNC in MWRC. Section El 
proposes the power allocation scheme, including the derivation 
of the general closed-form success probability, the formulation 
of the optimization problem, and the solution using the PSO 
algorithm. In Section IV, we provide simulation results to 
demonstrate the effectiveness of the proposed methods. Fi­
nally, section V concludes the paper.

II. System model

As illustrated in Fig. 1, we consider a half-duplex multiway 
relay network where N  users share information with each other 
through a common relay R. User terminals are equipped with 
a single antenna while the relay is equipped with K < N  
antennas. We assume that there is no direct link among users, 
i.e., information exchange between two users needs to go 
through the relay. We assume all radio transmissions are over 
narrow-bands, i.e., frequency flat, slow fading channels. For 
simplicity, we also assume perfect channel estimation and time 
synchronization are available for any node in the network.

The superimposed signals received at the relay can be given 
as:

y = HAs + n, (1)

where s e RA'xl is the user signal vector whose i-th en­
try Si is an M,-PAM signal that is independently and uni­
formly distributed over a real set S, = {bf\ . .. with
bf* < ■■■ < b f 1̂  e R, y e CXxl is a received signal 
vector, H = [hi, . . . ,h#] e CKxN is the channel matrix, 
A = diag( y/P\ , . . . ,  s/Pn) with Pt being the power allocated 
to Si, and n e Cz  is the noise vector with each being 
independently distributed following CN(0, a2). For simplicity, 
we assume the distance between any two consecutive elements 
in each S, is constant and denote it by 2di, where

b ™ - b m
di ~ 2 {Mi -  1) ’

Since s has real-valued constellations, the estimation solely 
depends on the real domain. To simplify the analysis, we can 
transform the system in to an equivalent real-valued system 
model, i.e.:

y = HAs + n, (2)

where y = 9l(y), H = 91(H), and n = 91(n).

HI. The proposed method

In this section, we first present the derivation of a gener­
alized closed-form success probability of the SIC detection 
on the PAM signaling. We then formulate a constrained 
optimization over this metric subject to the transmitting power 
constraint of user terminals and implement a particle swarm 
optimization algorithm for the solution.

A. Success Probability of the SIC Detection
Assuming that the successive process goes from user index 

A to 1. For the ith iteration, an estimator s f  of j,- can be 
obtained after the removal of the previously detected signals 
s f ,  j  -  i+1,. . . ,  N, from y. Suppose that s f  has been obtained 
for j  = i + 1 , . . . ,  N  and we define:

N

Z
j=i+\

y(i) = y  ■ Vfjsf.

where W = HA = [wi,. . . ,  w#] 6 R**^, 
we solve:

min||y(,) -Wjjjlb.if€®i

The solution s f  can then be obtained by:

(3)

w,- = VP;h,-. Then

(4)

Ci =
w?y®

w, s f  = Lc.k- (5)
<"2

where |_c;k denotes the nearest element to c,- in S,. From (5), 
(3) and (2), we obtain:

wfy® i_1
llw,

y— = Y,l|2 Z j  
7=11II2

wfv/jSj Ä  wf wj(sj - s f )  w fn
. L  + st + 2_j — - ... +
w,i\\2 j=i+1 Wi1II2 l|w,-||| ' 

(6)

When previous signals are successfully detected, i.e., s f VN -  
Si+i:7v, from (6) we obtain:

w?y® '-1 wfw
w,1112

V ' Wi/  ----- ttSj + Si +U l|Will2

wfn
w,-

(7)

where w fn follows a normal distribution with the mean and 
the variance as:

E[wfn] = w^Efn] = 0, Var[wfn] = wfCov[n]w, = cr2||wij|2, 

where cr = a. Thus, based on (7), we have:

(8)

Our goal is to derive a formula for Pr(sid = s). Note that 
by the chain rule for conditional probability,

N

Pr(sid = s) = Y \  Pr ( s f  = S i \ s f 1:N = si+1:iV). (9)
¿=1
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Since events (s,- = b f ), {bP < S{ < b(M,)), and (s,- = b f 1̂ ) are 
mutually exclusive,

Pr( s f  = Si | s%1:N = si+l:N)
= Pr(* = b f \  Ci < b{p  + di | sf+VN = si+1:N)

s ■ “v  ■̂
p»

+ Pt ( b -  < S( < b ■ , Si — d i < Ci < Si + d i | S¡+l:#  S/+1:;v)

+ Pr (si = b f ,),ci >b\uWÙ ' di I S(+j.jy — S i. i,y) .

Pi,u
( 10)

In the derivation, we need to use the error function: erf(£) = 
Jp exp(-t2)dt. Given l and u with l < u, if x ~ N (0,1), 

then

Pr(x< I) = l /2 ( l  + erf (Z/V2)), (11)

and similarly Pr(x > u) = 1/2 (1 -  erf (m/V 2)), Pr(/ < x < 
u) = 1/2 (erf («/ V2) -  erf (// V2)).

In addition, for notational convenience, we label 
b P , b \ M,) in S t by 0 ,1 , . . . ,  M, -  1, respectively.
Specifically, we define the bijection ¡3, : { b f ...... b,M,)} ->
{ 0 -  1}. Let ^  = [sfd........s f 0]7 be the
ki-th possible instance of si:„ where the index
is defined by kt = 1 + £ ‘=1 (ft(sf) n>,+i Mj)- For
example, given S i = { -1 ,1},®2 = {-3,-2,0}, S3 = 
{2,3,4,6,7},S4 = {-1,0,1,2}, = [-1 ,-2 ,7 , i f
represents the 99th instance of si:4 where kt is computed as: 
k  = l + lx (3 x 5 x 4 )  + lx (5 x 4 )  + 4x(4) + 2 x ( l)  = 99. Note
that ¿¡ = 1,2.......nj=i and si:, has a total of At, = nj=i
instances. Since i, is independently uniformly distributed 
over Si for i -  1 , . . . ,  N,

Pr(Sl:i = Ŝ ) = / ^ -  (12)

a) Derivation of Ptj : According to Bayes’s theorem, we 
have:

PUi = Pr(.9, = bf>)Pr(c, < b<n + di I Si = b{. \ s f +VN = Si+i-jf)
Mi-i

= P l(S i  = b f ]) Y ,  Pr(si:,'-1 = ¿ t i p )
ki- i=l

Pr(c,- < b f ] + di I Si = b f \  s ^ VN = si+i:jv, = sp p )
(13)

Now we find a formula for the probability in (14b). Note that 
when st = b p  a 
is equivalent to
when Si = b p  and = s f ‘i-v  inequality ci ^ bP + di

- ( W ^ H a - s ù - Y  ± 1 (llwiI W - 2  "t T * ? - 0)-o-v j - 3 ||w,-||2 1 > o-v j - i  ||w,-||2 3 >

<zl WHW 1 <-t

O-'......■ j p  l|w,'||2 j O-

Then, by (8) and (11) we have:

Pr(c, < bP + di I Si = b P ,sp .N = s,+i:Ar,Si:i_i = spp)

Therefore, from (14b) and (15), we obtain:

p‘>- m  (16)
b) Derivation ofP ¡,m and P,iK: Similarly to the derivation 

of (16), we have:

1-1 . , (17)

(18)
Eventually, we plug (16), (17), and (18) into (10) and then 

into (9). The success probability Pr(ssd = s) is thus given as:
N

Pr(s!d = s) = [^{P,,/ + Phm + PhU]

(15)

1=1
N 1 M i-  1

Li1 lM-'+ v* k t=Q{
(19)

B. Problem Formulation
We plug (12) into (13) and obtain:

Mi-i

r ' ' P l Z , 7 p P r ( a £ b - , + ‘/‘ ls‘ - l’mki-i=l
S!+1:V — Si'+l:V) sl:i-l — si ;i_l) 

t Mi-i
=  -T T  V  Pr(c,- < b (P  + d i I Si = b p ,  

M ‘ ttPx

®i+l:iV = ®i+l:AT> =

(14a)

(14b)

We formulate an optimization problem based on (19) subject 
to the transmitting power constraint P j of user terminals to 
maximize the success probability of SIC detection at the relay 
side, i.e.:

max Pr(ssd = s) (20a)
Pu -,Pn

s.t.: 0 < Pj < Pt , for j= l , . .. ,  N. (20b)

However, the function in (19) is not necessarily concave 
with respect to Pj, and the corresponding proof is difficult
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to obtain due to the complication of its form. We will use a 
numerical computing method to solve such a problem in (20).

C. Particle Swarm Optimization Approach

The particle swarm optimization (PSO) algorithm starts 
with random initializations of a swarm of individuals, called 
particles, within the problem feasible region [17]. Then each 
particle iteratively approaches better and better approximations 
to the optimal solution with moving directions and step length 
that are coordinated by the entire swarm’s motion. A detailed 
process is given in Algorithm 1.

a) Velocity and position: At iteration t £ N, each par­
ticle in a swarm of size S is characterized by its position 
vector X‘m -  [ P ^ , . . . ,  P‘mK]T £ R+ and a velocity vector
v m = [vmi>---’vmx]r  > where m € {1.......S] is the particle
index, P*m. is the particle m’s current solution to power Pj, and 
v‘mj is the yth velocity component, j  e [1,.. . ,  A-}. Each particle 
adjusts its trajectory towards its own previous best position, 
called Obest, and towards a global best position attained by 
any member within the swarm, called Q best- O b est  and Q best are 
determined by evaluating the cost function f (X ‘m) = Pr(ssd = s) 
in (20a) during the particle’s motion.

b) Penalized cost function: In order to confine the par­
ticles’ motion within the feasible region, we incorporate a 
penalty function to the cost function / ,  i.e.:

F Q O  = f (X ‘J  -  Q max{0, P ^  -  PT.......P‘mN -  PT, -X 'J ,
(21)

where Q is a penalty factor with a large positive value. Once 
a particle motion violates the constraints, F(X‘m) deteriorates 
dramatically to a small value. The result of this motion will 
thus be discarded.

c) Motion updates: Velocity VJ^1 directs the particle to 
the next new position. Its component on dimension j  is given 
as:

v m j =  W v m j +  c l r l (P b estjn j ~  ^ m j )  +  c 1r 2(,@best,mj ~  F mj ) ,  (2 2 )

where of is an inertia weight, c\ and C2 are the constant 
cognitive and social parameters respectively, and and ri, 
are the randomly generated numbers. The new position on 
dimension j  is accordingly given as:

c j , (23)

d) Convergence and termination: The algorithm eventu­
ally comes to a stop when the motion of swarm stalls. This 
occurs when the largest change in the objective value for the 
swarm, i.e.: rnax[Am = |F(X^) -  F (T ^ l)\,m = 1 ,. . . ,S], 
is less than a certain small value e. In addition, based on 
our experience, the algorithm can always solve problem (20) 
within a certain number of iterations for a specific swarm size. 
Thus, we set a maximum number of iterations TmaX as an 
additional stopping criterion for the algorithm. The eventual 
Q b est  is thus considered as the solution to the power allocation 
problem in (20).

Algorithm 1 PSO algorithm to solve problem (20)
1: Step 1: Input swarm size S; number of max iterations 

Tmax\ penalized cost function F{-)\ stopping criteria e.
2: Step 2: Initialize parameters c\, C2, r°v  r2-
3: Step 3:: For each particle m = 1 to S, initialize random 

particle positions X^ in the feasible region and velocity 
V° -  0. Set particle best known position Obest,m -  and 
valuate each particle’s cost P(X°).

4: Step 4: Initialize swarm’s best known position Qbest, 
where F(Qbest) = max{F(X°)|m = 1 , . . . ,S }.

5: Step 5: Initialize t=0.
6: Step 6: t - t + 1 .
l: Step 7: Update the velocity of particles according to (22) 

and the position of particles according to (23).
8: Step 8: Evaluate F(X‘m) f o r m -  1 ,... ,S  and determine 

Obest,m, where F{Obesm ) = max{F(Xj„)|i = 1 ,. . . ,  t}.
9: Step 9: Update Qbest, where F(Qbest)= max{F(06eii>m)|m = 

1
10: Step 10: Randomize parameter r\ and r*2. 
ll: Step 11: If t < Tmax or max{Am = \F{Xlm) -  F{X‘~l)\,m = 

1 , . . . ,5 ]  > e, return to Step 6. Otherwise, stop the 
iteration and output Qbest-

IV. Simulation Results

In this section, numerical results are provided to demon­
strate the performance of the proposed success-probability- 
based power allocation scheme for SIC detection. We assume 
the transmitting power constraint of the MWRC PNC is 
normalized to Pt -  1 for different system scales specified in 
the following experiments. We assume the various radio links 
to be Rayleigh fading, i.e., the entries of the channel matrix H 
are modeled as independent complex circular Gaussian random 
variables with zero mean and unit variance. The noise variance 
at receiving antennas is adjusted accordingly to obtain the 
desired SNR levels.

We first validate the derivation of (19) by comparing the 
theoretical analysis with the numerical results from Monte 
Carlo experiments in Fig. 2. The validation is conducted under 
the system consisting of N  = 4 user terminals and K = 3 relay 
antennas. In order to have a straightforward comparison and 
eliminate any potential distraction from optimization process, 
we simply allocate equal power to the transmitting user 
terminals with 3 groups of different PAM modulations, i.e., 
2-PAM s e [-1, +1], 4-PAM s e [—3,—1, +1, +3], and 6- 
PAM s £ [-5, -3 ,-1 , +1, +3, +5}. Based on the results of three 
groups of comparison, we observe that the numerical results 
are in accordance with their respective theoretical values.

We then demonstrate the effect of the power allocation 
strategy on the rate of correctly generated network code 
chains. In this experiment, we compare the proposed success- 
probability-based strategy with a conventional sum-rate-based 
strategy that maximizes user signals’ minimal SINR. The equal 
power allocation strategy is also provided as a reference. 
The sequential coding strategy as in [8] is adopted at the
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Fig. 2. Comparison between theoretical analysis and simulation results.

Fig. 3. The effect of power allocation strategy on the rate of correctly 
generated network code chains with N  = 4, K = 3 and N = 6, K = 4.

relay for the code chain generation. We transmit 10,000 
signals with 4-PAM signaling from each user and compare 
the generated code chains to their expected results at the 
relay. In Fig. 3 a) and b), we present the comparison among 
the proposed strategy (indicated by ’SP’), the conventional 
strategy (’SINR’), and the equal power allocation strategy 
(’Eq’) with two different system scales, i.e., N = 4, K = 3 and 
N = 6, K = 4 respectively. From the result, we can see that the 
proposed method effectively improves the rate of correct code 
chains with an advantage of around 5 dB over the conventional 
sum-rate based method. Hence, the result demonstrates the 
effectiveness of the proposed in improving the relay’s ability 
to extract network codes from the superimposed signals.

V. C onclusion

In this paper, we proposed a novel power allocation scheme 
for PNC in uplink MWRC. The power allocation was for­
mulated as a constrained optimization problem under the 
transmitting power constraint of user terminals, aiming at 
maximizing the success probability of the SIC detection at the 
relay. Optimizing over such a metric maximizes the probability 
of correctly detecting all user signals, which is critical to the 
network code generation at the relay. Specifically, we first

developed a generalized closed-form success probability of the 
SIC detection on signals with PAM at the relay. We then for­
mulated a constraint optimization over this probability subject 
to the power constraints of user terminals. We implemented 
an evolutionary PSO algorithm to solve the problem whose 
cost function is complicated and not necessarily concave. The 
numerical results verified the success probability derivation 
and demonstrated the effectiveness of the proposed power 
allocation scheme in improving the relay’s ability to extract 
network codes from the superimposed signals.
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